Skip to main content

Acoustoelastic Stress Measurements

  • Chapter
  • First Online:
Book cover Electromagnetic Acoustic Transducers

Abstract

Within the framework of linear elasticity, the principal of superposition holds and the elastic wave velocity is independent of the stress acting in the solids. But, this is an approximation after all and solid materials exhibit nonlinear responses; the velocities vary in proportion to stress although in very small magnitude in general. This phenomenon, called acoustoelasticity, originates from the anharmonic interatomic potential. This chapter provides the theoretical background of acoustoelasticity and a number of measurement result with EMATs on applied and residual stresses of industrial importance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alers, G., & Manzanares, A. (1990). Use of surface skimming SH waves to measure thermal and residual stresses in installed railroad tracks. In Review of Progress in Quantitative Nondestructive Evaluation (Vol. 9, pp. 1757–1764).

    Google Scholar 

  • Auld, A. B. (1973). Acoustic Fields and Waves in Solids. New York: Wiley.

    Google Scholar 

  • Brugger, K. (1964). Thermodynamic definition of higher order elastic coefficients. Physical Review, 133, A1611–A1612.

    Article  ADS  MATH  Google Scholar 

  • Crecraft, D. I. (1967). The measurement of applied and residual stresses in metals using ultrasonic waves. Journal of Sound and Vibration, 5, 173–192.

    Article  ADS  Google Scholar 

  • Eringen, A. C., & Şuhubi, E. S. (1975). Elastodynamics. New York: Academic Press.

    MATH  Google Scholar 

  • Fortunko, C. M., Petersen, G. L., Chick, B. B., Renken, M. C., & Preis, A. L. (1992). Absolute measurement of elastic-wave phase and group velocities in lossy materials. Review of Scientific Instruments, 63, 3477–3486.

    Article  ADS  Google Scholar 

  • Green, R. E., Jr. (1973). Ultrasonic Investigation of Mechanical Properties. New York: Academic Press.

    Google Scholar 

  • Heyman, J. S. (1977). A CW ultrasonic bolt-strain monitor. Experimental Mechanics, 17, 183–187.

    Article  ADS  Google Scholar 

  • Hirao, M., Ogi, H., & Fukuoka, H. (1993). Resonance EMAT system for acoustoelastic stress evaluation in sheet metals. Review of Scientific Instruments, 64, 3198–3205.

    Article  ADS  Google Scholar 

  • Hirao, M., Ogi, H., & Fukuoka, H. (1994). Advanced ultrasonic method for measuring rail axial stresses with electromagnetic acoustic transducer. Research in Nondestructive Evaluation, 5, 211–223.

    Article  ADS  Google Scholar 

  • Hirao, M., Ogi, H., & Yasui, H. (2001). Contactless measurement of bolt axial stress using a shear-wave EMAT. NDT and E International, 34, 179–183.

    Google Scholar 

  • Howland, R. C. J. (1930). On the stresses in the neighborhood of a circular hole in a strip under tension. Philosophical Transactions of the Royal Society of London. A, 229, 49–86.

    Article  ADS  MATH  Google Scholar 

  • Hsu, N. N. (1974). Acoustical birefringence and the use of ultrasonic waves for experimental stress analysis. Experimental Mechanics, 14, 169–176.

    Article  Google Scholar 

  • Hughes, D. S., & Kelly, J. L. (1953). Second-order elastic deformation of solids. Physical Review, 92, 1145–1149.

    Article  ADS  MATH  Google Scholar 

  • Iwashimizu, Y., & Kubomura, K. (1973). Stress-induced rotation of polarization directions of elastic waves in slightly anisotropic materials. International Journal of Solids and Structures, 9, 99–114.

    Article  MATH  Google Scholar 

  • Johnson, G. C. (1982). Acoustoelastic response of polycrystalline aggregates exhibiting transverse isotropy. Journal of Nondestructive Evaluation, 3, 1–8.

    Article  Google Scholar 

  • King, R. B., & Fortunko, C. M. (1983). Determination of in-plane residual stress states in plates using horizontally polarized shear waves. Journal of Applied Physics, 54, 3027–3035.

    Article  ADS  Google Scholar 

  • Landau, L. D., & Lifshitz, E. M. (1956). Theory of Elasticity. Oxford: Pergamon.

    Google Scholar 

  • Murnaghan, F. D. (1951). Finite Deformation of an Elastic Solid. New York: Dover.

    Google Scholar 

  • Musgrave, M. J. P. (1970). Crystal Acoustics. San Francisco: Holden-Day.

    Google Scholar 

  • Ogi, H., & Hirao, M. (1996). Noncontacting measurement of residual stresses in weldments by electromagnetic acoustic resonance. Journal of the Japan Society of Nondestructive Inspection, 45, 875–878 (in Japanese).

    Google Scholar 

  • Ogi, H., & Hirao, M. (1998). Electromagnetic acoustic spectroscopy in the bolt head for evaluating the axial stress. In Nondestructive Characterization of Materials (Vol. 8, pp. 671–676).

    Google Scholar 

  • Ogi, H., Hirao, M., & Fukuoka, H, (1996a), Ultrasonic measurement of bending stress in electric resistance welded pipe by electromagnetic acoustic resonance. In Proceedings of the 14th World Conference on Non-Destructive Testing (14th WCNDT) (pp. 875–878).

    Google Scholar 

  • Ogi, H., Hirao, M., & Fukuoka, H. (1996b), Noncontacting ultrasonic measurement of bolt axial stress with electromagnetic acoustic transducer. In Proceedings of the 1st US-Japan Symposium on Advances in NDT (pp. 37–42).

    Google Scholar 

  • Okada, K. (1980). Stress-acoustic relations for stress measurement by ultrasonic technique. Journal of the Acoustical Society of Japan (E), 1, 193–200.

    Article  Google Scholar 

  • Pao, Y. -H., Sachse, W., & Fukuoka, H. (1984). Acoustoelasticity and ultrasonic measurements of residual stresses. In Physical Acoustics (Vol. 17, pp. 61–143). New York: Academic Press.

    Google Scholar 

  • Schramm, R. E., Clark, A. V., McGuire, T. J., Filla, B. J., Mitraković, D. V., & Purtscher, P. T. (1993). Noncontact ultrasonic inspection of train rails for stress. In Rail Quality and Maintenance for Modern Railway Operation (pp. 99–108). Dordrecht: Kluwer Academic Press.

    Google Scholar 

  • Thompson, R. B., Lee, S. S., & Smith, J. F. (1984). Microstructure independent acoustoelastic measurement of stress. Applied Physics Letters, 44, 296–298.

    Article  ADS  Google Scholar 

  • Thurston, R. N. (1964). Wave propagation in fluids and normal solids. In Physical Acoustics (Vol. 1A, pp. 1–110). New York: Academic Press.

    Google Scholar 

  • Thurston, R. N. (1974). Waves in solids. In Encyclopedia of Physics (Vol. VIa/4, pp. 109–308). Berlin: Springer.

    Google Scholar 

  • Toupin, R. A., & Bernstein, B. (1961). Sound waves in deformed perfectly elastic materials, acoustoelastic effect. The Journal of the Acoustical Society of America, 33, 216–225.

    Article  ADS  MathSciNet  Google Scholar 

  • Urashima, C., Sugino, K., & Nishida, S., (1992). Generation mechanism of residual stress in rails. In Residual Stress-III Science and Technology (pp. 1489–1494). Amsterdam: Elsevier.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiko Hirao .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan

About this chapter

Cite this chapter

Hirao, M., Ogi, H. (2017). Acoustoelastic Stress Measurements. In: Electromagnetic Acoustic Transducers. Springer Series in Measurement Science and Technology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56036-4_12

Download citation

Publish with us

Policies and ethics