Skip to main content

Liquid Hydrogen Carriers

  • Chapter
  • First Online:

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

This chapter describes key technologies for typical liquid hydrogen carriers, including the liquefaction process and storage vessel of liquid hydrogen, de-/re-hydrogenation properties of cycloalkane and heterocycle-based organic hydrides, as well as production process and thermal decomposition of ammonia.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. https://www.enaa.or.jp/WE-NET/newinfo/station_taka_e.html. Accessed 1 May 2015

  2. http://hydropole.ch/en/hydrogen/storage/. Accessed 1 May 2015

  3. Mori D, Hirose K (2009) Recent challenges of hydrogen storage technologies for fuel cell vehicles. Int J Hydrogen Energy 34:4569–4574

    Article  Google Scholar 

  4. Hanada T, Takahashi K (2009) Liquid-hydrogen storage. In: Ohta T, Veziroglu TN (eds) Energy carriers and conversion systems. UNESCO-EOLSS

    Google Scholar 

  5. Züttel A (2003) Materials for hydrogen storage. Mater Today 6:24–33

    Article  Google Scholar 

  6. http://global.kawasaki.com/en/corp/newsroom/news/detail/20140106_1e.html. Accessed 2 May 2015

  7. Sultan O, Shaw M (1975) Study of automotive storage of hydrogen using recyclable chemical carriers. ERDA, Ann Arbor, MI, TEC-75/003

    Google Scholar 

  8. Okada Y, Mitsunori S (2013) Development of large-scale H2 storage and transportation technology with liquid organic hydrogen carrier (LOHC). GCC-JAPAN environment symposia 2013. https://www.chiyoda-corp.com/technology/files/Joint%20GCC-JAPAN%20Environment%20Symposia%20in%202013.pdf. Accessed 2 May 2015

  9. Karanth NG, Hughes R (1972) The kinetics of the catalytic hydrogenation of toluene. J appl Chem Bwtechnol 23:817–827

    Article  Google Scholar 

  10. Roy S, Datta S (2013) Hydrogenation of toluene on zirconium-modified hexagonal molecular sieve supported platinum and palladium catalysts. Ind Eng Chem Res 52:17360–17368

    Article  Google Scholar 

  11. Alhumaidan F, Cresswell D, Garforth A (2011) Hydrogen storage in liquid organic hydride: producing hydrogen catalytically from methylcyclohexane. Energy Fuels 25:4217–4234

    Article  Google Scholar 

  12. Pez GP, Scott AR, Cooper AC, Cheng H (2006) Hydrogen storage by reversible hydrogenation of pi-conjugated substrates. US Patent 7,101,530, 5 Sep 2006

    Google Scholar 

  13. Clot E, Eisenstein O, Crabtree RH (2007) Computational structure–activity relationships in H2 storage: how placement of N atoms affects release temperatures in organic liquid storage materials. Chem Commun 2231–2233

    Google Scholar 

  14. Teichmann D, Arlt W, Wasserscheid P, Freymann R (2011) A future energy supply based on liquid organic hydrogen carriers (LOHC). Energy Environ Sci 4:2767–2773

    Article  Google Scholar 

  15. Zhu Q, Xu Q (2015) Liquid organic and inorganic chemical hydrides for high-capacity hydrogen storage. Energy Environ Sci 8:478–512

    Article  Google Scholar 

  16. Luo W, Campbell PG, Zakharov LN, Liu S-Y (2011) A single-component liquid-phase hydrogen storage material. J Am Chem Soc 133:19326–19329

    Article  Google Scholar 

  17. Ammonia. http://www.elucidare.co.uk/news/Ammonia%20as%20H2%20carrier.pdf. Accessed 2 May 2015

  18. Potential roles of ammonia in a hydrogen economy. http://www.hydrogen.energy.gov/pdfs/nh3_paper.pdf. Accessed 2 May 2015

  19. http://www.safco.com.sa/en/products/ammonia. Accessed 2 May 2015

  20. Yin SF, Xu BQ, Zhou XP, Au CT (2004) A mini-review on ammonia decomposition catalysts for on-site generation of hydrogen for fuel cell applications. Appl Catal A Gen 277:1–9

    Article  Google Scholar 

  21. David WIF, Makepeace JW, Callear SK, Hunter HMA, Taylor JD, Wood TJ, Jones MO (2014) Hydrogen production from ammonia using sodium amide. J Am Chem Soc 136:13082–13085

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Wen Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Li, HW. (2016). Liquid Hydrogen Carriers. In: Sasaki, K., Li, HW., Hayashi, A., Yamabe, J., Ogura, T., Lyth, S. (eds) Hydrogen Energy Engineering. Green Energy and Technology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56042-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-56042-5_17

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-56040-1

  • Online ISBN: 978-4-431-56042-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics