Skip to main content

Fuel Cells with Biofuels

  • Chapter
  • First Online:
Hydrogen Energy Engineering

Part of the book series: Green Energy and Technology ((GREEN))

  • 3914 Accesses

Abstract

This describes fuel cell-based power generation using biofuels. After giving an overview of biofuels which are available, such as biogas, bioethanol, and biodiesel oil, hydrogen production and power generation with solid oxide fuel cells are explained based on cell performance data. Technological issues such as carbon deposition and impurity poisoning are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Divya D, Gopinath LR, Christy PM (2015) A review on current aspects and diverse prospects for enhancing biogas production in sustainble means. Renew Sustain Energy Rev 42:690–699

    Article  Google Scholar 

  2. Alves HJ (2013) Overview of hydrogen production technologies from biogas and the applications in fuel cells. Int J Hydrogen Energy 38:5215–5225

    Article  Google Scholar 

  3. Magomnang AASM, Villanueva EP (2014) Removal of hydrogen sulfide from biogas using dry desulfurization systems. In: Proceedings of international conference on agricultural, environmental and biological sciences, Phuket, Thailand, pp 65–68

    Google Scholar 

  4. Wyman CE (1996) Handbook of bioethanol. Taylor & Francis, London, pp 4–5

    Google Scholar 

  5. Nahar G, Dupont V (2012) Hydrogen via steam reforming of liquid biofeedstock. Biofuels 3:167–191

    Article  Google Scholar 

  6. Leung DYC, Wu X, Leung MKH (2010) A review recent advancement in catalytic materials for biodiesel production. Appl Energy 87:1083–1095

    Article  Google Scholar 

  7. Karmakar A, Karmakar S, Mukherjee S (2010) Properties of various plants and animals feedstocks for biodiesel production. Bioresour Technol 101:7201–7210

    Article  Google Scholar 

  8. Nahar GA (2010) Hydrogen rich gas production by the autothermal reforming of biodiesel (FAME) for utilization in the solid-oxide fuel cells: a thermodynamic analysis. Int J Hydrogen Energy 35:8891–8911

    Article  Google Scholar 

  9. Hoekman SK, Broch A, Robbins C, Ceniceros E, Natarajan M (2012) Review of biodiesel composition, properties, and specifications. Renew Sustain Energy Rev 16:143–169

    Article  Google Scholar 

  10. Miyachi K, Miyagawa M, Katagiri M, Kanda N, Norinaga K (2010) Identification of tar chemical species obtained from pyrolysis of grass biomass. Mitsui Zosen Tech Rev 199:47–53

    Google Scholar 

  11. Effendi A, Hellgardt K, Zhang Z-G, Yoshida T (2005) Optimising H2 production from model biogas via combined steam reforming and CO shift reactions. Fuel 84:869–874

    Article  Google Scholar 

  12. Muradov N, Smith F (2008) Thermocatalytic conversion of landfill gas and biogas to fuels. Energy Fuels 22:2053–2060

    Article  Google Scholar 

  13. Zhang B, Tang X, Li Y, Cai Y, Xu Y, Shen W (2006) Steam reforming of bio-ethanol for the production of hydrogen over ceria-supported Co, Ir and Ni catalysts. Catal Commun 7:367–372

    Article  Google Scholar 

  14. Mondal T, Pant KK, Dalai AK (2015) Catalytic oxidative steam reforming of bio-ethanol for hydrogen production over Rh promoted Ni/CeO2-ZrO2 catalyst. Int J Hydrogen Energy 40:2529–2544

    Article  Google Scholar 

  15. Basagiannis AC, Verykios XE (2007) Steam reforming of the aqueous fraction of bio-oil over structured Ru/MgO/Al2O3 catalysts. Catal Today 127:256–264

    Article  Google Scholar 

  16. Vagia EC, Lemonidou AA (2008) Hydrogen production via steam reforming of bio-oil components over calcium aluminate supported nickel and noble metal catalysts. Appl Catal A Gen 351:111–121

    Article  Google Scholar 

  17. Laosiripojana N, Kiatkittipong W, Charojrochkul S, Assabumrungrat S (2010) Effects of support and co-fed elements on steam reforming of palm fatty acid distillate (PFAD) over Rh-based catalysts. Appl Catal A Gen 383:50–57

    Article  Google Scholar 

  18. Shiratori Y, Tran TQ, Umemura Y, Kitaoka T, Sasaki K (2013) Paper-structured catalyst for the steam reforming of biodiesel fuel. Int J Hydrogen Energy 38:11278–11287

    Article  Google Scholar 

  19. Lercher JA, Bitter JH, Hally W, Niessen W, Seshan K (1996) Design of stable catalysts for methane-carbon dioxide reforming. Stud Surf Sci Catal 101:463–472

    Article  Google Scholar 

  20. Nakayama T, Ichikuni N, Sato S, Nozaki F (1997) Ni/MgO catalyst prepared using citric acid for hydrogenation of carbon dioxide. Appl Catal A Gen 158:185–199

    Article  Google Scholar 

  21. Tomishige K, Chen Y, Fujimoto K (1999) Studies on carbon deposition in CO2 reforming of CH4 over nickel-magnesia solid solution catalysts. J Catal 181:91–103

    Article  Google Scholar 

  22. Hou Z, Yashima T (2004) Meso-porous Ni/Mg/Al catalysts for methane reforming with CO2. Appl Catal A Gen 261:205–209

    Article  Google Scholar 

  23. Sun J, Qiu XP, Wu F, Zhu WT (2005) H2 from steam reforming of ethanol at low temperature over Ni/Y2O3, Ni/La2O3 and Ni/Al2O3 catalysts for fuel-cell application. Int J Hydrogen Energy 30:437–445

    Article  Google Scholar 

  24. Urasaki K, Sekine Y, Kawabe S, Kikuchi E, Matsukata M (2005) Catalytic activities and coking resistance of Ni/perovskites in steam reforming of methane. Appl Catal A Gen 286:23–29

    Article  Google Scholar 

  25. Narula CK, Haack LP, Chun W, Jen HW, Graham GW (1999) Single-phase PrOy-ZrO2 materials and their oxygen storage capacity: a comparison with single-phase CeO2-ZrO2, PrOy-CeO2, and PrOy-CeO2-ZrO2 materials. J Phys Chem B 103:3634–3639

    Article  Google Scholar 

  26. Takeguchi T, Furukawa SN, Inoue M (2001) Hydrogen spillover from NiO to the large surface Area CeO2–ZrO2 solid solutions and activity of the NiO/CeO2–ZrO2 catalysts for partial oxidation of methane. J Catal 202:14–24

    Article  Google Scholar 

  27. Srinivas D, Satyanarayana CVV, Potdar HS, Ratnasamy P (2003) Structural studies on NiO-CeO2-ZrO2 catalysts for steam reforming of ethanol. Appl Catal A Gen 246:323–334

    Article  Google Scholar 

  28. Shotipruk A, Assabumrungrat S, Pavasant P, Laosiripojana N (2009) Reactivity of CeO2 and Ce–ZrO2 toward steam reforming of palm fatty acid distilled (PFAD) with co-fed oxygen and hydrogen. Chem Eng Sci 64:459–466

    Article  Google Scholar 

  29. Shishido T, Sukenobu M, Morioka H, Furukawa R, Shirahase H, Takehira K (2001) CO2 reforming of CH4 over Ni/Mg-Al oxide catalysts prepared by solid phase crystallization method from Mg-Al hydrotalcite-like precursors. Catal Lett 73:21–26

    Article  Google Scholar 

  30. Li D, Wang L, Koike M, Nakagawa Y, Nakagawa Y, Tomishige K (2011) Steam reforming of tar from pyrolysis of biomass over Ni/Mg/Al catalysts prepared from hydrotalcite-like precursors. Appl Catal B Environ 102:528–538

    Article  Google Scholar 

  31. Tran TQ, Kaida T, Sakamoto M, Sasaki K, Shiratori Y (2015) Effectiveness of paper-structured catalyst for the operation of biodiesel-fueled solid oxide fuel cell. J Power Sources 283:320–327

    Article  Google Scholar 

  32. Horny C, Renken A, Kiwi-Minsker L (2007) Compact string reactor for autothermal hydrogen production. Catal Today 120:45–53

    Article  Google Scholar 

  33. Twigg MV, Richadson JT (2007) Fundamentals and applications of structured ceramic foam catalysts. Ind Eng Chem Res 46:4166–4177

    Article  Google Scholar 

  34. Nishihara H, Mukai SR, Yamashita D, Tamon H (2005) Ordered macroporous silica by ice templating. Chem Mater 17:683–689

    Article  Google Scholar 

  35. Patcas FC, Garrido GI, Kraushaar-Czarnetzki B (2007) CO oxidation over structured carriers: a comparison of ceramic foams, honeycombs and beads. Chem Eng Sci 62:3984–3990

    Article  Google Scholar 

  36. Fukahori S, Kitaoka T, Tomoda A, Suzuki R, Wariishi H (2006) Methanol steam reforming over paper-like composites of Cu/ZnO catalyst and ceramic fiber. Appl Catal A 300:155–161

    Article  Google Scholar 

  37. Fukahori S, Koga H, Kitaoka T, Nakamura M, Wariishi H (2008) Steam reforming behavior of methanol using paper-structured catalysts: experimental and computational fluid dynamic analysis. Int J Hydrogen Energy 33:1661–1670

    Article  Google Scholar 

  38. Koga H, Umemura Y, Ishihara H, Kitaoka T, Tomoda A, Suzuki R, Wariishi H (2009) Paper-structured fiber composites impregnated with platinum nanoparticles synthesized on a carbon fiber matrix for catalytic reduction of nitrogen oxides. Appl Catal B Environ 90:699–704

    Article  Google Scholar 

  39. Ishihara H, Koga H, Kitaoka T, Wariishi H, Tomoda A, Suzuki R (2010) Paper-structured catalyst for catalytic NOx removal from combustion exhaust gas. Chem Eng Sci 65:208–213

    Article  Google Scholar 

  40. Shiratori Y, Ogura T, Nakajima H, Sakamoto M, Takahashi Y, Wakita Y, Kitaoka T, Sasaki K (2013) Study on paper-structured catalyst for direct internal reforming SOFC fueled by the mixture of CH4 and CO2. J Hydrogen Energy 38:10542–10551

    Article  Google Scholar 

  41. Wachsman ED, Marlowe CA, Lee KT (2012) Role of solid oxide fuel cells in a balanced energy strategy. Energy Environ Sci 5:5498–5509

    Article  Google Scholar 

  42. Ge XM, Chan SH, Liu QL, Sun Q (2012) Solid oxide fuel cell anode materials for direct hydrogen carbon utilization. Adv Energy Mater 2:1156–1181

    Article  Google Scholar 

  43. Liu J, Barnett SA (2003) Operation of anode-supported solid oxide fuel cells on methane and natural gas. Solid State Ionics 158(1–2):11–16

    Article  Google Scholar 

  44. Liu J, Madsen BD, Ji Z, Barnett SA (2002) A fuel-flexible ceramic-based anode for solid oxide fuel cells. Electrochem Solid-State Lett 5:A122–A124

    Article  Google Scholar 

  45. Iida T, Kawano M, Matsui T, Kikuchi R, Eguchi K (2007) Internal reforming of SOFCs: carbon deposition on fuel electrode and subsequent deterioration of cell. J Electrochem Soc 154(2):B234–B241

    Article  Google Scholar 

  46. Kishimoto H, Yamaji K, Horita T, Xiong Y, Sakai N, Brito M, Yokokawa H (2007) Feasibility of liquid hydrocarbon fuels for SOFC with Ni-ScSZ anode. J Power Sources 172:67–71

    Article  Google Scholar 

  47. Kim H, Park S, Vohs JM, Gorte RJ (2001) Direct oxidation of liquid fuels in a solid oxide fuel cell. J Electrochem Soc 148(7):A693–A695

    Article  Google Scholar 

  48. Hou X, Marin-Flores O, Kwon BW, Kim J, Norton MG, Ha S (2014) Gasoline-fueled solid oxide fuel cell with high power density. J Power Sources 268:546–549

    Article  Google Scholar 

  49. Zhou ZF, Gallo C, Pargue MB, Schobert H, Lvov SN (2004) Direct oxidation of jet fuels and Pennsylvania crude oil in a solid oxide fuel cell. J Power Sources 133:181–187

    Article  Google Scholar 

  50. Shiratori Y, Oshima T, Sasaki K (2008) Feasibility of direct-biogas SOFC. Int J Hydrogen Energy 33:6316–6321

    Article  Google Scholar 

  51. Shiratori Y, Ijichi T, Oshima T, Sasaki K (2010) Internal reforming SOFC running on biogas. Int J Hydrogen Energy 35:7905–7912

    Article  Google Scholar 

  52. Tran TQ, Shiratori Y, Sasaki K (2013) Feasibility of palm-biodiesel fuel for a direct internal reforming solid oxide fuel cell. Int J Energy Res 37:609–616

    Article  Google Scholar 

  53. Staniforth J, Kendall K (1998) Biogas powering a small tubular solid oxide fuel cell. J Power Sources 71:275–277

    Article  Google Scholar 

  54. Staniforth J, Kendall K (2000) Cannock landfill gas powering a small tubular solid oxide fuel cell—a case study. J Power Sources 86:401–403

    Article  Google Scholar 

  55. Staniforth J, Ormerod RM (2003) Running solid oxide fuel cells on biogas. Ionics 9:336–341

    Article  Google Scholar 

  56. Nahar G, Kendall K (2011) Biodiesel formulations as fuel for internally reforming solid oxide fuel cell. Fuel Process Technol 92:1345–1354

    Article  Google Scholar 

  57. Lanzini A, Leone P (2010) Experimental investigation of direct internal reforming of biogas in solid oxide fuel cells. J Power Sources 35:2463–2476

    Google Scholar 

  58. Guerra C, Lanzini A, Leone P, Santarelli M, Beretta D (2013) Experimental study of dry reforming of biogas in a tubular anode-supported solid oxide fuel cell. Int J Hydrogen Energy 38:10559–10566

    Article  Google Scholar 

  59. Yentekakis IV (2006) Open- and closed-circuit study of an intermediate temperature SOFC directly fueled with simulated biogas mixtures. J Power Sources 160:422–425

    Article  Google Scholar 

  60. Papadam T, Goula G, Yentekakis IV (2012) Long-term operation stability tests of intermediate and high temperature Ni-based anodes’ SOFCs directly fueled with simulated biogas mixtures. Int J Hydrogen Energy 37:16680–16685

    Article  Google Scholar 

  61. Xu C, Zondlo JW, Gong M, Elizalde-Blancas F, Liu X, Celik IB (2010) Tolerance tests of H2S-laden biogas fuel on solid oxide fuel cells. J Power Sources 195:4583–4592

    Article  Google Scholar 

  62. McPhee WAG, Boucher M, Stuart J, Parnas RS, Koslowske M, Tao T, Wilhite BA (2009) Demonstration of a liquid-tin anode solid-oxide fuel cell (LTA-SOFC) operating from biodiesel fuel. Energy Fuels 23:5036–5041

    Article  Google Scholar 

  63. Wang F, Wang W, Ran R, Tade MO, Shao Z (2014) Alumina oxide as a dual-functional modifier of Ni-based anodes of solid oxide fuel cells for operating on simulated biogas. J Power Sources 268:787–793

    Article  Google Scholar 

  64. Wang W, Su C, Ran R, Park HJ, Kwak C, Shao Z (2011) Physically mixed LiLaNi-Al2O3 and copper as conductive anode catalysts in a solid oxide fuel cell for methane internal reforming and partial oxidation. Int J Hydrogen Energy 36:5632–5643

    Article  Google Scholar 

  65. Wang W, Ran R, Shao Z (2011) Combustion-synthesized Ru-Al2O3 composites as anode catalyst layer of a solid oxide fuel cell operating on methane. Int J Hydrogen Energy 36:755–764

    Article  Google Scholar 

  66. Szymcewska D, Karcrewski J, Bochentyn B, Chrzan A, Gazda M, Jasinski P (2015) Investigation of catalytic layer on anode solid oxide fuel cells operating with synthetic biogas. Solid State Ionics 271:109–115

    Article  Google Scholar 

  67. Assabumrungrat S, Laosiripojana N, Piroonlerkgul P (2006) Determination of the boundary of carbon formation for dry reforming of methane in a solid oxide fuel cell. J Power Sources 159:1274–1284

    Article  Google Scholar 

  68. Takahashi Y, Shiratori Y, Furuta S, Sasaki K (2012) Thermo-mechanical reliability and catalytic activity of Ni-zirconia anode supports in internal reforming SOFC running on biogas. Solid State Ionics 225:113–117

    Article  Google Scholar 

  69. Smith TR, Wood A, Birss VI (2009) Effect of hydrogen sulfide on the direct internal reforming of methane in solid oxide fuel cells. Appl Catal A 354:1–7

    Article  Google Scholar 

  70. Silva ALD, Heck NC (2015) Oxide incorporation into Ni-based solid oxide fuel cell anodes for enhanced sulfur tolerance during operation on hydrogen or biogas fuels: a comprehensive thermodynamic study. Int J Hydrogen Energy 40:2334–2353

    Article  Google Scholar 

  71. Zhan Z, Barnett SA (2005) An octane-fueled solid oxide fuel cell. Science 308:844–847

    Article  Google Scholar 

  72. Shiratori Y, Ijichi T, Oshima T, Sasaki K (2009) Generation of electricity from organic bio-wastes using solid oxide fuel cell. ECS Trans 25:1051–1060

    Article  Google Scholar 

  73. Liu JH, Fu XZ, Luo JL, Chuang KT, Sanger AR (2012) Application of BaTiO3 as anode materials for H2S-containing CH4 fueled solid oxide fuel cells. J Power Sources 213:69–77

    Article  Google Scholar 

  74. Kim H, Lu C, Worrell WL, Vohs JM, Gorte RJ (2002) Cu-Ni cermet anodes for direct oxidation of methane in solid-oxide fuel cells. J Electrochem Soc 149:A247–A250

    Article  Google Scholar 

  75. Singh A, Hill JM (2012) Carbon tolerance, electrochemical performance and stability of solid oxide fuel cells with Ni/yttria stabilized zirconia anodes impregnated with Sn and operated with methane. J Power Sources 214:185–194

    Article  Google Scholar 

  76. ShiratoriY Tran TQ, Sasaki K (2013) Performance enhancement of biodiesel fueled SOFC using paper-structured catalyst. Int J Hydrogen Energy 38:9856–9866

    Article  Google Scholar 

  77. Shiratori Y, Tran TQ, Takahashi Y, Sasaki K (2011) Application of biofuels to solid oxide fuel cell. ECS Trans 35:2641–2651

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuke Shiratori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Shiratori, Y., Tran, QT. (2016). Fuel Cells with Biofuels. In: Sasaki, K., Li, HW., Hayashi, A., Yamabe, J., Ogura, T., Lyth, S. (eds) Hydrogen Energy Engineering. Green Energy and Technology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56042-5_38

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-56042-5_38

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-56040-1

  • Online ISBN: 978-4-431-56042-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics