Skip to main content

Atlantic–Pacific asymmetry of subsurface temperature change and frontal response of the Antarctic Circumpolar Current for the recent three decades

  • Chapter
  • First Online:
“Hot Spots” in the Climate System

Abstract

For the 32-year period from 1979 to 2010, trends of surface and subsurface temperature and meridional motion of the current system in the Antarctic Circumpolar Current (ACC) region are studied with in situ observations and an eddy-resolving general circulation model. The observed and simulated surface temperature shows a similar pattern between the Atlantic and Pacific: warming to the north of the Subantarctic/Subtropical Fronts in the Atlantic and of the Subtropical Front in the Pacific and cooling to the south of those fronts. The subsurface temperature trend, again from both observation and model, reveals an asymmetric pattern between the Atlantic and Pacific: subsurface warming is dominant over the whole ACC region in the Atlantic, while both warming and cooling are significant in the Pacific, the former located to the north of the Subantarctic Front and the latter to the south. The model reveals that the ACC has generally shifted poleward in the Atlantic, while it has shifted equatorward around Subantarctic Front and Polar Front in the Pacific. The ACC shift is consistent with the overall subsurface temperature trend. The basin-scale difference of the ACC response can be related to the different regime of the trend in meridional gradient of the zonal wind stress to the north and south of 50–55°S and suggests a coupling of the ACC and overlying westerly on the multi-decadal time scale.

This chapter is re-publication of the article (DOI:10.1007/s10872-015-0284-6) from the journal “Journal of Oceanography”

Received: 27 May 2014 / Revised: 27 February 2015 / Accepted: 12 March 2015 / Published online: 28 March 2015

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aoki S, Yoritaka M, Masuyama A (2003) Multi-decadal warming of subsurface temperature in the Indian sector of the Southern Ocean. J Geophys Res. doi:10.1029/2000JC000307

    Google Scholar 

  • Bajish CC, Aoki S, Taguchi B, Komori N, Kim S-J (2013) Quasi-decadal circumpolar variability of Antarctic sea ice. SOLA 9:32–35. doi:10.2151/sola.2013-008

    Article  Google Scholar 

  • Böning CW, Dispert A, Visbeck M, Rintoul SR, Schwarzkopf FU (2008) The response of the Antarctic Circumpolar Current to recent climate change. Nature Geosci. 1:864–869. doi:10.1038/ngeo362

    Article  Google Scholar 

  • Boyer TP, Levitus S, Antonov JI, Conkright ME, O’Brien T, Stephens C (1998) World Ocean Atlas 1998 Vol. 5: salinity of the Pacific ocean, NOAA Atlas NESDIS 31. U.S. Government Printing Office, Washington

    Google Scholar 

  • Cai W (2006) Antarctic ozone depletion causes an intensification of the Southern Ocean super-gyre circulation. Geophys Res Lett 33:L03712. doi:10.1029/2005GL024911

    Google Scholar 

  • Cai W, Cowan T, Godfrey S, Wijffels S (2010) Simulations of processes associated with the fast warming rate of the southern midlatitude ocean. J Clim 23:197–206

    Article  Google Scholar 

  • Fyfe JC (2006) Southern Ocean warming due to human influence. Geophys Res Lett 33:L19701. doi:10.1029/2006GL027247

    Article  Google Scholar 

  • Fyfe JC, Saenko OA (2006) Simulated changes in the extratropical Southern Hemisphere winds and currents. Geophs. Res. Lett. 33:L06701. doi:10.1029/2005GL025332

    Google Scholar 

  • Fyfe JC, Saenko OA, Zickfeld K, Eby M, Weaver AJ (2007) The Role of poleward-intensifying winds on Southern Ocean warming. J Clim 20:5391–5400

    Article  Google Scholar 

  • Gille S (2002) Warming of the Southern Ocean since the 1950s. Science 295:1275–1277

    Article  Google Scholar 

  • Gille S (2008) Decadal-scale temperature trends in the Southern Hemisphere ocean. J Clim 21:4749–4765

    Article  Google Scholar 

  • Gillet NP, Thompson DWJ (2003) Simulation of recent Southern Hemisphere climate change. Science 302:273. doi:10.1126/science.1087440

    Article  Google Scholar 

  • Godfrey JS (1989) A Sverdrup model of the depth-integrated flow for the world ocean allowing for island circulations. Geophys Astrophys Fluid Dyn 45:89–112

    Article  Google Scholar 

  • Hogg AM, Meredith MP, Blundel JR, Wilson C (2008) Eddy heat flux in the Southern Ocean: response to variable wind forcing. J Clim 21:608–620

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Leetmaa A, Reynolds R, Jenne R (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471

    Article  Google Scholar 

  • Levitus SJ, Antonov I, Boyer T (2005) Warming of the world ocean, 1955–2003. Geophys Res Lett 32:L02604. doi:10.1029/2004GF021592

    Google Scholar 

  • Levitus SJ, Antonov JI, Boyer TP, Baranova OK, Garcia HE, Locarnini RA, Mishonov AV, Reagan JR, Seidov D, Yarosh ES, Zweng MM (2012) World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. Geophys Res Lett 39:L10603. doi:10.1029/2012GL051106

    Article  Google Scholar 

  • Locarnini RA, Mishonov AV, Antonov JI, Boyer TP, Garcia HE (2010) World Ocean Atlas 2009, vol. 1. In: S Levitus (eds) Temperature, NOAA Atlas NESDIS, vol 68. NOAA, Silver Spring, pp 184

    Google Scholar 

  • Marshall GJ, Connolley WM (2006) Effect of changing Southern Hemisphere winter sea surface temperatures on Southern Annular Mode strength. Geophys Res Lett 33(33):L17717. doi:10.1029/2006GL026627

    Article  Google Scholar 

  • Masumoto Y, Sasaki H, Kagimoto T, Komori N, Ishida A, Sasai Y, Miyama T, Motoi T, Mitsudera H, Takahashi K, Sakuma H (2004) A fifty-year eddy- resolving simulation of the world ocean: preliminary outcomes of OFES (OGCM for the Earth Simulator). J Earth Simulator 1:35–56

    Google Scholar 

  • Meijers AJ, Bindoff NL, Rintoul SR (2011) Frontal movements and property fluxes: contributions to heat and freshwater trends in the Southern Ocean. J Geophys Res 116:C08024. doi:10.1029/2010JC006832

    Article  Google Scholar 

  • Meredith MP, Hogg AM (2006) Circumpolar response of Southern Ocean eddy activity to a change in the Southern Annular Mode. Geophys Res Lett 33:L16608. doi:10.1029/2006GL026499

    Article  Google Scholar 

  • Morrow R, Valladeau G, Sallée JB (2008) Observed subsurface signature of Southern Ocean sea level rise. Prog Oceanogr 77:351–366

    Article  Google Scholar 

  • Nakamura H, Sampe T, Tanimoto Y, Shimpo A (2004) Observed associations among storm tracks, jet streams and midlatitude oceanic fronts, in Earth’s climate: The Ocean-Atmosphere interaction. In: Wang C, Xie S-P, Carton JA (eds) Gophys, Monogr. Ser 147, AGU, pp 329–345

    Google Scholar 

  • Ogawa F, Nakamura H, Nishii K, Miyasaka T, Kuwano-Yoshida A (2012) Dependence of the climatological axial latitudes of the tropospheric westerlies and storm tracks on the latitude of an extratropical oceanic front. Geophs Res Lett. doi:10.1029/2011GL049922

    Google Scholar 

  • Orsi AH, Withworth T III, Nowlin WD (1995) On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Res I 42:641–673

    Article  Google Scholar 

  • Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang W (2002) An improved in situ and satellite SST analysis for climate. J Clim 15:1609–1625

    Article  Google Scholar 

  • Rintoul SR, Naveira Garabato AC (2013) Dynamics of the Southern Ocean circulation. In: Siedler G, Griffies S, Gould J, Church J (eds) Ocean Circulation and Climate: A 21st Century Perspective. 2nd edn, International Geophysics, 103. GB, Academic Press, Oxford, pp 471–492

    Google Scholar 

  • Roemmich D, Gilson J, Davis R, Sutton P, Wijffels S, Riser S (2007) Decadal spinup of the South Pacific subtropical gyre. J Phys Oceanogr 37:162–173

    Article  Google Scholar 

  • Sallée J-B, Speer K, Morrow R (2008) Response of the Antarctic circumpolar current to atmospheric variability. J Clim 21:3020–3039

    Article  Google Scholar 

  • Sasaki H, Nonaka M, Masumoto Y, Sasai Y, Uehara H, Sakuma H (2008) An eddy-resolving hindcast simulation of the quasi-global ocean from 1950 to 2003 on the Earth Simulator. In: Hamilton K, Ohfuchi W (eds) High resolution numerical modelling of the atmosphere and Ocean, chap 10. Springer, New York, pp 157–186

    Google Scholar 

  • Screen JA, Gillett NP, Stevens DP, Marshall GJ, Roscoe HK (2009) Role of eddies in the Southern Ocean temperature response to the Southern Annular Mode. J Clim 22:806–818

    Article  Google Scholar 

  • Sokolov S, Rintoul SR (2009) Circumpolar structure and distribution of the Antarctic Circumpolar fronts: 1. Mean circumpolar paths. J Geophys Res 114:C11018. doi:10.1029/2008JC005108

    Article  Google Scholar 

  • Thompson DWJ, Solomon S (2002) Interpretation of recent Southern Hemisphere climate change. Science 269:895–899

    Article  Google Scholar 

  • Wang Z (2013) On the response of Southern Hemisphere subpolar gyres to climate change in coupled climate models. J Geophys Res 118:1070–1086. doi:10.1002/jgrc.20111

    Article  Google Scholar 

  • Wang Z, Kuhlbrodt T, Meredith MP (2011) On the response of the Antarctic Circumpolar Current transport to climate change in coupled climate models. J Geophys Res 116:C08011. doi:10.1029/2010JC006757

    Google Scholar 

  • Wu L, Cai W, Zhang L, Nakamura H, Timmermann A, Joyce T, McPhaden MJ, Alexander M, Qiu B, Visbeck M, Chang P, Gieseet B (2011) Enhanced warming over the global subtropical western boundary currents. Nat Clim Chang. doi:10.1038/nclimate1353

    Google Scholar 

  • Yuan X, Yonekura E (2011) Decadal variability in the southern hemisphere. J Geophys Res 116:D19115. doi:10.1029/2011JD015673

    Article  Google Scholar 

Download references

Acknowledgments

We thank Akira Taniguchi for his data handling of OFES. Discussion with Drs. Andy Hogg and Katsuro Katsumata are very helpful in interpreting the results. Comments and suggestions from two anonymous reviewers helped substantially improve this manuscript. This work was supported by Grant-in-Aid for Scientific Research (22106009) of the MEXT of the Japanese Government, by the Cooperative Research Centre program of the Australian Government, through the Antarctic Climate and Ecosystems Cooperative Research Centre and by the Australian Government Department of the Environment, the Bureau of Meteorology and CSIRO through the Australian Climate Change Science Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeru Aoki .

Editor information

Editors and Affiliations

Appendix: Climatological fronts of OFES

Appendix: Climatological fronts of OFES

The meridional gradient of the climatological mean (1979–2010) SSH reveals lines of maxima which merge and diverge at some longitudes (Fig. 13). Here the climatological the ACC fronts (SAF and PF) in OFES are defined as the climatological SSH contours where maxima in the meridional gradient of climatological SSH in 0.1° horizontal resolution are roughly located. Since large meridional gradients lie around the climatological SSH contours of −50 and −100 cm (0 cm reference is the global mean SSH) in circumpolar average (Fig. 14) and the lines are roughly associated with the local maxima (Fig. A1), the climatological SSH contours of −50 and −100 cm are defined as the SAF and PF, respectively.

Fig. 13
figure 13

Distribution of the meridional gradient of the climatological SSH of OFES. Solid lines are OFES climatological fronts of the STF, SAF, PF, and SB

Fig. 14
figure 14

Zonal mean meridional gradient of climatological SSH of OFES, which is averaged along the particular SSH contours. The 0 cm reference is the global mean of SSH

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Oceanographic Society of Japan and Springer Japan

About this chapter

Cite this chapter

Aoki, S., Mizuta, G., Sasaki, H., Sasai, Y., Rintoul, S.R., Bindoff, N.L. (2016). Atlantic–Pacific asymmetry of subsurface temperature change and frontal response of the Antarctic Circumpolar Current for the recent three decades. In: Nakamura, H., Isobe, A., Minobe, S., Mitsudera, H., Nonaka, M., Suga, T. (eds) “Hot Spots” in the Climate System. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56053-1_9

Download citation

Publish with us

Policies and ethics