Skip to main content

Modifying Dendritic Structure After Function

  • Chapter
  • First Online:
Dendrites
  • 1236 Accesses

Abstract

Neurons develop highly specialized dendritic architecture for certain operations of information processing in the brain. In this chapter, we review the development and regulation of characterized patterns of dendritic morphology and arrangement of bipolar neurons in the auditory brainstem, an excellent example of highly specialized dendritic architecture for their function in temporal coding and coincidence detection. We describe dramatic dynamics of the dendrites in both developing and mature systems and discuss the role of afferent synaptic input in influencing both the size of dendritic tree and the pattern of dendritic arborizations. The unique dendritic structure of these neurons provides an advantageous model for further understanding of the specific roles of neurotransmission, calcium signaling, protein synthesis, and cytoskeletal regulation in this important form of brain dynamics. Importantly, these neurons are highly conserved structurally and functionally across vertebrates including humans, emphasizing stereotyped dendritic regulation that is evolutionarily conserved for fundamental information processing operations in the vertebrate brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agmon-Snir H, Carr CE, Rinzel J (1998) The role of dendrites in auditory coincidence detection. Nature 393:268–272

    Article  CAS  PubMed  Google Scholar 

  • Alvarado JC, Fuentes-Santamaria V, Henkel CK, Brunso-Bechtold JK (2004) Alterations in calretinin immunostaining in the ferret superior olivary complex after cochlear ablation. J Comp Neurol 470:63–79

    Article  PubMed  Google Scholar 

  • Benes FM, Parks TN, Rubel EW (1977) Rapid dendritic atrophy following deafferentation: an EM morphometric analysis. Brain Res 122:1–13

    Article  CAS  PubMed  Google Scholar 

  • Blackmer T, Kuo SP, Bender KJ, Apostolides PF, Trussell LO (2009) Dendritic calcium channels and their activation by synaptic signals in auditory coincidence detector neurons. J Neurophysiol 102:1218–1226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Born DE, Rubel EW (1985) Afferent influences on brain stem auditory nuclei of the chicken: neuron number and size following cochlea removal. J Comp Neurol 231:435–445

    Article  CAS  PubMed  Google Scholar 

  • Born DE, Rubel EW (1988) Afferent influences on brain stem auditory nuclei of the chicken: presynaptic action potentials regulate protein synthesis in nucleus magnocellularis neurons. J Neurosci 8:901–919

    CAS  PubMed  Google Scholar 

  • Born DE, Durham D, Rubel EW (1991) Afferent influences on brainstem auditory nuclei of the chick: nucleus magnocellularis neuronal activity following cochlea removal. Brain Res 557:37–47

    Article  CAS  PubMed  Google Scholar 

  • Branco T, Häusser M (2010) The single dendritic branch as a fundamental functional unit in the nervous system. Curr Opin Neurobiol 20:494–502

    Article  CAS  PubMed  Google Scholar 

  • Caicedo A, d’Aldin C, Eybalin M, Puel JL (1997) Temporary sensory deprivation changes calcium-binding proteins levels in the auditory brainstem. J Comp Neurol 378:1–15

    Article  CAS  PubMed  Google Scholar 

  • Canady KS, Rubel EW (1992) Rapid and reversible astrocytic reaction to afferent activity blockade in chick cochlear nucleus. J Neurosci 12:1001–1009

    CAS  PubMed  Google Scholar 

  • Carr CE, Code RA (2000) The central auditory systems of reptiles and birds. In: Dooling RJ, Fay RR, Popper AN (eds) Comparative hearing: birds and reptiles. Springer, New York

    Google Scholar 

  • Code RA, Churchill L (1991) GABAA receptors in auditory brainstem nuclei of the chick during development and after cochlea removal. Hear Res 54:281–295

    Article  CAS  PubMed  Google Scholar 

  • Cramer KS, Rosenberger MH, Frost DM, Cochran SL, Pasquale EB, Rubel EW (2000) Developmental regulation of EphA4 expression in the chick auditory brainstem. J Comp Neurol 426:270–278

    Article  CAS  PubMed  Google Scholar 

  • Darnell JC, Van Driesche SJ, Zhang C, Hung KY, Mele A, Fraser CE, Stone EF, Chen C, Fak JJ, Chi SW, Licatalosi DD, Richter JD, Darnell RB (2011) FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell 146:247–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Diego Otero Y, Severijnen LA, van Cappellen G, Schrier M, Oostra B, Willemsen R (2002) Transport of fragile X mental retardation protein via granules in neurites of PC12 cells. Mol Cell Biol 22:8332–8341

    Article  PubMed  PubMed Central  Google Scholar 

  • Dehmelt L, Halpain S (2005) The MAP2/Tau family of microtubule-associated proteins. Genome Biol 6:204

    Article  PubMed  Google Scholar 

  • Deitch JS, Rubel EW (1984) Afferent influences on brain stem auditory nuclei of the chicken: time course and specificity of dendritic atrophy following deafferentation. J Comp Neurol 229:66–79

    Article  CAS  PubMed  Google Scholar 

  • Deitch JS, Rubel EW (1989a) Rapid changes in ultrastructure during deafferentation-induced dendritic atrophy. J Comp Neurol 281:234–258

    Article  CAS  PubMed  Google Scholar 

  • Deitch JS, Rubel EW (1989b) Changes in neuronal cell bodies in N. laminaris during deafferentation-induced dendritic atrophy. J Comp Neurol 281:259–268

    Article  CAS  PubMed  Google Scholar 

  • Dezsö A, Schwarz DW, Schwarz IE (1993) A survey of auditory brainstem nuclei in the chicken (Gallus domesticus) with cytochrome oxidase histochemistry. J Otolaryngol 22:385–390

    PubMed  Google Scholar 

  • Feng AS, Rogowski BA (1980) Effects of monaural and binaural occlusion on the morphology of neurons in the medial superior olivary nucleus of the rat. Brain Res 189:530–534

    Article  CAS  PubMed  Google Scholar 

  • Fukui I, Burger RM, Ohmori H, Rubel EW (2010) GABAergic inhibition sharpens the frequency tuning and enhances phase locking in chicken nucleus magnocellularis neurons. J Neurosci 30:12075–12083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galvez R, Gopal AR, Greenough WT (2003) Somatosensory cortical barrel dendritic abnormalities in a mouse model of the fragile X mental retardation syndrome. Brain Res 971:83–89

    Article  CAS  PubMed  Google Scholar 

  • Galvez R, Smith RL, Greenough WT (2005) Olfactory bulb mitral cell dendritic pruning abnormalities in a mouse model of the Fragile-X mental retardation syndrome: further support for FMRP’s involvement in dendritic development. Brain Res Dev Brain Res 157:214–216

    Article  CAS  PubMed  Google Scholar 

  • Gao H, Lu Y (2008) Early development of intrinsic and synaptic properties of chicken nucleus laminaris neurons. Neuroscience 153:131–143

    Article  CAS  PubMed  Google Scholar 

  • Gray DT, Engle JR, Recanzone GH (2014) Age-related neurochemical changes in the rhesus macaque superior olivary complex. J Comp Neurol 522:573–591

    Article  CAS  Google Scholar 

  • Grothe B (2000) The evolution of temporal processing in the medial superior olive, an auditory brainstem structure. Prog Neurobiol 61:581–610

    Article  CAS  PubMed  Google Scholar 

  • Grothe B, Pecka M (2014) The natural history of sound localization in mammals – a story of neuronal inhibition. Front Neural Circ 8:116

    Google Scholar 

  • Heil P, Scheich H (1986) Effects of unilateral and bilateral cochlea removal on 2-deoxyglucose patterns in the chick auditory system. J Comp Neurol 252:279–301

    Article  CAS  PubMed  Google Scholar 

  • Jackson H, Parks TN (1988) Induction of aberrant functional afferents to the chick cochlear nucleus. J Comp Neurol 271:106–114

    Article  CAS  PubMed  Google Scholar 

  • Jackson H, Hackett JT, Rubel EW (1982) Organization and development of brain stem auditory nuclei in the chick: ontogeny of postsynaptic responses. J Comp Neurol 210:80–86

    Article  CAS  PubMed  Google Scholar 

  • Jeffress LA (1948) A place theory of sound localization. J Comp Physiol Psychol 41:35–39

    Article  CAS  PubMed  Google Scholar 

  • Kitzes LM, Kageyama GH, Semple MN, Kil J (1995) Development of ectopic projections from the ventral cochlear nucleus to the superior olivary complex induced by neonatal ablation of the contralateral cochlea. J Comp Neurol 353:341–363

    Article  CAS  PubMed  Google Scholar 

  • Kuba H, Koyano K, Ohmori H (2002) Synaptic depression improves coincidence detection in the nucleus laminaris in brainstem slices of the chick embryo. Eur J Neurosci 15:984–990

    Article  PubMed  Google Scholar 

  • Kuba H, Yamada R, Fukui I, Ohmori H (2005) Tonotopic specialization of auditory coincidence detection in nucleus laminaris of the chick. J Neurosci 25:1924–1934

    Article  CAS  PubMed  Google Scholar 

  • Kulesza RJ (2007) Cytoarchitecture of the human superior olivary complex: medial and lateral superior olive. Hear Res 225:80–90

    Article  PubMed  Google Scholar 

  • Lippe WR (1994) Rhythmic spontaneous activity in the developing avian auditory system. J Neurosci 14:1486–1495

    CAS  PubMed  Google Scholar 

  • Lippe WR (1995) Relationship between frequency of spontaneous bursting and tonotopic position in the developing avian auditory system. Brain Res 703:205–213

    Article  CAS  PubMed  Google Scholar 

  • Lippe WR, Steward O, Rubel EW (1980) The effect of unilateral basilar papilla removal upon nuclei laminaris and magnocellularis of the chick examined with [3H]2-deoxy-D-glucose autoradiography. Brain Res 196:43–58

    Article  CAS  PubMed  Google Scholar 

  • Lippe WR, Fuhrmann DS, Yang W, Rubel EW (1992) Aberrant projection induced by otocyst removal maintains normal tonotopic organization in the chick cochlear nucleus. J Neurosci 12:962–969

    CAS  PubMed  Google Scholar 

  • Lohmann C, Wong RO (2005) Regulation of dendritic growth and plasticity by local and global calcium dynamics. Cell Calcium 37:403–409

    Article  CAS  PubMed  Google Scholar 

  • Mo Z, Suneja SK, Potashner SJ (2006) Phosphorylated cAMP response element-binding protein levels in guinea pig brainstem auditory nuclei after unilateral cochlear ablation. J Neurosci Res 83:1323–1330

    Article  CAS  PubMed  Google Scholar 

  • Mooney SM, Miller MW (2001) Episodic exposure to ethanol during development differentially affects brainstem nuclei in the macaque. J Neurocytol 30:973–982

    Article  CAS  PubMed  Google Scholar 

  • Overholt EM, Rubel EW, Hyson RL (1992) A circuit for coding interaural time differences in the chick brainstem. J Neurosci 12:1698–1708

    CAS  PubMed  Google Scholar 

  • Parks TN (1981) Changes in the length and organization of nucleus laminaris dendrites after unilateral otocyst ablation in chick embryos. J Comp Neurol 202:47–57

    Article  CAS  PubMed  Google Scholar 

  • Parks TN (1997) Effects of early deafness on development of brain stem auditory neurons. Ann Otol Rhinol Laryngol Suppl 168:37–43

    CAS  PubMed  Google Scholar 

  • Parks TN, Rubel EW (1975) Organization and development of brain stem auditory nuclei of the chicken: organization of projections from n. magnocellularis to n. laminaris. J Comp Neurol 164:435–448

    Article  CAS  PubMed  Google Scholar 

  • Parks TN, Gill SS, Jackson H (1987) Experience-independent development of dendritic organization in the avian nucleus laminaris. J Comp Neurol 260:312–319

    Article  CAS  PubMed  Google Scholar 

  • Pettigrew AG, Hutchinson I (1984) Effects of alcohol on functional development of the auditory pathway in the brainstem of infants and chick embryos. Ciba Found Symp 105:26–46

    CAS  PubMed  Google Scholar 

  • Rajan I, Cline HT (1998) Glutamate receptor activity is required for normal development of tectal cell dendrites in vivo. J Neurosci 18:7836–7846

    CAS  PubMed  Google Scholar 

  • Rajan I, Witte S, Cline HT (1999) NMDA receptor activity stabilizes presynaptic retinotectal axons and postsynaptic optic tectal cell dendrites in vivo. J Neurobiol 38:357–368

    Article  CAS  PubMed  Google Scholar 

  • Ramón y Cajal S (1909) Histologie du Systeme Nerveux, vol I (1952 reprint). Instituto Ramon y Cajal, Madrid

    Google Scholar 

  • Rebillard G, Rubel EW (1981) Electrophysiological study of the maturation of auditory responses from the inner ear of the chick. Brain Res 229:15–23

    Article  CAS  PubMed  Google Scholar 

  • Redmond L, Ghosh A (2005) Regulation of dendritic development by calcium signaling. Cell Calcium 37:411–416

    Article  CAS  PubMed  Google Scholar 

  • Restivo L, Ferrari F, Passino E, Sgobio C, Bock J, Oostra BA, Bagni C, Ammassari-Teule M (2005) Enriched environment promotes behavioral and morphological recovery in a mouse model for the fragile X syndrome. Proc Natl Acad Sci U S A 102:11557–11562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson BE, Durham D (1990) Blood flow changes in chicken brain stem auditory nuclei following cochlea removal. Hear Res 46:53–61

    Article  CAS  PubMed  Google Scholar 

  • Rinzel J (1975) Voltage transients in neuronal dendritic trees. Fed Proc 34:1350–1356

    CAS  PubMed  Google Scholar 

  • Rinzel J, Rall W (1974) Transient response in a dendritic neuron model for current injected at one branch. Biophys J 14:759–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubel EW, Parks TN (1975) Organization and development of brain stem auditory nuclei of the chicken: tonotopic organization of n. magnocellularis and n. laminaris. J Comp Neurol 164:411–433

    Article  CAS  PubMed  Google Scholar 

  • Rubel EW, Parks TN (1988) Organization and development of the avian brain-stem auditory system. In: Edelman GM, Gall WE, Cowan WM (eds) Auditory function: neurobiological bases of hearing. Wiley, New York, pp 3–92

    Google Scholar 

  • Rubel EW, Smith DJ, Miller LC (1976) Organization and development of brain stem auditory nuclei of the chicken: ontogeny of n. magnocellularis and n. laminaris. J Comp Neurol 166:469–489

    Article  CAS  PubMed  Google Scholar 

  • Rubel EW, Smith ZD, Steward O (1981) Sprouting in the avian brainstem auditory pathway: dependence on dendritic integrity. J Comp Neurol 202:397–414

    Article  CAS  PubMed  Google Scholar 

  • Russell FA, Moore DR (1999) Effects of unilateral cochlear removal on dendrites in the gerbil medial superior olivary nucleus. Eur J Neurosci 11:1379–1390

    Article  CAS  PubMed  Google Scholar 

  • Salas M, Torrero C, Regalado M, Martínez-Gómez M, Pacheco P (1994) Dendritic arbor alterations in the medial superior olivary neurons of neonatally underfed rats. Acta Anat (Basel) 151:180–187

    Article  CAS  Google Scholar 

  • Sanchez JT, Wang Y, Rubel EW, Barria A (2010) Development of glutamatergic synaptic transmission in binaural auditory neurons. J Neurophysiol 104:1774–1789

    Article  CAS  PubMed  Google Scholar 

  • Sanchez JT, Seidl AH, Rubel EW, Barria A (2012) Control of neuronal excitability by NMDA-type glutamate receptors in early developing binaural auditory neurons. J Physiol 590:4801–4818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santoro MR, Bray SM, Warren ST (2012) Molecular mechanisms of fragile X syndrome: a twenty-year perspective. Annu Rev Pathol 7:219–245

    Article  CAS  PubMed  Google Scholar 

  • Saunders JC, Coles RB, Gates GR (1973) The development of auditory evoked responses in the cochlea and cochlear nuclei of the chick. Brain Res 63:59–74

    Article  CAS  PubMed  Google Scholar 

  • Seidl AH, Rubel EW, Harris DM (2010) Mechanisms for adjusting interaural time differences to achieve binaural coincidence detection. J Neurosci 30:70–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seidl AH, Rubel EW, Barría A (2014) Differential conduction velocity regulation in ipsilateral and contralateral collaterals innervating brainstem coincidence detector neurons. J Neurosci 34:4914–4919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siegel F, Lohmann C (2013) Probing synaptic function in dendrites with calcium imaging. Exp Neurol 242:27–32

    Article  CAS  PubMed  Google Scholar 

  • Sin WC, Haas K, Ruthazer ES, Cline HT (2002) Dendrite growth increased by visual activity requires NMDA receptor and Rho GTPases. Nature 419:475–480

    Article  CAS  PubMed  Google Scholar 

  • Sjöström PJ, Rancz EA, Roth A, Häusser M (2008) Dendritic excitability and synaptic plasticity. Physiol Rev 88:769–840

    Article  PubMed  Google Scholar 

  • Smith ZD (1981) Organization and development of brain stem auditory nuclei of the chicken: dendritic development in N. laminaris. J Comp Neurol 203:309–333

    Article  CAS  PubMed  Google Scholar 

  • Smith DJ, Rubel EW (1979) Organization and development of brain stem auditory nuclei of the chicken: dendritic gradients in nucleus laminaris. J Comp Neurol 186:213–239

    Article  CAS  PubMed  Google Scholar 

  • Sorensen SA, Rubel EW (2006) The level and integrity of synaptic input regulates dendrite structure. J Neurosci 26:1539–1550

    Article  CAS  PubMed  Google Scholar 

  • Sorensen SA, Rubel EW (2011) Relative input strength rapidly regulates dendritic structure of chick auditory brainstem neurons. J Comp Neurol 519:2838–2851

    Article  PubMed  PubMed Central  Google Scholar 

  • Suneja SK, Benson CG, Potashner SJ (1998a) Glycine receptors in adult guinea pig brain stem auditory nuclei: regulation after unilateral cochlear ablation. Exp Neurol 154:473–488

    Article  CAS  PubMed  Google Scholar 

  • Suneja SK, Potashner SJ, Benson CG (1998b) Plastic changes in glycine and GABA release and uptake in adult brain stem auditory nuclei after unilateral middle ear ossicle removal and cochlear ablation. Exp Neurol 151:273–288

    Article  CAS  PubMed  Google Scholar 

  • Suneja SK, Potashner SJ, Benson CG (2000) AMPA receptor binding in adult guinea pig brain stem auditory nuclei after unilateral cochlear ablation. Exp Neurol 165:355–369

    Article  CAS  PubMed  Google Scholar 

  • Thomas CC, Combe CL, Dyar KA, Inglis FM (2008) Modest alterations in patterns of motor neuron dendrite morphology in the Fmr1 knockout mouse model for fragile X. Int J Dev Neurosci 26:805–811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaillant AR, Zanassi P, Walsh GS, Aumont A, Alonso A, Miller FD (2002) Signaling mechanisms underlying reversible, activity-dependent dendrite formation. Neuron 34:985–998

    Article  CAS  PubMed  Google Scholar 

  • Wadhwa S, Anand P, Bhowmick D (1999) Quantitative study of plasticity in the auditory nuclei of chick under conditions of prenatal sound attenuation and overstimulation with species specific and music sound stimuli. Int J Dev Neurosci 17:239–253

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Rubel EW (2008) Rapid regulation of microtubule-associated protein 2 in dendrites of nucleus laminaris of the chick following deprivation of afferent activity. Neuroscience 154:381–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Rubel EW (2012) In vivo reversible regulation of dendritic patterning by afferent input in bipolar auditory neurons. J Neurosci 32:11495–11504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Cunningham DE, Tempel BL, Rubel EW (2009) Compartment-specific regulation of plasma membrane calcium ATPase type 2 in the chick auditory brainstem. J Comp Neurol 514:624–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Sanchez J, Rubel EW (2010) Nucleus laminaris. In: Shepherd G, Addona D (eds) Handbook of brain microcircuits. Oxford University Press, New York, pp 224–233

    Chapter  Google Scholar 

  • Wang Y, Sakano H, Beebe K, Brown MR, de Laat R, Bothwell M, Kulesza RJ, Rubel EW (2014) Intense and specialized dendritic localization of the fragile X mental retardation protein in binaural brainstem neurons: a comparative study in the alligator, chicken, gerbil, and human. J Comp Neurol 522:2107–2128

    Article  CAS  PubMed  Google Scholar 

  • Yan L, Suneja SK, Potashner SJ (2007) Protein kinases regulate glycine receptor binding in brain stem auditory nuclei after unilateral cochlear ablation. Brain Res 1135:102–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young SR, Rubel EW (1983) Frequency-specific projections of individual neurons in chick brainstem auditory nuclei. J Neurosci 3:1373–1378

    CAS  PubMed  Google Scholar 

  • Young SR, Rubel EW (1986) Embryogenesis of arborization pattern and topography of individual axons in N. laminaris of the chicken brain stem. J Comp Neurol 254:425–459

    Article  CAS  PubMed  Google Scholar 

  • Zarnescu DC, Shan G, Warren ST, Jin P (2005) Come FLY with us: toward understanding fragile X syndrome. Genes Brain Behav 4:385–392

    Article  CAS  PubMed  Google Scholar 

  • Zhou N, Parks TN (1993) Maintenance of pharmacologically-immature glutamate receptors by aberrant synapses in the chick cochlear nucleus. Brain Res 628:149–156

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Sponsored by National Institute on Deafness and Other Communication Disorders grants DC-013074, DC-03829, DC-02739, DC-04661, and DC-00018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edwin W. Rubel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Wang, Y., Rubel, E.W. (2016). Modifying Dendritic Structure After Function. In: Emoto, K., Wong, R., Huang, E., Hoogenraad, C. (eds) Dendrites. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56050-0_11

Download citation

Publish with us

Policies and ethics