Skip to main content

Hydrogen Safety Fundamentals

  • Chapter
  • First Online:
Hydrogen Energy Engineering

Part of the book series: Green Energy and Technology ((GREEN))

  • 3984 Accesses

Abstract

This chapter describes an overview of hydrogen safety related to hydrogen embrittlement (HE), hydrogen gas safety management, and hydrogen safety best practice. Blister fracture of rubbers caused by decompression of high-pressure gaseous hydrogen is also introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Murakami Y, Matsuoka S, Kondo Y, Nishimura S (2012) Mechanism of hydrogen embrittlement and guide for fatigue design. Yokendo, Tokyo

    Google Scholar 

  2. Gangloff RP, Somerday BP (eds) (2012) Gaseous hydrogen embrittlement of materials in energy technologies. Woodhead Publishing, Cambridge

    Google Scholar 

  3. Nagumo M (2008) Fundamentals of hydrogen embrittlement. Uchida Rokakuho, Tokyo

    Google Scholar 

  4. Gangloff RP (2003) Hydrogen assisted cracking of high strength alloys. In: Milne I (ed) Comprehensive structural integrity. Elsevier Science, New York, pp 31–101

    Chapter  Google Scholar 

  5. Suresh S, Ritchie RO (1982) Mechanistic dissimilarities between environmentally influenced fatigue-crack propagation at near-threshold and higher growth rates in lower strength steels. Mater Sci Technol 16:529–538

    Google Scholar 

  6. Itoga H, Matsuo T, Orita A, Matsunaga H, Matsuoka S, Hirotani R (2014) SSRT and fatigue crack growth properties of high-strength austenitic stainless steels in high-pressure hydrogen gas (PVP2014-28640). In: Proceedings of PVP-2014: ASME pressure vessels and piping division conference, Anaheim, California, USA, July 20–24 2014, ASME, American Society of Mechanical Engineers, New York

    Google Scholar 

  7. Ogirima Hirayama T (1970) Influence of chemical composition on martensitic transformation in Fe-Cr-Ni stainless Steel. J Japan Inst Met Mater 34:507–510

    Google Scholar 

  8. Sanga M, Yukawa N, Ishikawa T (2000) Influence of chemical composition on deformation-induced martensitic transformation in austenitic stainless steel. J Jpn Soc Technol Plast 41:64–68

    Google Scholar 

  9. Yamada T, Kobayashi H (2012) Material selection used for hydrogen station. J High Press. Gas Safety Inst Jpn 49:885–893

    Google Scholar 

  10. NASA (1997) Safety standard for hydrogen and hydrogen systems. NSS 1740.16, Washington DC

    Google Scholar 

  11. Matsuoka S, Homma N, Tanaka H, Fukushima Y, Murakami Y (2006) Effect of hydrogen on tensile properties of 900-MPa-class JIS-SCM435 low-alloy-steel for use in storage cylinder of hydrogen station. J Jpn Inst Met Mater 70:1002–1011

    Article  Google Scholar 

  12. Thompson AW (1979) Ductile fracture topography: geometrical contributions and effects of hydrogen. Metall Trans A 10:727–731

    Article  Google Scholar 

  13. Matsunaga H, Yoshikawa M, Kondo R, Yamabe J, Matsuoka S (2015) Slow strain rate tensile and fatigue properties of Cr–Mo and carbon steels in a 115 MPa hydrogen gas atmosphere. Int J Hydrogen Energy 40:5739–5748

    Article  Google Scholar 

  14. Matsuo T, Homma N, Matsuoka S, Murakami Y (2008) Effect of hydrogen and prestrain on tensile properties of carbon steel SGP (0.078 C–0.012 Si–0.35 Mn, mass %) for 0.1 MPa hydrogen pipelines. Trans JSME A 74:1164–1173

    Article  Google Scholar 

  15. Morlet JG, Johnson HH, Triano AR (1958) A new concept of hydrogen embrittlement in steel. J Iron Steel Inst 189–1:37–41

    Google Scholar 

  16. Troiano AR (1960) The role of hydrogen and other interstitials in the mechanical behavior of metals. Trans ASM 52:54–80

    Google Scholar 

  17. Oriani RA, Josephic H (1974) Equilibrium aspects of hydrogen-induced cracking of steels. Acta Metall 22:1065–1074

    Article  Google Scholar 

  18. Sofronis P, McMeeking RM (1989) Numerical analysis of hydrogen transport near a blunting crack tip. J Mech Phys Solids 37:317–350

    Article  Google Scholar 

  19. Birnbaum HK, Sofronis P (1994) Hydrogen-enhanced localized plasticity: a mechanism for hydrogen-related fracture. Mater Sci Eng A 176:191–202

    Article  Google Scholar 

  20. Robertson IM, Birnbaum HK (1986) An HVEM study of hydrogen effects on the deformation and fracture of nickel. Acta Metall 34:353–366

    Article  Google Scholar 

  21. Nagumo M, Nakamura M, Takai K (2001) Hydrogen thermal desoption relevant to delayed-fracture susceptibility of high-strength steels. Metall Mater Trans A 32:339–347

    Article  Google Scholar 

  22. Nagumo M, Uyama H, Yoshizawa M (2001) Accelerated failure in high strength steel by alternating hydrogen-charging potential. Scr Mater 44:947–952

    Article  Google Scholar 

  23. Nagumo M, Ishikawa T, Endoh T, Inoue Y (2003) Amophization associated with crack propagation in hydrogen-charged steel. Scr Mater 49:837–842

    Article  Google Scholar 

  24. Matsuo T, Yamabe J, Matsuoka S (2014) Effects of hydrogen on tensile properties and fracture surface morphologies of Type 316L stainless steel. Int J Hydrogen Energy 39:3542–3551

    Article  Google Scholar 

  25. Roger HC (1960) The tensile fracture of ductile metals. Trans ASME 218:498–506

    Google Scholar 

  26. Cox TB, Low JR Jr (1974) An investigation of the plastic fracture of AISI 4430 and 18 Ni-200 grade maraging steels. Metall Trans 5:1457–1470

    Article  Google Scholar 

  27. Matsuoka S, Tsutsumi N, Murakami Y (2008) Effects of hydrogen on fatigue crack growth and stretch zone of 0.08 Mass% low carbon steel pipe. Trans JSME A 74:1528–1537

    Article  Google Scholar 

  28. Tanaka H, Homma N, Matsuoka S, Murakami Y (2007) Effect of hydrogen and frequency on fatigue behavior of SCM435 steel for storage cylinder of hydrogen station. Trans JSME A 73:1358–1365

    Article  Google Scholar 

  29. Yamabe J, Matsumoto T, Matsuoka S, Murakami Y (2012) A new mechanism in hydrogen-enhanced fatigue crack growth behavior of a 1900-MPa-class high-strength steel. Int J Fract 177:141–162

    Article  Google Scholar 

  30. Yamabe J, Itoga H, Awane T, Matsuo T, Matsunaga H, Matsuoka S (2016) Pressure cycle testing of Cr-Mo steel pressure vessels subjected to gaseous hydrogen. J Press Vess Technol ASME 183–011401:1–13

    Google Scholar 

  31. Kanezaki T, Narazaki C, Mine Y, Matsuoka S, Murakami Y (2008) Effects of hydrogen on fatigue crack growth behavior of austenitic stainless steels. Int J Hydrogen Energy 33:2604–2619

    Article  Google Scholar 

  32. Murakami Y, Kanezaki T, Mine Y, Matsuoka S (2008) Hydrogen embrittlement mechanism in fatigue of austenitic stainless steels. Metall Mater Trans A 39:1327–1339

    Article  Google Scholar 

  33. Novak P, Yuan R, Somerday BP, Sofronis P, Ritchie RO (2010) A statistical, physical-based micro-mechanical mode of hydrogen-induced intergranular fracture in steel. J Mech Phys Solids 58:206–226

    Article  Google Scholar 

  34. Itoga H, Watanabe S, Fukushima Y, Matsuoka S, Murakami Y (2013) Fatigue crack growth of aluminum alloy A6061-T6 in high pressure hydrogen gas and failure analysis on 35 MPa compressed hydrogen tanks VH3 for fuel cell vehicles. Trans JSME A 78:442–457

    Article  Google Scholar 

  35. Ohnishi T (1989) Hydrogen in pure aluminum and in aluminum alloys. J Jpn Inst Light Met. 39:235–251

    Article  Google Scholar 

  36. Wei RP, Simmons GW (1981) Resent progress in understanding environment assisted fatigue crack growth. Int J Fract 17:235–247

    Article  Google Scholar 

  37. Swansiger WA, Bastasz R (1979) Tritium and deuterium permeation in stainless steel: influence of thin oxide films. J Nucl Mater 85–6:335–339

    Article  Google Scholar 

  38. Hirth JP (1980) Effects of hydrogen on the properties of iron and steel. Metall Trans A 11:861–890

    Article  Google Scholar 

  39. Yamabe J, Awane T, Matsuoka S (2015) Investigation of hydrogen transport behavior of various low-alloy steels with high-pressure hydrogen gas. Int J Hydrogen Energy 40:11075–11086

    Article  Google Scholar 

  40. Yamabe J, Matsuoka S, Murakami Y (2013) Surface coating with a high resistance to hydrogen entry under high-pressure hydrogen-gas environment. Int J Hydrogen Energy 38:10141–10154

    Article  Google Scholar 

  41. Yamabe J, Matsuoka S, Murakami Y (2014) Development of high-performance hydrogen barrier coating for steels. In: Proceedings of SteelyHydrogen2014 conference, Ghent, Belgium, May 5–7 2014

    Google Scholar 

  42. Iijima Y, Hirano K (1975) Diffusion of hydrogen in metals. Bull Jpn Inst Met 14:599–620

    Article  Google Scholar 

  43. San Marchi C, Somerday BP (2012) Technical reference for hydrogen compatibility of materials. Sandia report

    Google Scholar 

  44. Kiuchi K, McLellan RB (1983) The solubility and diffusivity of hydrogen in well-annealed and deformed iron. Acta Metall 31:961–984

    Article  Google Scholar 

  45. Hobson JD (1958) The diffusivity of hydrogen in steel at temperatures of −78 to 200 °C. J Iron Steel Inst 189:315–321

    Google Scholar 

  46. Coe FR, Moreton J (1966) Diffusion of hydrogen in low-alloy steel. J Iron Steel Inst 204:366–370

    Google Scholar 

  47. Yamakawa K, Minamino Y, Matsumoto K, Yonezawa S, Yoshizawa S (1980) Hydrogen absorbability of SCM steels and its effect on cracking behavior. J Soc Mater Sci Jpn 29:1101–1107

    Article  Google Scholar 

  48. Fujii T, Nomura K (1984) Temperature dependence of hydrogen diffusivity of 2 1/4Cr-1Mo steel. Tetsu-to-Hagane 70:104–111

    Google Scholar 

  49. Oriani RA (1970) The diffusion and trapping of hydrogen in steel. Acta Metall 18:147–157

    Article  Google Scholar 

  50. San Marchi C, Somerday BP, Robinson SL (2007) Permeability, solubility and diffusivity of hydrogen isotopes in stainless steels at high gas pressures. Int J Hydrogen Energy 32:100–116

    Article  Google Scholar 

  51. Gibala R (1967) Hydrogen-dislocation interaction in iron. Trans Met Soc AIME 239:1574–1585

    Google Scholar 

  52. Takai K (2004) Hydrogen existing states in metals. Trans JSME A 70:1027–1035

    Article  Google Scholar 

  53. Choo WY, Lee JY (1982) Thermal analysis of trapped hydrogen in pure iron. Metall Trans A 13:135–140

    Article  Google Scholar 

  54. Takeuchi E, Furuya Y, Hirukawa Y, Matso T, Matsuoka S (2013) Effect of hydrogen on fatigue crack growth properties of SCM435 steel used for storage cylinder in hydrogen station. Trans JSME A 79:1030–1040

    Article  Google Scholar 

  55. Louthan MR Jr, Derrick RG (1975) Hydrogen transport in austenitic stainless steel. Corros Sci 15:565–577

    Article  Google Scholar 

  56. Sun XK, Xu J, Li YY (1989) Hydrogen permeation behaviour in austenitic stainless steels. Mater Sci Eng, A 114:179–187

    Article  Google Scholar 

  57. Perng T-P, Altstetter CJ (1986) Effects of deformation on hydrogen permeation in austenitic stainless steels. Acta Metall 34:1771–1787

    Article  Google Scholar 

  58. Young GA Jr, Scully JR (1998) The diffusivity and trapping of hydrogen in high purity aluminum. Acta Mater 46:6337–6349

    Article  Google Scholar 

  59. Scully JR, Young GA Jr, Smith SW (2012) Hydrogen embrittlement of aluminum and aluminum-based alloys. In: Gangloff RP, Somerday BP (eds) Gaseous hydrogen embrittlement of materials in energy technologies, vol 1. Woodhead Publishing Limited, Cambridge, pp 707–768

    Chapter  Google Scholar 

  60. Papp K, Kovacs-Csetenyi E (1981) Diffusion of hydrogen in high purity aluminum. Scr Metall 15:161–164

    Article  Google Scholar 

  61. Jia-He Ai, Lim MLC, Scully JR (2013) Effective hydrogen diffusion in aluminum alloy 5083-H131 as a function of orientation and degree of sensitization. Corrosion 69:1225–1239

    Article  Google Scholar 

  62. Briscoe BJ, Savvas T, Kelly CT (1994) Explosive decompression failure of rubber: a review of the origins of pneumatic stress induced rupture in elastomer. Rubber Chem Technol 67:384–416

    Article  Google Scholar 

  63. Gent AN, Tompkins DA (1969) Nucleation and growth of gas bubbles in elastomers. J Appl Phys 40:2520–2525

    Article  Google Scholar 

  64. Gent AN, Lindley PB (1958) Internal rupture of bonded rubber cylinders in tension. Proc R Soc LON Ser-A 249:195–205

    Article  Google Scholar 

  65. Zakaria S, Bricoe BJ (1990) Why rubber explodes. ChemTech 20:492–495

    Google Scholar 

  66. Briscoe BJ, Liatsis D (1992) Internal crack symmetry phenomena during gas-induced rupture of elastomers. Rubber Chem Technol 65:350–373

    Article  Google Scholar 

  67. Yamabe J, Nishimura S (2009) Influence of fillers on hydrogen penetration properties and blister fracture of rubber composites for O-ring exposed to high-pressure hydrogen gas. Int J Hydrogen Energy 34:1977–1989

    Article  Google Scholar 

  68. Yamabe J, Koga A, Nishimura S (2013) Failure behavior of rubber O-ring under cyclic exposure to high-pressure hydrogen gas. Eng Fail Anal 35:193–205

    Article  Google Scholar 

  69. Koga A, Uchida K, Yamabe J, Nishimura S (2011) Evaluation on high-pressure hydrogen decompression failure of rubber O-ring using design of experiments. Int J Automotive Eng 2:123–129

    Google Scholar 

  70. Yamabe J, Nishimura S (2012) Hydrogen-induced degradation of rubber seals. In: Gangloff RP, Somerday BP (eds) Gaseous hydrogen embrittlement of materials in energy technologies, vol 1. Woodhead Publishing Limited, Cambridge, pp 769–817

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junichiro Yamabe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Yamabe, J., Matsuoka, S. (2016). Hydrogen Safety Fundamentals. In: Sasaki, K., Li, HW., Hayashi, A., Yamabe, J., Ogura, T., Lyth, S. (eds) Hydrogen Energy Engineering. Green Energy and Technology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56042-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-56042-5_26

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-56040-1

  • Online ISBN: 978-4-431-56042-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics