Skip to main content

Regulation of Cadherin–Catenin Biology by Mechanical Force and Phosphorylation

  • Chapter
  • First Online:
The Cadherin Superfamily

Abstract

In the adherens junction (AJ), cadherin and catenin proteins form a cell–cell adhesion complex that is indispensable for tissue morphogenesis and homeostasis. The complex mechanically couples neighboring cells through intercellular binding by cadherins, and actin binding and regulation by the cytoplasmic catenins. In addition, the cadherin–catenin complex participates in signaling pathways that direct cellular organization, proliferation, and motility. Some of these signaling pathways can be regulated by mechanical stimulation or posttranslational modification of the components of the AJ. In light of these findings, we discuss our current understanding of how AJ signaling and mechanical functions are regulated by phosphorylation and force, and speculate on the mechanisms underlying the coordination between these two types of modifications.

J. Tan and B.W. Benham-Pyle contributed equally with all other contributors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe K, Takeichi M (2008) EPLIN mediates linkage of the cadherin catenin complex to F-actin and stabilizes the circumferential actin belt. Proc Natl Acad Sci U S A 105:13–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aberle H, Bauer A, Stappert J, Kispert A, Kemler R (1997) beta-catenin is a target for the ubiquitin-proteasome pathway. EMBO J 16:3797–3804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abiko H et al (2015) Rho guanine nucleotide exchange factors involved in cyclic-stretch-induced reorientation of vascular endothelial cells. J Cell Sci 128:1683–1695

    Article  CAS  PubMed  Google Scholar 

  • Amit S et al (2002) Axin-mediated CKI phosphorylation of beta-catenin at Ser 45: a molecular switch for the Wnt pathway. Genes Dev 16:1066–1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anastasiadis PZ et al (2000) Inhibition of RhoA by p120 catenin. Nat Cell Biol 2:637–644

    Article  CAS  PubMed  Google Scholar 

  • Bays JL et al (2014) Vinculin phosphorylation differentially regulates mechanotransduction at cell-cell and cell-matrix adhesions. J Cell Biol 205:251–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benham-Pyle BW, Pruitt BL, Nelson WJ (2015) Cell adhesion. Mechanical strain induces E-cadherin-dependent Yap1 and β-catenin activation to drive cell cycle entry. Science 348:1024–1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benjamin JM et al (2010) AlphaE-catenin regulates actin dynamics independently of cadherin-mediated cell-cell adhesion. J Cell Biol 189:339–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertet C, Sulak L, Lecuit T (2004) Myosin-dependent junction remodelling controls planar cell intercalation and axis elongation. Nature 429:667–671

    Article  CAS  PubMed  Google Scholar 

  • Borghi N et al (2012) E-cadherin is under constitutive actomyosin-generated tension that is increased at cell-cell contacts upon externally applied stretch. Proc Natl Acad Sci U S A 109:12568–12573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brasch J, Harrison OJ, Honig B, Shapiro L (2012) Thinking outside the cell: how cadherins drive adhesion. Trends Cell Biol 22:299–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bromann PA, Korkaya H, Courtneidge SA (2004) The interplay between Src family kinases and receptor tyrosine kinases. Oncogene 23:7957–7968

    Article  CAS  PubMed  Google Scholar 

  • Brunet T et al (2013) Evolutionary conservation of early mesoderm specification by mechanotransduction in Bilateria. Nat Commun 4:2821

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Buckley CD et al (2014) Cell adhesion. The minimal cadherin-catenin complex binds to actin filaments under force. Science 346:1254211

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cai D et al (2014) Mechanical feedback through E-cadherin promotes direction sensing during collective cell migration. Cell 157:1146–1159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Catimel B et al (2006) In situ phosphorylation of immobilized receptors on biosensor surfaces: application to E-cadherin/beta-catenin interactions. Anal Biochem 357:277–288

    Article  CAS  PubMed  Google Scholar 

  • Cheng J et al (1997) A novel protein-tyrosine phosphatase related to the homotypically adhering kappa and mu receptors. J Biol Chem 272:7264–7277

    Article  CAS  PubMed  Google Scholar 

  • Choi HJ, Huber AH, Weis WI (2006) Thermodynamics of beta-catenin-ligand interactions: the roles of the N- and C-terminal tails in modulating binding affinity. J Biol Chem 281:1027–1038

    Article  CAS  PubMed  Google Scholar 

  • Choi HJ et al (2012) alphaE-catenin is an autoinhibited molecule that coactivates vinculin. Proc Natl Acad Sci U S A 109:8576–8581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Claessens MM, Bathe M, Frey E, Bausch AR (2006) Actin-binding proteins sensitively mediate F-actin bundle stiffness. Nat Mater 5:748–753

    Article  CAS  PubMed  Google Scholar 

  • Conway DE et al (2013) Fluid shear stress on endothelial cells modulates mechanical tension across VE-cadherin and PECAM-1. Curr Biol 23:1024–1030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cost AL, Ringer P, Chrostek-Grashoff A, Grashoff C (2015) How to measure molecular forces in cells: a guide to evaluating genetically-encoded fret-based tension sensors. Cell Mol Bioeng 8:96–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis MA, Reynolds AB (2006) Blocked acinar development, E-cadherin reduction, and intraepithelial neoplasia upon ablation of p120-catenin in the mouse salivary gland. Dev Cell 10:21–31

    Article  CAS  PubMed  Google Scholar 

  • Desprat N, Supatto W, Pouille PA, Beaurepaire E, Farge E (2008) Tissue deformation modulates twist expression to determine anterior midgut differentiation in Drosophila embryos. Dev Cell 15:470–477

    Article  CAS  PubMed  Google Scholar 

  • Dietrich C, Scherwat J, Faust D, Oesch F (2002) Subcellular localization of beta-catenin is regulated by cell density. Biochem Biophys Res Commun 292:195–199

    Article  CAS  PubMed  Google Scholar 

  • Dominguez I, Itoh K, Sokol SY (1995) Role of glycogen synthase kinase 3 beta as a negative regulator of dorsoventral axis formation in Xenopus embryos. Proc Natl Acad Sci U S A 92:8498–8502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong J et al (2007) Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell 130:1120–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drees F, Pokutta S, Yamada S, Nelson WJ, Weis WI (2005) Alpha-catenin is a molecular switch that binds E-cadherin-beta-catenin and regulates actin-filament assembly. Cell 123:903–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dudko OK, Hummer G, Szabo A (2008) Theory, analysis, and interpretation of single-molecule force spectroscopy experiments. Proc Natl Acad Sci U S A 105:15755–15760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dupont S et al (2011) Role of YAP/TAZ in mechanotransduction. Nature 474:179–183

    Article  CAS  PubMed  Google Scholar 

  • El Sayegh TY et al (2005) Phosphorylation of N-cadherin-associated cortactin by Fer kinase regulates N-cadherin mobility and intercellular adhesion strength. Mol Biol Cell 16:5514–5527

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Escobar DJ et al (2015) α-Catenin phosphorylation promotes intercellular adhesion through a dual-kinase mechanism. J Cell Sci 128:1150–1165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finer JT, Simmons RM, Spudich JA (1994) Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature 368:113–119

    Article  CAS  PubMed  Google Scholar 

  • Fodde R, Brabletz T (2007) Wnt/beta-catenin signaling in cancer stemness and malignant behavior. Curr Opin Cell Biol 19:150–158

    Article  CAS  PubMed  Google Scholar 

  • Fuchs M, Müller T, Lerch MM, Ullrich A (1996) Association of human protein-tyrosine phosphatase kappa with members of the armadillo family. J Biol Chem 271:16712–16719

    Article  CAS  PubMed  Google Scholar 

  • Fujii K, Furukawa F, Matsuyoshi N (1996) Ligand activation of overexpressed epidermal growth factor receptor results in colony dissociation and disturbed E-cadherin function in HSC-1 human cutaneous squamous carcinoma cells. Exp Cell Res 223:50–62

    Article  CAS  PubMed  Google Scholar 

  • Fukuyama T, Ogita H, Kawakatsu T, Inagaki M, Takai Y (2006) Activation of Rac by cadherin through the c-Src-Rap1-phosphatidylinositol 3-kinase-Vav2 pathway. Oncogene 25:8–19

    CAS  PubMed  Google Scholar 

  • Grashoff C et al (2010) Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature 466:263–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greene AC et al (2014) Spatial organization of EphA2 at the cell-cell interface modulates trans-endocytosis of ephrinA1. Biophys J 106:2196–2205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grosheva I, Shtutman M, Elbaum M, Bershadsky AD (2001) p120 catenin affects cell motility via modulation of activity of Rho-family GTPases: a link between cell-cell contact formation and regulation of cell locomotion. J Cell Sci 114:695–707

    CAS  PubMed  Google Scholar 

  • Hansen SD et al (2013) alphaE-catenin actin-binding domain alters actin filament conformation and regulates binding of nucleation and disassembly factors. Mol Biol Cell 24:3710–3720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hantschel O et al (2003) A myristoyl/phosphotyrosine switch regulates c-Abl. Cell 112:845–857

    Article  CAS  PubMed  Google Scholar 

  • Harrison OJ et al (2010) Two-step adhesive binding by classical cadherins. Nat Struct Mol Biol 17:348–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison OJ et al (2011) The extracellular architecture of adherens junctions revealed by crystal structures of type I cadherins. Structure 19:244–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartsock A, Nelson WJ (2012) Competitive regulation of E-cadherin juxtamembrane domain degradation by p120-catenin binding and Hakai-mediated ubiquitination. PLoS One 7:e37476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harvey KF, Pfleger CM, Hariharan IK (2003) The Drosophila Mst ortholog, hippo, restricts growth and cell proliferation and promotes apoptosis. Cell 114:457–467

    Article  CAS  PubMed  Google Scholar 

  • Hazan RB, Norton L (1998) The epidermal growth factor receptor modulates the interaction of E-cadherin with the actin cytoskeleton. J Biol Chem 273:9078–9084

    Article  CAS  PubMed  Google Scholar 

  • Hazan RB, Kang L, Roe S, Borgen PI, Rimm DL (1997) Vinculin is associated with the E-cadherin adhesion complex. J Biol Chem 272:32448–32453

    Article  CAS  PubMed  Google Scholar 

  • He X, Saint-Jeannet JP, Woodgett JR, Varmus HE, Dawid IB (1995) Glycogen synthase kinase-3 and dorsoventral patterning in Xenopus embryos. Nature 374:617–622

    Article  CAS  PubMed  Google Scholar 

  • He TC et al (1998) Identification of c-MYC as a target of the APC pathway. Science 281:1509–1512

    Article  CAS  PubMed  Google Scholar 

  • Hinck L, Näthke IS, Papkoff J, Nelson WJ (1994) Dynamics of cadherin/catenin complex formation: novel protein interactions and pathways of complex assembly. J Cell Biol 125:1327–1340

    Article  CAS  PubMed  Google Scholar 

  • Holsinger LJ, Ward K, Duffield B, Zachwieja J, Jallal B (2002) The transmembrane receptor protein tyrosine phosphatase DEP1 interacts with p120(ctn). Oncogene 21:7067–7076

    Article  CAS  PubMed  Google Scholar 

  • Hong S, Troyanovsky RB, Troyanovsky SM (2013) Binding to F-actin guides cadherin cluster assembly, stability, and movement. J Cell Biol 201:131–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoschuetzky H, Aberle H, Kemler R (1994) Beta-catenin mediates the interaction of the cadherin-catenin complex with epidermal growth factor receptor. J Cell Biol 127:1375–1380

    Article  CAS  PubMed  Google Scholar 

  • Huber AH, Weis WI (2001) The structure of the beta-catenin/E-cadherin complex and the molecular basis of diverse ligand recognition by beta-catenin. Cell 105:391–402

    Article  CAS  PubMed  Google Scholar 

  • Huber AH, Nelson WJ, Weis WI (1997a) Three-dimensional structure of the armadillo repeat region of beta-catenin. Cell 90:871–882

    Article  CAS  PubMed  Google Scholar 

  • Huber O, Krohn M, Kemler R (1997b) A specific domain in alpha-catenin mediates binding to beta-catenin or plakoglobin. J Cell Sci 110(Pt 15):1759–1765

    CAS  PubMed  Google Scholar 

  • Huber AH, Stewart DB, Laurents DV, Nelson WJ, Weis WI (2001) The cadherin cytoplasmic domain is unstructured in the absence of beta-catenin. A possible mechanism for regulating cadherin turnover. J Biol Chem 276:12301–12309

    Article  CAS  PubMed  Google Scholar 

  • Hui E, Vale RD (2014) In vitro membrane reconstitution of the T-cell receptor proximal signaling network. Nat Struct Mol Biol 21:133–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imamura Y, Itoh M, Maeno Y, Tsukita S, Nagafuchi A (1999) Functional domains of alpha-catenin required for the strong state of cadherin-based cell adhesion. J Cell Biol 144:1311–1322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Itoh M, Nagafuchi A, Moroi S, Tsukita S (1997) Involvement of ZO-1 in cadherin-based cell adhesion through its direct binding to alpha catenin and actin filaments. J Cell Biol 138:181–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim L, Wong TW (1995) The cytoplasmic tyrosine kinase FER is associated with the catenin-like substrate pp 120 and is activated by growth factors. Mol Cell Biol 15:4553–4561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimelman D, Pierce SB (1996) Regulation of dorsal-ventral axis formation in Xenopus by intercellular and intracellular signalling. Biochem Soc Symp 62:13–23

    CAS  PubMed  Google Scholar 

  • Knudsen KA, Soler AP, Johnson KR, Wheelock MJ (1995) Interaction of alpha-actinin with the cadherin/catenin cell-cell adhesion complex via alpha-catenin. J Cell Biol 130:67–77

    Article  CAS  PubMed  Google Scholar 

  • Kobielak A, Pasolli HA, Fuchs E (2004) Mammalian formin-1 participates in adherens junctions and polymerization of linear actin cables. Nat Cell Biol 6:21–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kojima H, Ishijima A, Yanagida T (1994) Direct measurement of stiffness of single actin filaments with and without tropomyosin by in vitro nanomanipulation. Proc Natl Acad Sci U S A 91:12962–12966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korinek V et al (1997) Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC-/- colon carcinoma. Science 275:1784–1787

    Article  CAS  PubMed  Google Scholar 

  • Lai ZC et al (2005) Control of cell proliferation and apoptosis by mob as tumor suppressor, mats. Cell 120:675–685

    Article  CAS  PubMed  Google Scholar 

  • le Duc Q et al (2010) Vinculin potentiates E-cadherin mechanosensing and is recruited to actin-anchored sites within adherens junctions in a myosin II-dependent manner. J Cell Biol 189:1107–1115

    Article  PubMed  PubMed Central  Google Scholar 

  • Lickert H, Bauer A, Kemler R, Stappert J (2000) Casein kinase II phosphorylation of E-cadherin increases E-cadherin/beta-catenin interaction and strengthens cell-cell adhesion. J Biol Chem 275:5090–5095

    Article  CAS  PubMed  Google Scholar 

  • Lin WC et al (2014) H-Ras forms dimers on membrane surfaces via a protein-protein interface. Proc Natl Acad Sci U S A 111:2996–3001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu C et al (2002) Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell 108:837–847

    Article  CAS  PubMed  Google Scholar 

  • Mandai K et al (1999) Ponsin/SH3P12: an l-afadin- and vinculin-binding protein localized at cell-cell and cell-matrix adherens junctions. J Cell Biol 144:1001–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manibog K, Li H, Rakshit S, Sivasankar S (2014) Resolving the molecular mechanism of cadherin catch bond formation. Nat Commun 5:3941

    Article  CAS  PubMed  Google Scholar 

  • Maruthamuthu V, Sabass B, Schwarz US, Gardel ML (2011) Cell-ECM traction force modulates endogenous tension at cell-cell contacts. Proc Natl Acad Sci U S A 108:4708–4713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCrea PD, Turck CW, Gumbiner B (1991) A homolog of the armadillo protein in Drosophila (plakoglobin) associated with E-cadherin. Science 254:1359–1361

    Article  CAS  PubMed  Google Scholar 

  • McEwen AE, Maher MT, Mo R, Gottardi CJ (2014) E-cadherin phosphorylation occurs during its biosynthesis to promote its cell surface stability and adhesion. Mol Biol Cell 25:2365–2374

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miller PW et al (2013) Danio rerio alphaE-catenin is a monomeric F-actin binding protein with distinct properties from Mus musculus alphaE-catenin. J Biol Chem 288:22324–22332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monga SP et al (2002) Hepatocyte growth factor induces Wnt-independent nuclear translocation of beta-catenin after Met-beta-catenin dissociation in hepatocytes. Cancer Res 62:2064–2071

    CAS  PubMed  Google Scholar 

  • Morin PJ et al (1997) Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science 275:1787–1790

    Article  CAS  PubMed  Google Scholar 

  • Nagafuchi A, Ishihara S, Tsukita S (1994) The roles of catenins in the cadherin-mediated cell adhesion: functional analysis of E-cadherin-alpha catenin fusion molecules. J Cell Biol 127:235–245

    Article  CAS  PubMed  Google Scholar 

  • Nelson WJ, Nusse R (2004) Convergence of Wnt, beta-catenin, and cadherin pathways. Science 303:1483–1487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ng MR, Besser A, Brugge JS, Danuser G (2014) Mapping the dynamics of force transduction at cell-cell junctions of epithelial clusters. Elife 3:e03282

    Article  PubMed  Google Scholar 

  • Noren NK, Liu BP, Burridge K, Kreft B (2000) p120 catenin regulates the actin cytoskeleton via Rho family GTPases. J Cell Biol 150:567–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norstrom MF, Smithback PA, Rock RS (2010) Unconventional processive mechanics of non-muscle myosin IIB. J Biol Chem 285:26326–26334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh H, Irvine KD (2008) In vivo regulation of Yorkie phosphorylation and localization. Development 135:1081–1088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ostman A, Yang Q, Tonks NK (1994) Expression of DEP-1, a receptor-like protein-tyrosine-phosphatase, is enhanced with increasing cell density. Proc Natl Acad Sci U S A 91:9680–9684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ozawa M, Ringwald M, Kemler R (1990) Uvomorulin-catenin complex formation is regulated by a specific domain in the cytoplasmic region of the cell adhesion molecule. Proc Natl Acad Sci U S A 87:4246–4250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pacquelet A, Rørth P (2005) Regulatory mechanisms required for DE-cadherin function in cell migration and other types of adhesion. J Cell Biol 170:803–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pantalacci S, Tapon N, Léopold P (2003) The Salvador partner Hippo promotes apoptosis and cell-cycle exit in Drosophila. Nat Cell Biol 5:921–927

    Article  CAS  PubMed  Google Scholar 

  • Peng X, Maiers JL, Choudhury D, Craig SW, DeMali KA (2012) α-Catenin uses a novel mechanism to activate vinculin. J Biol Chem 287:7728–7737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pertz O et al (1999) A new crystal structure, Ca2+ dependence and mutational analysis reveal molecular details of E-cadherin homoassociation. EMBO J 18:1738–1747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piedra J et al (2003) p120 Catenin-associated Fer and Fyn tyrosine kinases regulate beta-catenin Tyr-142 phosphorylation and beta-catenin-alpha-catenin interaction. Mol Cell Biol 23:2287–2297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pokutta S, Weis WI (2000) Structure of the dimerization and beta-catenin-binding region of alpha-catenin. Mol Cell 5:533–543

    Article  CAS  PubMed  Google Scholar 

  • Pokutta S, Herrenknecht K, Kemler R, Engel J (1994) Conformational changes of the recombinant extracellular domain of E-cadherin upon calcium binding. Eur J Biochem 223:1019–1026

    Article  CAS  PubMed  Google Scholar 

  • Pokutta S, Drees F, Takai Y, Nelson WJ, Weis WI (2002) Biochemical and structural definition of the l-afadin- and actin-binding sites of alpha-catenin. J Biol Chem 277:18868–18874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pujol T, du Roure O, Fermigier M, Heuvingh J (2012) Impact of branching on the elasticity of actin networks. Proc Natl Acad Sci U S A 109:10364–10369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi J, Chen N, Wang J, Siu CH (2005) Transendothelial migration of melanoma cells involves N-cadherin-mediated adhesion and activation of the beta-catenin signaling pathway. Mol Biol Cell 16:4386–4397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rakshit S, Zhang Y, Manibog K, Shafraz O, Sivasankar S (2012) Ideal, catch, and slip bonds in cadherin adhesion. Proc Natl Acad Sci U S A 109:18815–18820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rangarajan ES, Izard T (2012) The cytoskeletal protein alpha-catenin unfurls upon binding to vinculin. J Biol Chem 287:18492–18499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rangarajan ES, Izard T (2013) Dimer asymmetry defines alpha-catenin interactions. Nat Struct Mol Biol 20:188–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reffay M et al (2014) Interplay of RhoA and mechanical forces in collective cell migration driven by leader cells. Nat Cell Biol 16:217–223

    Article  CAS  PubMed  Google Scholar 

  • Reynolds AB et al (1994) Identification of a new catenin: the tyrosine kinase substrate p120cas associates with E-cadherin complexes. Mol Cell Biol 14:8333–8342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reynolds AB, Daniel JM, Mo YY, Wu J, Zhang Z (1996) The novel catenin p120cas binds classical cadherins and induces an unusual morphological phenotype in NIH3T3 fibroblasts. Exp Cell Res 225:328–337

    Article  CAS  PubMed  Google Scholar 

  • Ridley AJ (2006) Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking. Trends Cell Biol 16:522–529

    Article  CAS  PubMed  Google Scholar 

  • Rijksen G, Völler MC, van Zoelen EJ (1993) The role of protein tyrosine phosphatases in density-dependent growth control of normal rat kidney cells. FEBS Lett 322:83–87

    Article  CAS  PubMed  Google Scholar 

  • Rimm DL, Koslov ER, Kebriaei P, Cianci CD, Morrow JS (1995) Alpha 1(E)-catenin is an actin-binding and -bundling protein mediating the attachment of F-actin to the membrane adhesion complex. Proc Natl Acad Sci U S A 92:8813–8817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosato R, Veltmaat JM, Groffen J, Heisterkamp N (1998) Involvement of the tyrosine kinase fer in cell adhesion. Mol Cell Biol 18:5762–5770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roura S, Miravet S, Piedra J, García de Herreros A, Duñach M (1999) Regulation of E-cadherin/Catenin association by tyrosine phosphorylation. J Biol Chem 274:36734–36740

    Article  CAS  PubMed  Google Scholar 

  • Rubinfeld B et al (1993) Association of the APC gene product with beta-catenin. Science 262:1731–1734

    Article  CAS  PubMed  Google Scholar 

  • Sadot E et al (2002) Regulation of S33/S37 phosphorylated beta-catenin in normal and transformed cells. J Cell Sci 115:2771–2780

    CAS  PubMed  Google Scholar 

  • Sakanaka C (2002) Phosphorylation and regulation of beta-catenin by casein kinase I epsilon. J Biochem 132:697–703

    Article  CAS  PubMed  Google Scholar 

  • Schlegelmilch K et al (2011) Yap1 acts downstream of α-catenin to control epidermal proliferation. Cell 144:782–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidtke DW, Diamond SL (2000) Direct observation of membrane tethers formed during neutrophil attachment to platelets or P-selectin under physiological flow. J Cell Biol 149:719–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seeling JM et al (1999) Regulation of beta-catenin signaling by the B56 subunit of protein phosphatase 2A. Science 283:2089–2091

    Article  CAS  PubMed  Google Scholar 

  • Serres M et al (2000) The disruption of adherens junctions is associated with a decrease of E-cadherin phosphorylation by protein kinase CK2. Exp Cell Res 257:255–264

    Article  CAS  PubMed  Google Scholar 

  • Shapiro L, Weis WI (2009) Structure and biochemistry of cadherins and catenins. Cold Spring Harb Perspect Biol 1:a003053

    Article  PubMed  PubMed Central  Google Scholar 

  • Silvis MR et al (2011) α-catenin is a tumor suppressor that controls cell accumulation by regulating the localization and activity of the transcriptional coactivator Yap1. Sci Signal 4:ra33

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sim JY et al (2015) Apatial distribution of cell-cell and cell-ecm adhesions regulates force balance while maintaining E-cadherin molecular tension in cell pairs. Mol Biol Cell 26(13):2456–2465

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stoker AW (2005) Protein tyrosine phosphatases and signalling. J Endocrinol 185:19–33

    Article  CAS  PubMed  Google Scholar 

  • Su LK, Vogelstein B, Kinzler KW (1993) Association of the APC tumor suppressor protein with catenins. Science 262:1734–1737

    Article  CAS  PubMed  Google Scholar 

  • Tachibana K et al (2000) Two cell adhesion molecules, nectin and cadherin, interact through their cytoplasmic domain-associated proteins. J Cell Biol 150:1161–1175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takai Y, Miyoshi J, Ikeda W, Ogita H (2008) Nectins and nectin-like molecules: roles in contact inhibition of cell movement and proliferation. Nat Rev Mol Cell Biol 9:603–615

    Article  CAS  PubMed  Google Scholar 

  • Takeda H, Shimoyama Y, Nagafuchi A, Hirohashi S (1999) E-cadherin functions as a cis-dimer at the cell-cell adhesive interface in vivo. Nat Struct Biol 6:310–312

    Article  CAS  PubMed  Google Scholar 

  • Tang VW, Brieher WM (2012) α-Actinin-4/FSGS1 is required for Arp2/3-dependent actin assembly at the adherens junction. J Cell Biol 196:115–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thoreson MA et al (2000) Selective uncoupling of p120(ctn) from E-cadherin disrupts strong adhesion. J Cell Biol 148:189–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toret CP, Collins C, Nelson WJ (2014) An Elmo-Dock complex locally controls Rho GTPases and actin remodeling during cadherin-mediated adhesion. J Cell Biol 207:577–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Etten RA et al (1994) The COOH terminus of the c-Abl tyrosine kinase contains distinct F- and G-actin binding domains with bundling activity. J Cell Biol 124:325–340

    Article  PubMed  Google Scholar 

  • Wada K, Itoga K, Okano T, Yonemura S, Sasaki H (2011) Hippo pathway regulation by cell morphology and stress fibers. Development 138:3907–3914

    Article  CAS  PubMed  Google Scholar 

  • Wildenberg GA et al (2006) p120-catenin and p190RhoGAP regulate cell-cell adhesion by coordinating antagonism between Rac and Rho. Cell 127:1027–1039

    Article  CAS  PubMed  Google Scholar 

  • Winston JT et al (1999) The SCFbeta-TRCP-ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IkappaBalpha and beta-catenin and stimulates IkappaBalpha ubiquitination in vitro. Genes Dev 13:270–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woodring PJ, Hunter T, Wang JY (2001) Inhibition of c-Abl tyrosine kinase activity by filamentous actin. J Biol Chem 276:27104–27110

    Article  CAS  PubMed  Google Scholar 

  • Xiao K et al (2005) p120-Catenin regulates clathrin-dependent endocytosis of VE-cadherin. Mol Biol Cell 16:5141–5151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu T, Wang W, Zhang S, Stewart RA, Yu W (1995) Identifying tumor suppressors in genetic mosaics: the Drosophila lats gene encodes a putative protein kinase. Development 121:1053–1063

    CAS  PubMed  Google Scholar 

  • Xu G et al (2004) Continuous association of cadherin with beta-catenin requires the non-receptor tyrosine-kinase Fer. J Cell Sci 117:3207–3219

    Article  CAS  PubMed  Google Scholar 

  • Yago T et al (2004) Catch bonds govern adhesion through L-selectin at threshold shear. J Cell Biol 166:913–923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada S, Nelson WJ (2007) Localized zones of Rho and Rac activities drive initiation and expansion of epithelial cell-cell adhesion. J Cell Biol 178:517–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada S, Pokutta S, Drees F, Weis WI, Nelson WJ (2005) Deconstructing the cadherin-catenin-actin complex. Cell 123:889–901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan HX et al (2002) Physical and functional interaction between receptor-like protein tyrosine phosphatase PCP-2 and beta-catenin. Biochemistry 41:15854–15860

    Article  CAS  PubMed  Google Scholar 

  • Yao M et al (2014) Force-dependent conformational switch of alpha-catenin controls vinculin binding. Nat Commun 5:4525

    CAS  PubMed  Google Scholar 

  • Yap AS, Niessen CM, Gumbiner BM (1998) The juxtamembrane region of the cadherin cytoplasmic tail supports lateral clustering, adhesive strengthening, and interaction with p120ctn. J Cell Biol 141:779–789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yonemura S, Wada Y, Watanabe T, Nagafuchi A, Shibata M (2010) alpha-Catenin as a tension transducer that induces adherens junction development. Nat Cell Biol 12:533–542

    Article  CAS  PubMed  Google Scholar 

  • Zeng L et al (1997) The mouse Fused locus encodes Axin, an inhibitor of the Wnt signaling pathway that regulates embryonic axis formation. Cell 90:181–192

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Sivasankar S, Nelson WJ, Chu S (2009) Resolving cadherin interactions and binding cooperativity at the single-molecule level. Proc Natl Acad Sci U S A 106:109–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao XH et al (2007a) Force activates smooth muscle alpha-actin promoter activity through the Rho signaling pathway. J Cell Sci 120:1801–1809

    Article  CAS  PubMed  Google Scholar 

  • Zhao B et al (2007b) Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev 21:2747–2761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zondag GC, Reynolds AB, Moolenaar WH (2000) Receptor protein-tyrosine phosphatase RPTPmu binds to and dephosphorylates the catenin p120(ctn). J Biol Chem 275:11264–11269

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Predoctoral Fellowships from the NSF (JT, BB-P), a Stanford Bio-X Pre-doctoral Fellowship (JT), NSF EFRI Award (1136790) to WJN and WIW, and NIH GM35527 (WJN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. James Nelson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Tan, J., Benham-Pyle, B.W., Weis, W.I., Nelson, W.J. (2016). Regulation of Cadherin–Catenin Biology by Mechanical Force and Phosphorylation. In: Suzuki, S., Hirano, S. (eds) The Cadherin Superfamily. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56033-3_5

Download citation

Publish with us

Policies and ethics