Advertisement

Conclusion

  • Akihiko Hirata
  • Kaname Matsue
  • Mingwei Chen
Chapter
Part of the SpringerBriefs in the Mathematics of Materials book series (BRIEFSMAMA, volume 2)

Abstract

In this book, we have discussed the local atomic structure of metallic glasses that possess “disordered” amorphous structure without any periodicity. Even for short-range atomic configurations, the structure of metallic glasses exhibits considerable variety since the metallic bonding has fewer chemical constraints than covalent systems such as silica glasses.

Keywords

Metallic Glass Betti Number Geometric Object Atomic Cluster Pair Distribution Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    H. Edelsbrunner and J. Harer. Computational Topology: An Introduction. American Mathematical Society, 2010.Google Scholar
  2. 2.
    M. Gameiro, Y. Hiraoka, S. Izumi, M. Kramar, K. Mischaikow and V. Nanda, A topological measurement of protein compressibility, Japan J. Ind. Appl. Math., 32(2013), 1–17.Google Scholar
  3. 3.
  4. 4.
    T. Nakamura, Y. Hiraoka, A. Hirata, E.G. Escolar, K. Matsue and Y. Nishiura, Description of Medium-Range Order in Amorphous Structures by Persistent Homology, arXiv:1501.03611
  5. 5.
    T. Nakamura, Y. Hiraoka, A. Hirata, E.G. Escolar, and Y. Nishiura, Persistent Homology and Many-Body Atomic Structure for Medium-Range Order in the Glass, Nanotechnology 26 (2015), 304001Google Scholar
  6. 6.
  7. 7.
    RedHom: a part of the CAPD project. http://capd.sourceforge.net/capdRedHom/.

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Advanced Institute for Materials ResearchTohoku UniversitySendaiJapan
  2. 2.The Institute of Statistical MathematicsTachikawaJapan

Personalised recommendations