Skip to main content

In-Situ Monitoring of Dislocation Mobility

  • Chapter
  • First Online:
Electromagnetic Acoustic Transducers

Part of the book series: Springer Series in Measurement Science and Technology ((SSMST))

  • 1704 Accesses

Abstract

The noncontacting measurement with EMAR allows not only accurate evaluation of absorption loss inside materials but also such measurements at low and high temperatures and during deformation. This chapter shows many applications of EMAR for studying dislocation mobility and interactions between dislocations and point defects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson, A. R., & Pollard, H. F. (1979). Changes in internal friction and dislocation charge in sodium chloride crystals following plastic deformation. Journal of Applied Physics, 50, 5262–5265.

    Article  ADS  Google Scholar 

  • Anderson, W. A., & Mehl, R. F. (1945). Recrystallization of aluminum in terms of the rate of nucleation and the rate of growth. Transactions of the AIME, 161, 140–172.

    Google Scholar 

  • Bay, B., & Hansen, N. (1984). Recrystallization in commercially pure aluminum. Metallurgical Transactions A, 15, 287–297.

    Article  ADS  Google Scholar 

  • Bratina, W. (1966). Internal friction and basic fatigue mechanisms in body-centered cubic metals, mainly iron and carbon steels. In Physical Acoustics (Vol. 3A, pp. 223–291). New York: Academic Press.

    Google Scholar 

  • Bremnes, Ø., Progin, O., Gremaud, G., & Benoit, W. (1997). Complex interaction mechanismsbetween dislocations and point defects studied in pure aluminium by a two-wave acoustic coupling technique. Physical Status Solidi (a), 160, 395–402.

    Article  ADS  Google Scholar 

  • Bullough, R., & Newman, R. (1962a). The growth of impurity atmospheres around dislocations. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 266, 198–208.

    Article  ADS  Google Scholar 

  • Bullough, R., & Newman, R. (1962b). Impurity precipitation on dislocations—A theory of strain aging. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 266, 209–221.

    Article  ADS  Google Scholar 

  • Bullough, R., & Newman, R. (1970). The kinetics of migration of point defects to dislocations. Reports on Progress in Physics, 33, 101–148.

    Article  ADS  Google Scholar 

  • Cahn, R. W., & Haasen, P. (1996). Physical Metallurgy (Vol. 3). Amsterdam: Elsevier.

    Google Scholar 

  • Cottrell, A. H., & Aytekin, V. (1950). The flow of zinc under constant stress. Journal of the Institute of Metals, 77, 389–422.

    Google Scholar 

  • Cottrell, A. H., & Bilby, B. A. (1949). Dislocation theory of yielding and strain aging of iron. Proceedings of the Physical Society. Section A, 62, 49–62.

    Article  Google Scholar 

  • DeSorbo, W., & Turnbull, D. (1959). Kinetics of vacancy motion in high-purity aluminum. Physical Review, 115, 560–563.

    Article  ADS  Google Scholar 

  • Flynn, C. (1972). Point Defects and Diffusion. New York: Oxford.

    Google Scholar 

  • Fukuoka, H., & Toda, H. (1977). Preliminary experiment on acoustoelasticity. Archives of Mechanics, 29, 673–686.

    Google Scholar 

  • Garr, K., & Sosin, A. (1967). Recovery of electron-irradiated aluminum and aluminum alloys II. Stage II. Physical Review, 162, 669–681.

    Article  ADS  Google Scholar 

  • Granato, A., Hikata, A., & Lücke, K. (1958). Recovery of damping and modulus changes following plastic deformation. Acta Metallurgica, 6, 470–480.

    Article  Google Scholar 

  • Granato, A., & Lücke, K. (1956). Theory of mechanical damping due to dislocations. Journal of Applied Physics, 27, 583–593.

    Article  ADS  MATH  Google Scholar 

  • Gremaud, G., Bujard, M., & Benoit, W. (1987). The coupling technique: A two-wave acoustic method for the study of dislocation dynamics. Journal of Applied Physics, 61, 1795–1805.

    Article  ADS  Google Scholar 

  • Ham, F. (1959). Stress-assisted precipitation on dislocations. Journal of Applied Physics, 30, 915–926.

    Article  ADS  Google Scholar 

  • Harper, S. (1951). Precipitation of carbon and nitrogen in cold-worked alpha-iron. Physical Review, 83, 709–712.

    Article  ADS  Google Scholar 

  • Hartley, C., & Wilson, R. (1963). Dislocation pinning effects in unalloyed molybdenum. Acta Metallurgica, 11, 835–845.

    Article  Google Scholar 

  • Herring, C. (1950). Diffusional viscosity of a polycrystalline solid. Journal of Applied Physics, 21, 437–445.

    Article  ADS  Google Scholar 

  • Hikata, A., Truell, R., Granato, A., Chick, B., & Lücke, K. (1956). Sensitivity of ultrasonic attenuation and velocity changes to plastic deformation and recovery in aluminum. Journal of Applied Physics, 27, 396–404.

    Article  ADS  Google Scholar 

  • Hiki, Y., & Granato, A. (1966). Anharmonicity in noble metals; higher order elastic constants. Physical Review, 144, 411–419.

    Article  ADS  Google Scholar 

  • Hughes, D. S., & Kelly, J. L. (1953). Second-order elastic deformation of solids. Physical Review, 92, 1145–1149.

    Article  ADS  MATH  Google Scholar 

  • Hull, D., & Bacon, D. J. (1984). Introduction to Dislocations. New York: Pergamon Press.

    Google Scholar 

  • Humphreys, F. J., & Hatherly, M. (1995). Recrystallization and Related Annealing Phenomena. New York: Elsevier.

    Google Scholar 

  • Johnson, G. C. (1982). Acoustoelastic response of polycrystalline aggregates exhibiting transverse isotropy. Journal of Nondestructive Evaluation, 3, 1–8.

    Article  Google Scholar 

  • Johnson, W. (1998). Ultrasonic damping in pure aluminum at elevated temperatures. Journal of Applied Physics, 83, 2462–2468.

    Article  ADS  Google Scholar 

  • Johnson, W. (2001). Ultrasonic dislocation dynamics in Al (0.2 at % Zn) after elastic loading. Materials Science and Engineering, A, 309–310, 69–73.

    Article  Google Scholar 

  • Johnson, W., Norton, S., Bendec, F., & Pless, R. (1992). Ultrasonic spectroscopy of metallic spheres using electromagnetic-acoustic transduction. The Journal of the Acoustical Society of America, 91, 2637–2642.

    Article  ADS  Google Scholar 

  • Kuang, G., & Zhu, Z. (1994). A study of dislocation movement during push-pull fatigue by ultrasonic attenuation. Physical Status Solidi (a), 142, 357–363.

    Article  ADS  Google Scholar 

  • Lauzier, J., Hillairet, J., Gremaud, G., & Benoit, W. (1990). Lubrication agents of dislocation motion at very low temperature in cold-worked aluminum. Journal of Physics: Condensed Matter, 2, 9247–9256.

    ADS  Google Scholar 

  • Lauzier, J., Hillairet, J., Vieux-Champagne, A., Benoit, W., & Gremaud, G. (1989). The vacancies, lubrication agents of dislocation motion in aluminum. Journal of Physics: Condensed Matter, 1, 9273–9282.

    ADS  Google Scholar 

  • Lentz, D., Edenhofer, B., & Lücke, K. (1971). On a dislocation-pinning memory-effect in γ-irradiated and stress-annealed copper. Scripta Metallurgica, 5, 387–393.

    Article  Google Scholar 

  • Mason, W. P. (1958). Physical Acoustics and Properties of Solids. Princeton: Van Nostrand.

    Google Scholar 

  • Mondolfo, L. F. (1976). Aluminum Alloys, Structure and Properties. Boston: Butterworths.

    Google Scholar 

  • Ogi, H., Suzuki, N., & Hirao, M. (1998). Noncontact ultrasonic spectroscopy on deforming polycrystalline copper dislocation damping and acoustoelasticity. Metallurgical and Materials Transactions A, 29, 2987–2993.

    Article  Google Scholar 

  • Ogi, H., Tsujimoto, A., Hirao, M., & Ledbetter, H. (1999). Stress-dependent recovery of point defects in deformed aluminum: An acoustic-damping study. Acta Materialia, 47, 3745–3751.

    Article  Google Scholar 

  • Ogi, H., Tsujimoto, A., Nishimura, S., & Hirao, M. (2005). Acoustic study of kinetics of vacancy diffusion toward dislocations in aluminum. Acta Materialia, 53, 513–517.

    Article  Google Scholar 

  • Pao, Y.-H., Sachse, W., & Fukuoka, H. (1984). Acoustoelasticity and ultrasonic measurements of residual stresses, In Physical Acoustics (Vol. 17, pp. 61–143). New York: Academic Press.

    Google Scholar 

  • Phillips, D. C., & Pratt, P. L. (1970). The recovery of internal friction in sodium chloride. Philosophical Magazine, 21, 217–243.

    Article  ADS  Google Scholar 

  • Salama, K., & Alers, G. (1967). Third-order elastic constants of copper at low temperature. Physical Review, 161, 673–680.

    Article  ADS  Google Scholar 

  • Smith, A. D. (1953). The effect of small amounts of cold-work on young’s modulus. Philosophical Magazine, 44, 453–466.

    Article  Google Scholar 

  • Truell, R., Elbaum, C., & Chick, B. B. (1969). Ultrasonic Methods in Solid State Physics. New York: Academic Press.

    Google Scholar 

  • Wallace, P. W., Hultman, K. L., Holder, J., & Granato, A. V. (1985). Migration of the interstitial-impurity mixed (100) dumbbell configuration in Al-Zn. Journal de Physique Colloques: Tous les numéros, 46, C10-59-C10-61.

    Article  Google Scholar 

  • Zhu, Z., & Fei, G. (1994). Variation in internal friction and ultrasonic attenuation in aluminum during the early stage of fatigue loading. Journal of Alloys and Compounds, 211/212, 93–95.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiko Hirao .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan

About this chapter

Cite this chapter

Hirao, M., Ogi, H. (2017). In-Situ Monitoring of Dislocation Mobility. In: Electromagnetic Acoustic Transducers. Springer Series in Measurement Science and Technology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56036-4_7

Download citation

Publish with us

Policies and ethics