Advertisement

Clustered Protocadherins

  • Kar Men MahEmail author
  • Joshua A. WeinerEmail author
Chapter

Abstract

Nearly 60 cadherin superfamily adhesion molecules are encoded by the Pcdha, Pcdhb, and Pcdhg gene clusters. These so-called clustered protocadherins (Pcdhs) are broadly expressed throughout the nervous system, with lower levels found in a few nonneuronal tissues. Each neuron expresses a limited repertoire of clustered Pcdh genes, in a complicated process controlled by differential methylation and promoter choice. The clustered Pcdh proteins interact homophilically in trans as cis-multimers, which has the potential to generate a combinatorially explosive number of distinct adhesive interfaces that may give neurons unique molecular identities important for circuit formation. Functional studies of animals in which clustered Pcdhs have been deleted or disrupted demonstrate that these proteins play critical roles in neuronal survival, axon and dendrite arborization, and synaptogenesis. Additionally, they have been implicated in the progression of several cancers, suggesting that basic studies of their function and signaling pathways will have important future clinical applications. This chapter reviews the extant literature on this fascinating and important group of cell adhesion molecules, the most diverse within the larger cadherin superfamily.

Keywords

Pcdh Cell adhesion Synaptogenesis Dendrite arborization Dendritic spine Synaptic specificity Molecular diversity Homophilic Apoptosis 

References

  1. Banelli B, Brigati C, Di Vinci A, Casciano I, Forlani A, Borzì L, Allemanni G, Romani M (2011) A pyrosequencing assay for the quantitative methylation analysis of the PCDHB gene cluster, the major factor in neuroblastoma methylator phenotype. Lab Investig 92(3):458–465. doi: 10.1038/labinvest.2011.169 PubMedCrossRefGoogle Scholar
  2. Blank M, Triana-Baltzer GB, Richards CS, Berg DK (2004) Alpha-protocadherins are presynaptic and axonal in nicotinic pathways. Mol Cell Neurosci 26(4):530–543PubMedCrossRefGoogle Scholar
  3. Boggon TJ, Murray J, Chappuis-Flament S, Wong E, Gumbiner BM, Shapiro L (2002) C-cadherin ectodomain structure and implications for cell adhesion mechanisms. Science (New York, NY) 296 (5571):1308. doi: 10.1126/science.1071559
  4. Bonn S, Seeburg P, Schwarz M (2007) Combinatorial Expression of {alpha}- and {gamma}-Protocadherins Alters Their Presenilin-Dependent Processing. Mol Cell Biol 27(11):4121. doi: 10.1128/MCB.01708-06 PubMedPubMedCentralCrossRefGoogle Scholar
  5. Buchanan SM, Schalm SS, Maniatis T (2010) Proteolytic processing of protocadherin proteins requires endocytosis. Proc Natl Acad Sci USA 107(41):17774. doi: 10.1073/pnas.1013105107 PubMedPubMedCentralCrossRefGoogle Scholar
  6. Chen J, Lu Y, Meng S, Han MH, Lin C, Wang X (2009) alpha- and gamma-Protocadherins negatively regulate PYK2. J Biol Chem 284(5):2880–2890. doi: 10.1074/jbc.M807417200 PubMedPubMedCentralCrossRefGoogle Scholar
  7. Chen WV, Alvarez FJ, Lefebvre JL, Friedman B, Nwakeze C, Geiman E, Smith C, Thu CA, Tapia JC, Tasic B, Sanes JR, Maniatis T (2012) Functional significance of isoform diversification in the protocadherin gamma gene cluster. Neuron 75(3):402–409. doi: 10.1016/j.neuron.2012.06.039 PubMedPubMedCentralCrossRefGoogle Scholar
  8. Chong JA, Tapia-Ramirez J, Kim S, Toledo-Aral JJ, Zheng Y, Boutros MC, Altshuller YM, Frohman MA, Kraner SD, Mandel G (1995) REST: a mammalian silencer protein that restricts sodium channel gene expression to neurons. Cell 80(6):949–957PubMedCrossRefGoogle Scholar
  9. Dallosso AR, Hancock AL, Szemes M, Moorwood K, Chilukamarri L, Tsai HH, Sarkar A, Barasch J, Vuononvirta R, Jones C, Pritchard-Jones K, Royer-Pokora B, Lee SB, Owen C, Malik S, Feng Y, Frank M, Ward A, Brown KW, Malik K (2009) Frequent long-range epigenetic silencing of protocadherin gene clusters on chromosome 5q31 in Wilms’ tumor. PLoS Genet 5(11):e1000745. doi: 10.1371/journal.pgen.1000745 PubMedPubMedCentralCrossRefGoogle Scholar
  10. Dallosso AR, Oster B, Greenhough A, Thorsen K, Curry TJ, Owen C, Hancock AL, Szemes M, Paraskeva C, Frank M, Andersen CL, Malik K (2012) Long-range epigenetic silencing of chromosome 5q31 protocadherins is involved in early and late stages of colorectal tumorigenesis through modulation of oncogenic pathways. Oncogene 31(40):4409–4419. doi: 10.1038/onc.2011.609 PubMedPubMedCentralCrossRefGoogle Scholar
  11. Emond MR, Jontes JD (2008) Inhibition of protocadherin-alpha function results in neuronal death in the developing zebrafish. Dev Biol 321(1):175PubMedCrossRefGoogle Scholar
  12. Esumi S, Kakazu N, Taguchi Y, Hirayama T, Sasaki A, Hirabayashi T, Koide T, Kitsukawa T, Hamada S, Yagi T (2005) Monoallelic yet combinatorial expression of variable exons of the protocadherin-α gene cluster in single neurons. Nat Genet 37(2):171–176. doi: 10.1038/ng1500 PubMedCrossRefGoogle Scholar
  13. Fernandez-Monreal M, Kang S, Phillips GR (2009) Gamma-protocadherin homophilic interaction and intracellular trafficking is controlled by the cytoplasmic domain in neurons. Mol Cell Neurosci 40(3):344–353. doi: 10.1016/j.mcn.2008.12.002 PubMedPubMedCentralCrossRefGoogle Scholar
  14. Fernandez-Monreal M, Oung T, Hanson HH, O’Leary R, Janssen WG, Dolios G, Wang R, Phillips GR (2010) Gamma-protocadherins are enriched and transported in specialized vesicles associated with the secretory pathway in neurons. Eur J Neurosci 32(6):921. doi: 10.1111/j.1460-9568.2010.07386.x PubMedPubMedCentralCrossRefGoogle Scholar
  15. Frank M, Ebert M, Shan W, Phillips GR, Arndt K, Colman DR, Kemler R (2005) Differential expression of individual gamma-protocadherins during mouse brain development. Mol Cell Neurosci 29(4):603–616PubMedCrossRefGoogle Scholar
  16. Fukuda E, Hamada S, Hasegawa S, Katori S, Sanbo M, Miyakawa T, Yamamoto T, Yamamoto H, Hirabayashi T, Yagi T (2008) Down-regulation of protocadherin-alpha A isoforms in mice changes contextual fear conditioning and spatial working memory. Eur J Neurosci 28(7):1362PubMedCrossRefGoogle Scholar
  17. Garrett AM, Weiner JA (2009) Control of CNS synapse development by {gamma}-protocadherin-mediated astrocyte-neuron contact. J Neurosci 29(38):11723–11731. doi: 10.1523/JNEUROSCI.2818-09.2009 PubMedPubMedCentralCrossRefGoogle Scholar
  18. Garrett AM, Schreiner D, Lobas MA, Weiner JA (2012) gamma-protocadherins control cortical dendrite arborization by regulating the activity of a FAK/PKC/MARCKS signaling pathway. Neuron 74(2):269–276. doi: 10.1016/j.neuron.2012.01.028 PubMedPubMedCentralCrossRefGoogle Scholar
  19. George SJ, Dwivedi A (2004) MMPs, cadherins, and cell proliferation. Trends Cardiovasc Med 14 (3):100–105. doi:http://dx.doi.org/10.1016/j.tcm.2003.12.008
  20. Gibson DA, Tymanskyj S, Yuan RC, Leung HC, Lefebvre JL, Sanes JR, Chedotal A, Ma L (2014) Dendrite self-avoidance requires cell-autonomous slit/robo signaling in cerebellar purkinje cells. Neuron 81(5):1040–1056. doi: 10.1016/j.neuron.2014.01.009 PubMedPubMedCentralCrossRefGoogle Scholar
  21. Golan-Mashiach M, Grunspan M, Emmanuel R, Gibbs-Bar L, Dikstein R, Shapiro E (2011) Identification of CTCF as a master regulator of the clustered protocadherin genes. Nucleic Acids Res. doi: 10.1093/nar/gkr1260 PubMedPubMedCentralGoogle Scholar
  22. Gumbiner BM (2005) Regulation of cadherin-mediated adhesion in morphogenesis. Nat Rev Mol Cell Biol 6(8):622. doi: 10.1038/nrm1699 PubMedCrossRefGoogle Scholar
  23. Guo Y, Monahan K, Wu H, Gertz J, Varley KE, Li W, Myers RM, Maniatis T, Wu Q (2012) CTCF/cohesin-mediated DNA looping is required for protocadherin alpha promoter choice. Proc Natl Acad Sci U S A 109(51):21081–21086. doi: 10.1073/pnas.1219280110 PubMedPubMedCentralCrossRefGoogle Scholar
  24. Haas IG, Frank M, Veron N, Kemler R (2005) Presenilin-dependent processing and nuclear function of gamma-protocadherins. J Biol Chem 280(10):9313–9319PubMedCrossRefGoogle Scholar
  25. Hambsch B, Grinevich V, Seeburg PH, Schwarz MK (2005) gamma -protocadherins: Presenilin-mediated release of C-terminal fragment promotes locus expression. J Biol Chem 280:15888–15897PubMedCrossRefGoogle Scholar
  26. Han MH, Lin C, Meng S, Wang X (2010) Proteomics analysis reveals overlapping functions of clustered protocadherins. Mol Cell Proteomics 9(1):71. doi: 10.1074/mcp.M900343-MCP200 PubMedPubMedCentralCrossRefGoogle Scholar
  27. Hanson HH, Kang S, Fernandez-Monreal M, Oung T, Yildirim M, Lee R, Suyama K, Hazan RB, Phillips GR (2010) LC3-dependent intracellular membrane tubules induced by gamma-protocadherins A3 and B2: a role for intraluminal interactions. J Biol Chem 285(27):20982–20992. doi: 10.1074/jbc.M109.092031 PubMedPubMedCentralCrossRefGoogle Scholar
  28. Hasegawa S, Hamada S, Kumode Y, Esumi S, Katori S, Fukuda E, Uchiyama Y, Hirabayashi T, Mombaerts P, Yagi T (2008) The protocadherin-alpha family is involved in axonal coalescence of olfactory sensory neurons into glomeruli of the olfactory bulb in mouse. Mol Cell Neurosci 38:66–79PubMedCrossRefGoogle Scholar
  29. Hasegawa S, Hirabayashi T, Kondo T, Inoue K, Esumi S, Okayama A, Hamada S, Yagi T (2012) Constitutively expressed Protocadherin-alpha regulates the coalescence and elimination of homotypic olfactory axons through its cytoplasmic region. Front Mol Neurosci 5:97. doi: 10.3389/fnmol.2012.00097 PubMedPubMedCentralCrossRefGoogle Scholar
  30. Hayashi S, Takeichi M (2015) Emerging roles of protocadherins: from self-avoidance to enhancement of motility. J Cell Sci 128:1455–1464. doi: 10.1242/jcs.166306 PubMedCrossRefGoogle Scholar
  31. Hill E, Broadbent ID, Chothia C, Pettitt J (2001) Cadherin superfamily proteins in Caenorhabditis elegans and Drosophila melanogaster. J Mol Biol 305(5):1011. doi: 10.1006/jmbi.2000.4361 PubMedCrossRefGoogle Scholar
  32. Hirano K, Kaneko R, Izawa T, Kawaguchi M, Kitsukawa T, Yagi T (2012) Single-neuron diversity generated by Protocadherin-β cluster in mouse central and peripheral nervous systems. Front Mol Neurosci 5:90. doi: 10.3389/fnmol.2012.00090 PubMedPubMedCentralCrossRefGoogle Scholar
  33. Hirayama T, Tarusawa E, Yoshimura Y, Galjart N, Yagi T (2012) CTCF is required for neural development and stochastic expression of clustered Pcdh genes in neurons. Cell Rep 2(2):345. doi: 10.1016/j.celrep.2012.06.014 PubMedCrossRefGoogle Scholar
  34. Hulpiau P, van Roy F (2009) Molecular evolution of the cadherin superfamily. Int J Biochem Cell Biol 41(2):349–369. doi: 10.1016/j.biocel.2008.09.027 PubMedCrossRefGoogle Scholar
  35. Hulpiau P, van Roy F (2011) New insights into the evolution of metazoan cadherins. Mol Biol Evol 28(1):647–657. doi: 10.1093/molbev/msq233 PubMedCrossRefGoogle Scholar
  36. Junghans D, Heidenreich M, Hack I, Taylor V, Frotscher M, Kemler R (2008) Postsynaptic and differential localization to neuronal subtypes of protocadherin beta16 in the mammalian central nervous system. Eur J Neurosci 27(3):559. doi: 10.1111/j.1460-9568.2008.06052.x PubMedCrossRefGoogle Scholar
  37. Kaneko R, Kato H, Kawamura Y, Esumi S, Hirayama T, Hirabayashi T, Yagi T (2006) Allelic gene regulation of Pcdh- and Pcdh- clusters involving both monoallelic and biallelic expression in single Purkinje cells. J Biol Chem 281(41):30551–30560. doi: 10.1074/jbc.M605677200 PubMedCrossRefGoogle Scholar
  38. Kaneko R, Abe M, Hirabayashi T, Uchimura A, Sakimura K, Yanagawa Y, Yagi T (2014) Expansion of stochastic expression repertoire by tandem duplication in mouse Protocadherin-alpha cluster. Sci Rep 4:6263. doi: 10.1038/srep06263 PubMedPubMedCentralCrossRefGoogle Scholar
  39. Katori S, Hamada S, Noguchi Y, Fukuda E, Yamamoto T, Yamamoto H, Hasegawa S, Yagi T (2009) Protocadherin-alpha family is required for serotonergic projections to appropriately innervate target brain areas. J Neurosci 29(29):9137–9147. doi: 10.1523/JNEUROSCI.5478-08.2009 PubMedCrossRefGoogle Scholar
  40. Kawaguchi M, Toyama T, Kaneko R, Hirayama T, Kawamura Y, Yagi T (2008) Relationship between DNA methylation states and transcription of individual isoforms encoded by the protocadherin-alpha gene cluster. J Biol Chem 283:12064–12075PubMedCrossRefGoogle Scholar
  41. Keeler AB, Molumby MJ, Weiner JA (2015) Protocadherins branch out: Multiple roles in dendrite development. Cell Adhes Migr 9(3):214–226. doi: 10.1080/19336918.2014.1000069 CrossRefGoogle Scholar
  42. Kehayova P, Monahan K, Chen W, Maniatis T (2011) Regulatory elements required for the activation and repression of the protocadherin-{alpha} gene cluster. Proc Natl Acad Sci 108:17195–17200. doi: 10.1073/pnas.1114357108 PubMedPubMedCentralCrossRefGoogle Scholar
  43. Kobayashi Y, Absher DM, Gulzar ZG, Young SR, McKenney JK, Peehl DM, Brooks JD, Myers RM, Sherlock G (2011) DNA methylation profiling reveals novel biomarkers and important roles for DNA methyltransferases in prostate cancer. Genome Res 21(7):1017–1027. doi: 10.1101/gr.119487.110 PubMedPubMedCentralCrossRefGoogle Scholar
  44. Kohmura N, Senzaki K, Hamada S, Kai N, Yasuda R, Watanabe M, Ishii H, Yasuda M, Mishina M, Yagi T (1998) Diversity revealed by a novel family of cadherins expressed in neurons at a synaptic complex. Neuron 20(6):1137–1151PubMedCrossRefGoogle Scholar
  45. Ledderose J, Dieter S, Schwarz MK (2013) Maturation of postnatally generated olfactory bulb granule cells depends on functional gamma-protocadherin expression. Sci Rep 3:1514. doi: 10.1038/srep01514 PubMedPubMedCentralCrossRefGoogle Scholar
  46. Lefebvre J, Zhang Y, Meister M, Wang X, Sanes J (2008) {gamma}-Protocadherins regulate neuronal survival but are dispensable for circuit formation in retina. Development 135 (24):4141. doi: 10.1242/dev.027912
  47. Lefebvre JL, Kostadinov D, Chen WV, Maniatis T, Sanes JR (2012) Protocadherins mediate dendritic self-avoidance in the mammalian nervous system. Nature 488(7412):517–521. doi: 10.1038/nature11305 PubMedPubMedCentralCrossRefGoogle Scholar
  48. Li Y, Serwanski DR, Miralles CP, Fiondella CG, Loturco JJ, Rubio ME, De Blas AL (2010) Synaptic and nonsynaptic localization of protocadherin-gammaC5 in the rat brain. J Comp Neurol 518(17):3439–3463. doi: 10.1002/cne.22390 PubMedPubMedCentralCrossRefGoogle Scholar
  49. Lin C, Meng S, Zhu T, Wang X (2010) PDCD10/CCM3 acts downstream of {gamma}-protocadherins to regulate neuronal survival. J Biol Chem 285(53):41675–41685. doi: 10.1074/jbc.M110.179895 PubMedPubMedCentralCrossRefGoogle Scholar
  50. McGowan PO, Suderman M, Sasaki A, Huang TCT, Hallett M, Meaney MJ, Szyf M (2011) PLOS ONE: broad epigenetic signature of maternal care in the brain of adult rats. PLoS One 6(2):e14739. doi: 10.1371/journal.pone.0014739 PubMedPubMedCentralCrossRefGoogle Scholar
  51. Meguro R, Hishida R, Tsukano H, Yoshitake K, Imamura R, Tohmi M, Kitsukawa T, Hirabayashi T, Yagi T, Takebayashi H, Shibuki K (2015) Impaired clustered protocadherin-alpha leads to aggregated retinogeniculate terminals and impaired visual acuity in mice. J Neurochem 33:66–72. doi: 10.1111/jnc.13053 CrossRefGoogle Scholar
  52. Morishita H, Yagi T (2007) Protocadherin family: diversity, structure, and function. Curr Opin Cell Biol 19(5):584PubMedCrossRefGoogle Scholar
  53. Morishita H, Kawaguchi M, Murata Y, Seiwa C, Hamada S, Asou H, Yagi T (2004a) Myelination triggers local loss of axonal CNR/protocadherin alpha family protein expression. Eur J Neurosci 20(11):2843–2847PubMedCrossRefGoogle Scholar
  54. Morishita H, Murata Y, Esumi S, Hamada S, Yagi T (2004b) CNR/Pcdhalpha family in subplate neurons, and developing cortical connectivity. Neuroreport 15(17):2595–2599PubMedCrossRefGoogle Scholar
  55. Morishita H, Umitsu M, Murata Y, Shibata N, Udaka K, Higuchi Y, Akutsu H, Yamaguchi T, Yagi T, Ikegami T (2006) Structure of the cadherin-related neuronal receptor/protocadherin-alpha first extracellular cadherin domain reveals diversity across cadherin families. J Biol Chem 281(44):33650PubMedCrossRefGoogle Scholar
  56. Murata Y, Hamada S, Morishita H, Mutoh T, Yagi T (2004) Interaction with protocadherin-gamma regulates the cell surface expression of protocadherin-alpha. J Biol Chem 279(47):49508PubMedCrossRefGoogle Scholar
  57. Nelson WJ (2008) Regulation of cell–cell adhesion by the cadherin–catenin complex. Biochem Soc Trans 36(Pt 2):149–155. doi: 10.1042/BST0360149 PubMedPubMedCentralCrossRefGoogle Scholar
  58. Niessen CM, Leckband D, Yap AS (2011) Tissue organization by cadherin adhesion molecules: dynamic molecular and cellular mechanisms of morphogenetic regulation. Physiol Rev 91(2):691–731. doi: 10.1152/physrev.00004.2010 PubMedPubMedCentralCrossRefGoogle Scholar
  59. Noguchi Y, Hirabayashi T, Katori S, Kawamura Y, Sanbo M, Hirabayashi M, Kiyonari H, Nakao K, Uchimura A, Yagi T (2009) Total expression and dual gene-regulatory mechanisms maintained in deletions and duplications of the Pcdha cluster. J Biol Chem 284(46):32002–32014. doi: 10.1074/jbc.M109.046938 PubMedPubMedCentralCrossRefGoogle Scholar
  60. Nollet F, Kools P, van Roy F (2000) Phylogenetic analysis of the cadherin superfamily allows identification of six major subfamilies besides several solitary members. J Mol Biol 299(3):551–572PubMedCrossRefGoogle Scholar
  61. Noonan J, Grimwood J, Danke J, Schmutz J, Dickson M, Amemiya C, Myers RM (2004a) Coelacanth genome sequence reveals the evolutionary history of vertebrate genes. Genome Res 14(1):2397–2405PubMedPubMedCentralCrossRefGoogle Scholar
  62. Noonan JP, Grimwood J, Schmutz J, Dickson M, Myers RM (2004b) Gene conversion and the evolution of protocadherin gene cluster diversity. Genome Res 14(3):354–366PubMedPubMedCentralCrossRefGoogle Scholar
  63. Novak P, Jensen TJ, Garbe JC, Stampfer MR, Futscher BW (2009) Stepwise DNA methylation changes are linked to escape from defined proliferation barriers and mammary epithelial cell immortalization. Cancer Res 69(12):5251–5258. doi: 10.1158/0008-5472.can-08-4977 PubMedPubMedCentralCrossRefGoogle Scholar
  64. O’Leary R, Reilly JE, Hanson HH, Kang S, Lou N, Phillips GR (2011) A variable cytoplasmic domain segment is necessary for gamma-protocadherin trafficking and tubulation in the endosome/lysosome pathway. Mol Biol Cell 22(22):4362–4372. doi: 10.1091/mbc.E11-04-0283 PubMedPubMedCentralCrossRefGoogle Scholar
  65. Phillips GR, Huang JK, Wang Y, Tanaka H, Shapiro L, Zhang W, Shan WS, Arndt K, Frank M, Gordon RE, Gawinowicz MA, Zhao Y, Colman DR (2001) The presynaptic particle web: ultrastructure, composition, dissolution, and reconstitution. Neuron 32(1):63–77PubMedCrossRefGoogle Scholar
  66. Phillips GR, Tanaka H, Frank M, Elste A, Fidler L, Benson DL, Colman DR (2003) Gamma-protocadherins are targeted to subsets of synapses and intracellular organelles in neurons. J Neurosci 23(12):5096–5104PubMedGoogle Scholar
  67. Prasad T, Weiner JA (2011) Direct and indirect regulation of spinal cord Ia afferent terminal formation by the gamma-protocadherins. Front Mol Neurosci 4:54. doi: 10.3389/fnmol.2011.00054 PubMedPubMedCentralCrossRefGoogle Scholar
  68. Prasad T, Wang X, Gray PA, Weiner JA (2008) A differential developmental pattern of spinal interneuron apoptosis during synaptogenesis: insights from genetic analyses of the protocadherin-gamma gene cluster. Development 135(24):4153–4164. doi: 10.1242/dev.026807 PubMedPubMedCentralCrossRefGoogle Scholar
  69. Puller C, Haverkamp S (2010) Cell-type-specific localization of protocadherin β16 at AMPA and AMPA/kainate receptor-containing synapses in the primate retina. J Comp Neurol 519(3):467–479. doi: 10.1002/cne.22528 CrossRefGoogle Scholar
  70. Ribich S, Tasic B, Maniatis T (2006) Identification of long-range regulatory elements in the protocadherin-alpha gene cluster. Proc Natl Acad Sci USA 103(52):19719. doi: 10.1073/pnas.0609445104 PubMedPubMedCentralCrossRefGoogle Scholar
  71. Rubinstein R, Thu CA, Goodman KM, Wolcott HN, Bahna F, Mannepalli S, Ahlsen G, Chevee M, Halim A, Clausen H, Maniatis T, Shapiro L, Honig B (2015) Molecular logic of neuronal self-recognition through protocadherin domain interactions. Cell 163(3):629–642. doi: 10.1016/j.cell.2015.09.026
  72. Sano K, Tanihara H, Heimark RL, Obata S, Davidson M, St John T, Taketani S, Suzuki S (1993) Protocadherins: a large family of cadherin-related molecules in central nervous system. Embo J 12(6):2249–2256PubMedPubMedCentralGoogle Scholar
  73. Schoenherr CJ, Anderson DJ (1995) The neuron-restrictive silencer factor (NRSF): a coordinate repressor of multiple neuron-specific genes. Science 267(5202):1360–1363PubMedCrossRefGoogle Scholar
  74. Schreiner D, Weiner JA (2010) Combinatorial homophilic interaction between gamma-protocadherin multimers greatly expands the molecular diversity of cell adhesion. Proc Natl Acad Sci U S A 107(33):14893–14898. doi: 10.1073/pnas.1004526107 PubMedPubMedCentralCrossRefGoogle Scholar
  75. Severson PL, Tokar EJ, Vrba L, Waalkes MP, Futscher BW (2012) Agglomerates of aberrant DNA methylation are associated with toxicant-induced malignant transformation. Epigenetics 7(11):1238–1248. doi: 10.4161/epi.22163 PubMedPubMedCentralCrossRefGoogle Scholar
  76. Sotomayor M, Gaudet R, Corey DP (2014) Sorting out a promiscuous superfamily: towards cadherin connectomics. Trends Cell Biol 24 (9):524–536. doi:http://dx.doi.org/10.1016/j.tcb.2014.03.007
  77. Su H, Marcheva B, Meng S, Liang FA, Kohsaka A, Kobayashi Y, Xu AW, Bass J, Wang X (2010) Gamma-protocadherins regulate the functional integrity of hypothalamic feeding circuitry in mice. Dev Biol 339(1):38. doi: 10.1016/j.ydbio.2009.12.010 PubMedPubMedCentralCrossRefGoogle Scholar
  78. Suderman M, McGowan PO, Sasaki A, Huang TCT, Hallett MT, Meaney MJ, Turecki G, Szyf M (2012) Conserved epigenetic sensitivity to early life experience in the rat and human hippocampus. Proc Natl Acad Sci U S A 109:17266–17272Google Scholar
  79. Sugino H, Hamada S, Yasuda R, Tuji A, Matsuda Y, Fujita M, Yagi T (2000) Genomic organization of the family of CNR cadherin genes in mice and humans. Genomics 63(1):75–87. doi: 10.1006/geno.1999.6066 PubMedCrossRefGoogle Scholar
  80. Sugino H, Yanase H, Hamada S, Kurokawa K, Asakawa S, Shimizu N, Yagi T (2004) Distinct genomic sequence of the CNR/Pcdhalpha genes in chicken. Biochem Biophys Res Commun 316(2):437–445. doi: 10.1016/j.bbrc.2004.02.067 PubMedCrossRefGoogle Scholar
  81. Suo L, Lu H, Ying G, Capecchi MR, Wu Q (2012) Protocadherin clusters and cell adhesion kinase regulate dendrite complexity through Rho GTPase. J Mol Cell Biol 4(6):362–376. doi: 10.1093/jmcb/mjs034 PubMedCrossRefGoogle Scholar
  82. Tada MN, Senzaki K, Tai Y, Morishita H, Tanaka YZ, Murata Y, Ishii Y, Asakawa S, Shimizu N, Sugino H, Yagi T (2004) Genomic organization and transcripts of the zebrafish Protocadherin genes. Gene 340(2):197–211. doi: 10.1016/j.gene.2004.07.014 PubMedCrossRefGoogle Scholar
  83. Takeichi M (2007) The cadherin superfamily in neuronal connections and interactions. Nat Rev Neurosci 8(1):11. doi: 10.1038/nrn2043 PubMedCrossRefGoogle Scholar
  84. Tan F, Ghosh S, Mbeunkui F, Thomas R, Weiner JA, Ofori-Acquah SF (2010) Essential role for ALCAM gene silencing in megakaryocytic differentiation of K562 cells. BMC Mol Biol 11:91. doi: 10.1186/1471-2199-11-91 PubMedPubMedCentralCrossRefGoogle Scholar
  85. Tasic B, Nabholz CE, Baldwin KK, Kim Y, Rueckert EH, Ribich SA, Cramer P, Wu Q, Axel R, Maniatis T (2002) Promoter choice determines splice site selection in protocadherin alpha and gamma pre-mRNA splicing. Mol Cell 10(1):21–33PubMedCrossRefGoogle Scholar
  86. Thu CA, Chen WV, Rubinstein R, Chevee M, Wolcott HN, Felsovalyi KO, Tapia JC, Shapiro L, Honig B, Maniatis T (2014) Single-cell identity generated by combinatorial homophilic interactions between alpha, beta, and gamma protocadherins. Cell 158(5):1045–1059. doi: 10.1016/j.cell.2014.07.012 PubMedPubMedCentralCrossRefGoogle Scholar
  87. Toyoda S, Kawaguchi M, Kobayashi T, Tarusawa E, Toyama T, Okano M, Oda M, Nakauchi H, Yoshimura Y, Sanbo M, Hirabayashi M, Hirayama T, Hirabayashi T, Yagi T (2014) Developmental epigenetic modification regulates stochastic expression of clustered protocadherin genes, generating single neuron diversity. Neuron 82(1):94–108. doi: 10.1016/j.neuron.2014.02.005 PubMedCrossRefGoogle Scholar
  88. Triana-Baltzer GB, Blank M (2006) Cytoplasmic domain of protocadherin-alpha enhances homophilic interactions and recognizes cytoskeletal elements. J Neurobiol 66(4):393. doi: 10.1002/neu.20228 PubMedCrossRefGoogle Scholar
  89. Vanhalst K, Kools P, Vanden Eynde E, van Roy F (2001) The human and murine protocadherin-beta one-exon gene families show high evolutionary conservation, despite the difference in gene number. FEBS Lett 495(1-2):120–125PubMedCrossRefGoogle Scholar
  90. Waha A, Guntner S, Huang TH, Yan PS, Arslan B, Pietsch T, Wiestler OD, Waha A (2005) Epigenetic silencing of the protocadherin family member PCDH-gamma-A11 in astrocytomas. Neoplasia 7(3):193–199. doi: 10.1593/neo.04490 PubMedPubMedCentralCrossRefGoogle Scholar
  91. Wang Y, Liu H, Zhang Y, Ma D (1999) cDNA cloning and expression of an apoptosis-related gene, humanTFAR15 gene. Sci China Ser C-Life Sci 42(3):323–329. doi: 10.1007/BF03183610 CrossRefGoogle Scholar
  92. Wang X, Su H, Bradley A (2002a) Molecular mechanisms governing Pcdh-gamma gene expression: evidence for a multiple promoter and cis-alternative splicing model. Genes Dev 16(15):1890–1905PubMedPubMedCentralCrossRefGoogle Scholar
  93. Wang X, Weiner JA, Levi S, Craig AM, Bradley A, Sanes JR (2002b) Gamma protocadherins are required for survival of spinal interneurons. Neuron 36(5):843–854PubMedCrossRefGoogle Scholar
  94. Weiner JA, Wang X, Tapia JC, Sanes JR (2005) Gamma protocadherins are required for synaptic development in the spinal cord. Proc Natl Acad Sci U S A 102(1):8–14. doi: 10.1073/pnas.0407931101 PubMedPubMedCentralCrossRefGoogle Scholar
  95. Wu Q (2001) Comparative DNA sequence analysis of mouse and human protocadherin gene clusters. Genome Res 11(3):389–404. doi: 10.1101/gr.167301 PubMedPubMedCentralCrossRefGoogle Scholar
  96. Wu Q (2005) Comparative Genomics and Diversifying Selection of the Clustered Vertebrate Protocadherin Genes. Genetics 169:2179–2188PubMedPubMedCentralCrossRefGoogle Scholar
  97. Wu Q, Maniatis T (1999) A striking organization of a large family of human neural cadherin-like cell adhesion genes. Cell 97:779–790PubMedCrossRefGoogle Scholar
  98. Wu Q, Zhang T, Cheng JF, Kim Y, Grimwood J, Schmutz J, Dickson M, Noonan JP, Zhang MQ, Myers RM, Maniatis T (2001) Comparative DNA sequence analysis of mouse and human protocadherin gene clusters. Genome Res 11(3):389–404PubMedPubMedCentralCrossRefGoogle Scholar
  99. Yagi T (2012) Molecular codes for neuronal individuality and cell assembly in the brain. Front Mol Neurosci 5:45. doi: 10.3389/fnmol.2012.00045 PubMedPubMedCentralCrossRefGoogle Scholar
  100. Yamashita H, Chen S, Komagata S, Hishida R, Iwasato T, Itohara S, Yagi T, Endo N, Shibata M, Shibuki K (2012) Restoration of Contralateral Representation in the Mouse Somatosensory Cortex after Crossing Nerve Transfer. PLoS One 7(4):e35676. doi: 10.1371/journal.pone.0035676 PubMedPubMedCentralCrossRefGoogle Scholar
  101. Yanase H, Sugino H, Yagi T (2004) Genomic sequence and organization of the family of CNR/Pcdhalpha genes in rat. Genomics 83(4):717–726. doi: 10.1016/j.ygeno.2003.09.022 PubMedCrossRefGoogle Scholar
  102. Yokota S, Hirayama T, Hirano K, Kaneko R, Toyoda S, Kawamura Y, Hirabayashi M, Hirabayashi T, Yagi T (2011) Identification of the cluster control region for the protocadherin- genes located beyond the protocadherin- cluster. J Biol Chem 286(36):31885–31895. doi: 10.1074/jbc.M111.245605 PubMedPubMedCentralCrossRefGoogle Scholar
  103. Yoshitake K, Tsukano H, Tohmi M, Komagata S, Hishida R, Yagi T, Shibuki K (2013) Visual map shifts based on whisker-guided cues in the young mouse visual cortex. Cell Rep 5(5):1365–1374. doi: 10.1016/j.celrep.2013.11.006 PubMedCrossRefGoogle Scholar
  104. Yu WP, Yew K, Rajasegaran V, Venkatesh B (2007) Sequencing and comparative analysis of fugu protocadherin clusters reveal diversity of protocadherin genes among teleosts. BMC Evol Biol 7:49. doi: 10.1186/1471-2148-7-49 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  1. 1.Integrated Biology Graduate Program, Department of BiologyThe University of IowaIowa CityUSA
  2. 2.Department of BiologyThe University of IowaIowa CityUSA

Personalised recommendations