Structure and Function of Cadherin Extracellular Regions

  • Lawrence ShapiroEmail author


Cell-surface glycoproteins of the cadherin superfamily are defined by the presence of extracellular cadherin (EC) β-sandwich domains in their extracellular regions. EC domains adopt a fold similar to immunoglobulin domains, but most EC domains ligate calcium through stereotyped sites positioned between successive domains; Ca2+-binding at these sites rigidifies cadherin extracellular regions. Although the superfamily is highly diverse and may serve numerous functions, the best-characterized members are the vertebrate “classical” cadherins, which mediate cell–cell adhesion via homodimerization between their membrane-distal EC1 domains. Nonclassical and invertebrate cadherins have evolved distinct mechanisms for cell recognition and adhesion, and are only now beginning to be understood.


Cadherin Classical cadherin Extracellular cell adhesion Crystal structure crystallography Cell adhesion Adherens junctions 


  1. Ahmed ZM, Goodyear R, Riazuddin S, Lagziel A, Legan PK, Behra M, Burgess SM, Lilley KS, Wilcox ER, Griffith AJ et al (2006) The tip-link antigen, a protein associated with the transduction complex of sensory hair cells, is protocadherin-15. J Neurosci 26:7022–7034CrossRefPubMedGoogle Scholar
  2. Al-Amoudi A, Frangakis AS (2008) Structural studies on desmosomes. Biochem Soc Trans 36:181–187CrossRefPubMedGoogle Scholar
  3. Al-Amoudi A, Diez DC, Betts MJ, Frangakis AS (2007) The molecular architecture of cadherins in native epidermal desmosomes. Nature 450:832–837CrossRefPubMedGoogle Scholar
  4. Bennett MJ, Schlunegger MP, Eisenberg D (1995) 3D domain swapping: a mechanism for oligomer assembly. Protein Sci 4:2455–2468CrossRefPubMedPubMedCentralGoogle Scholar
  5. Boggon TJ, Murray J, Chappuis-Flament S, Wong E, Gumbiner BM, Shapiro L (2002) C-cadherin ectodomain structure and implications for cell adhesion mechanisms. Science 296:1308–1313CrossRefPubMedGoogle Scholar
  6. Brasch J, Harrison OJ, Ahlsen G, Carnally SM, Henderson RM, Honig B, Shapiro L (2011) Structure and binding mechanism of vascular endothelial cadherin: a divergent classical cadherin. J Mol Biol 408:57–73CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chen WV, Maniatis T (2013) Clustered protocadherins. Development 140:3297–3302CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chen CP, Posy S, Ben-Shaul A, Shapiro L, Honig BH (2005) Specificity of cell-cell adhesion by classical cadherins: critical role for low-affinity dimerization through beta-strand swapping. Proc Natl Acad Sci U S A 102:8531–8536CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chen WV, Alvarez FJ, Lefebvre JL, Friedman B, Nwakeze C, Geiman E, Smith C, Thu CA, Tapia JC, Tasic B et al (2012) Functional significance of isoform diversification in the protocadherin gamma gene cluster. Neuron 75:402–409CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chitaev NA, Troyanovsky SM (1997) Direct Ca2+-dependent heterophilic interaction between desmosomal cadherins, desmoglein and desmocollin, contributes to cell-cell adhesion. J Cell Biol 138:193–201CrossRefPubMedPubMedCentralGoogle Scholar
  11. Ciatto C, Bahna F, Zampieri N, VanSteenhouse HC, Katsamba PS, Ahlsen G, Harrison OJ, Brasch J, Jin X, Posy S et al (2010) T-cadherin structures reveal a novel adhesive binding mechanism. Nat Struct Mol Biol 17:339–347CrossRefPubMedPubMedCentralGoogle Scholar
  12. Delva E, Tucker DK, Kowalczyk AP (2009) The desmosome. Cold Spring Harb Perspect Biol 1:a002543CrossRefPubMedPubMedCentralGoogle Scholar
  13. Duguay D, Foty R, Steinberg M (2003) Cadherin-mediated cell adhesion and tissue segregation: qualitative and quantitative determinants. Dev Biol 253:309–323CrossRefPubMedGoogle Scholar
  14. Elledge HM, Kazmierczak P, Clark P, Joseph JS, Kolatkar A, Kuhn P, Muller U (2010) Structure of the N terminus of cadherin 23 reveals a new adhesion mechanism for a subset of cadherin superfamily members. Proc Natl Acad Sci U S A 107:10708–10712CrossRefPubMedPubMedCentralGoogle Scholar
  15. Franke WW, Koch PJ, Schafer S, Heid HW, Troyanovsky SM, Moll I, Moll R (1994) The desmosome and the syndesmos: cell junctions in normal development and in malignancy. Princess Takamatsu Symp 24:14–27PubMedGoogle Scholar
  16. Garrod D (2010) Desmosomes in vivo. Dermatol Res Pract 2010:212439PubMedPubMedCentralGoogle Scholar
  17. Gumbiner BM (2005) Regulation of cadherin-mediated adhesion in morphogenesis. Nat Rev Mol Cell Biol 6:622–634CrossRefPubMedGoogle Scholar
  18. Hajra KM, Fearon ER (2002) Cadherin and catenin alterations in human cancer. Genes Chromosome Cancer 34:255–268CrossRefGoogle Scholar
  19. Harris ES, Nelson WJ (2010) VE-cadherin: at the front, center, and sides of endothelial cell organization and function. Curr Opin Cell Biol 22:651–658CrossRefPubMedPubMedCentralGoogle Scholar
  20. Harris TJ, Tepass U (2010) Adherens junctions: from molecules to morphogenesis. Nat Rev Mol Cell Biol 11:502–514CrossRefPubMedGoogle Scholar
  21. Harrison OJ, Corps EM, Berge T, Kilshaw PJ (2005) The mechanism of cell adhesion by classical cadherins: the role of domain 1. J Cell Sci 118:711–721CrossRefPubMedGoogle Scholar
  22. Harrison OJ, Bahna F, Katsamba PS, Jin X, Brasch J, Vendome J, Ahlsen G, Carroll KJ, Price SR, Honig B et al (2010) Two-step adhesive binding by classical cadherins. Nat Struct Mol Biol 17:348–357CrossRefPubMedPubMedCentralGoogle Scholar
  23. Harrison OJ, Jin X, Hong S, Bahna F, Ahlsen G, Brasch J, Wu Y, Vendome J, Felsovalyi K, Hampton CM et al (2011) The extracellular architecture of adherens junctions revealed by crystal structures of type I cadherins. Structure 19:244–256CrossRefPubMedPubMedCentralGoogle Scholar
  24. Hatta K, Takeichi M (1986) Expression of N-cadherin adhesion molecules associated with early morphogenetic events in chick development. Nature 320:447–449CrossRefPubMedGoogle Scholar
  25. Hatta K, Takagi S, Fujisawa H, Takeichi M (1987) Spatial and temporal expression pattern of N-cadherin cell adhesion molecules correlated with morphogenetic processes of chicken embryos. Dev Biol 120:215–227CrossRefPubMedGoogle Scholar
  26. Hatta K, Nose A, Nagafuchi A, Takeichi M (1988) Cloning and expression of cDNA encoding a neural calcium-dependent cell adhesion molecule: its identity in the cadherin gene family. J Cell Biol 106:873–881CrossRefPubMedGoogle Scholar
  27. Haussinger D, Ahrens T, Aberle T, Engel J, Stetefeld J, Grzesiek S (2004) Proteolytic E-cadherin activation followed by solution NMR and X-ray crystallography. EMBO J 23:1699–1708CrossRefPubMedPubMedCentralGoogle Scholar
  28. Hayashi S, Takeichi M (2015) Emerging roles of protocadherins: from self-avoidance to enhancement of motility. J Cell Sci 128:1455–1464CrossRefPubMedGoogle Scholar
  29. He W, Cowin P, Stokes D (2003) Untangling desmosomal knots with electron tomography. Science 302:109–113CrossRefPubMedGoogle Scholar
  30. Hirano S, Nose A, Hatta K, Kawakami A, Takeichi M (1987) Calcium-dependent cell-cell adhesion molecules (cadherins): subclass specificities and possible involvement of actin bundles. J Cell Biol 105:2501–2510CrossRefPubMedGoogle Scholar
  31. Holthofer B, Windoffer R, Troyanovsky S, Leube RE (2007) Structure and function of desmosomes. Int Rev Cytol 264:65–163CrossRefPubMedGoogle Scholar
  32. Ishiuchi T, Misaki K, Yonemura S, Takeichi M, Tanoue T (2009) Mammalian Fat and Dachsous cadherins regulate apical membrane organization in the embryonic cerebral cortex. J Cell Biol 185:959–967CrossRefPubMedPubMedCentralGoogle Scholar
  33. Jin X, Walker MA, Felsovalyi K, Vendome J, Bahna F, Mannepalli S, Cosmanescu F, Ahlsen G, Honig B, Shapiro L (2012) Crystal structures of Drosophila N-cadherin ectodomain regions reveal a widely used class of Ca2+-free interdomain linkers. Proc Natl Acad Sci U S A 109:E127–E134CrossRefPubMedPubMedCentralGoogle Scholar
  34. Katsamba P, Carroll K, Ahlsen G, Bahna F, Vendome J, Posy S, Rajebhosale M, Price S, Jessell TM, Ben-Shaul A et al (2009) Linking molecular affinity and cellular specificity in cadherin-mediated adhesion. Proc Natl Acad Sci U S A 106(28):11594–11599CrossRefPubMedPubMedCentralGoogle Scholar
  35. Kazmierczak P, Sakaguchi H, Tokita J, Wilson-Kubalek EM, Milligan RA, Muller U, Kachar B (2007) Cadherin 23 and protocadherin 15 interact to form tip-link filaments in sensory hair cells. Nature 449:87–91CrossRefPubMedGoogle Scholar
  36. Klingelhofer J, Troyanovsky RB, Laur OY, Troyanovsky S (2000) Amino-terminal domain of classic cadherins determines the specificity of the adhesive interactions. J Cell Sci 113(Pt 16):2829–2836PubMedGoogle Scholar
  37. Koeser J, Troyanovsky SM, Grund C, Franke WW (2003) De novo formation of desmosomes in cultured cells upon transfection of genes encoding specific desmosomal components. Exp Cell Res 285:114–130CrossRefPubMedGoogle Scholar
  38. Lefebvre JL, Kostadinov D, Chen WV, Maniatis T, Sanes JR (2012) Protocadherins mediate dendritic self-avoidance in the mammalian nervous system. Nature 488:517–521CrossRefPubMedPubMedCentralGoogle Scholar
  39. Lewis JE, Jensen PJ, Wheelock MJ (1994) Cadherin function is required for human keratinocytes to assemble desmosomes and stratify in response to calcium. J Invest Dermatol 102:870–877CrossRefPubMedGoogle Scholar
  40. Marthiens V, Gavard J, Padilla F, Monnet C, Castellani V, Lambert M, Mege RM (2005) A novel function for cadherin-11 in the regulation of motor axon elongation and fasciculation. Mol Cell Neurosci 28:715–726CrossRefPubMedGoogle Scholar
  41. Meng W, Takeichi M (2009) Adherens junction: molecular architecture and regulation. Cold Spring Harb Perspect Biol 1:a002899CrossRefPubMedPubMedCentralGoogle Scholar
  42. Morishita H, Umitsu M, Murata Y, Shibata N, Udaka K, Higuchi Y, Akutsu H, Yamaguchi T, Yagi T, Ikegami T (2006) Structure of the cadherin-related neuronal receptor/protocadherin-alpha first extracellular cadherin domain reveals diversity across cadherin families. J Biol Chem 281:33650–33663CrossRefPubMedGoogle Scholar
  43. Nagafuchi A, Shirayoshi Y, Okazaki K, Yasuda K, Takeichi M (1987) Transformation of cell adhesion properties by exogenously introduced E-cadherin cDNA. Nature 329:341–343CrossRefPubMedGoogle Scholar
  44. Nakagawa S, Takeichi M (1998) Neural crest emigration from the neural tube depends on regulated cadherin expression. Development 125:2963–2971PubMedGoogle Scholar
  45. Nie Z, Merritt A, Rouhi-Parkouhi M, Tabernero L, Garrod D (2011) Membrane-impermeable cross-linking provides evidence for homophilic, isoform-specific binding of desmosomal cadherins in epithelial cells. J Biol Chem 286:2143–2154CrossRefPubMedPubMedCentralGoogle Scholar
  46. Nollet F, Kools P, van Roy F (2000) Phylogenetic analysis of the cadherin superfamily allows identification of six major subfamilies besides several solitary members. J Mol Biol 299:551–572CrossRefPubMedGoogle Scholar
  47. Nose A, Tsuji K, Takeichi M (1990) Localization of specificity determining sites in cadherin cell adhesion molecules. Cell 61:147–155CrossRefPubMedGoogle Scholar
  48. Ogou SI, Yoshida-Noro C, Takeichi M (1983) Calcium-dependent cell-cell adhesion molecules common to hepatocytes and teratocarcinoma stem cells. J Cell Biol 97:944–948CrossRefPubMedGoogle Scholar
  49. Overduin M, Harvey T, Bagby S, Tong K, Yau P, Takeichi M, Ikura M (1995) Solution structure of the epithelial cadherin domain responsible for selective cell adhesion. Science 267:386–389CrossRefPubMedGoogle Scholar
  50. Parisini E, Higgins JM, Liu JH, Brenner MB, Wang JH (2007) The Crystal Structure of Human E-cadherin Domains 1 and 2, and Comparison with other Cadherins in the Context of Adhesion Mechanism. J Mol Biol 373:401–411CrossRefPubMedPubMedCentralGoogle Scholar
  51. Patel SD, Chen CP, Bahna F, Honig B, Shapiro L (2003) Cadherin-mediated cell-cell adhesion: sticking together as a family. Curr Opin Struct Biol 13:690–698CrossRefPubMedGoogle Scholar
  52. Patel SD, Ciatto C, Chen CP, Bahna F, Rajebhosale M, Arkus N, Schieren I, Jessell TM, Honig B, Price SR et al (2006) Type II cadherin ectodomain structures: implications for classical cadherin specificity. Cell 124:1255–1268CrossRefPubMedGoogle Scholar
  53. Posy S, Shapiro L, Honig B (2008a) Sequence and structural determinants of strand swapping in cadherin domains: do all cadherins bind through the same adhesive interface? J Mol Biol 378:954–968CrossRefPubMedPubMedCentralGoogle Scholar
  54. Posy S, Shapiro L, Honig B (2008b) Sequence and structural determinants of strand swapping in cadherin domains: do all cadherins bind through the same adhesive interface? J Mol Biol 378:952–966CrossRefGoogle Scholar
  55. Price SR, De Marco Garcia NV, Ranscht B, Jessell TM (2002) Regulation of motor neuron pool sorting by differential expression of type II cadherins. Cell 109:205–216CrossRefPubMedGoogle Scholar
  56. Schreiner D, Weiner JA (2010) Combinatorial homophilic interaction between gamma-protocadherin multimers greatly expands the molecular diversity of cell adhesion. Proc Natl Acad Sci U S A 107:14893–14898CrossRefPubMedPubMedCentralGoogle Scholar
  57. Seiler C, Finger-Baier KC, Rinner O, Makhankov YV, Schwarz H, Neuhauss SC, Nicolson T (2005) Duplicated genes with split functions: independent roles of protocadherin15 orthologues in zebrafish hearing and vision. Development 132:615–623CrossRefPubMedGoogle Scholar
  58. Shan W, Tanaka H, Phillips G, Arndt K, Yoshida M, Colman D, Shapiro L (2000) Functional cis-heterodimers of N- and R-cadherins. J Cell Biol 148:579–590CrossRefPubMedPubMedCentralGoogle Scholar
  59. Shan W, Yagita Y, Wang Z, Koch A, Svenningsen A, Gruzglin E, Pedraza L, Colman D (2004) The minimal essential unit for cadherin-mediated intercellular adhesion comprises extracellular domains 1 and 2. J Biol Chem 279:55914–55923CrossRefPubMedGoogle Scholar
  60. Shapiro L, Weis WI (2009) Structure and biochemistry of cadherins and catenins. Cold Spring Harb Perspect Biol 1:a003053CrossRefPubMedPubMedCentralGoogle Scholar
  61. Shapiro L, Fannon AM, Kwong PD, Thompson A, Lehmann MS, Grubel G, Legrand JF, Als-Nielsen J, Colman DR, Hendrickson WA (1995a) Structural basis of cell-cell adhesion by cadherins. Nature 374:327–337CrossRefPubMedGoogle Scholar
  62. Shapiro L, Kwong PD, Fannon AM, Colman DR, Hendrickson WA (1995b) Considerations on the folding topology and evolutionary origin of cadherin domains. Proc Natl Acad Sci U S A 92:6793–6797CrossRefPubMedPubMedCentralGoogle Scholar
  63. Shimoyama Y, Takeda H, Yoshihara S, Kitajima M, Hirohashi S (1999) Biochemical characterization and functional analysis of two type II classic cadherins, cadherin-6 and -14, and comparison with E-cadherin. J Biol Chem 274:11987–11994CrossRefPubMedGoogle Scholar
  64. Shimoyama Y, Tsujimoto G, Kitajima M, Natori M (2000) Identification of three human type-II classic cadherins and frequent heterophilic interactions between different subclasses of type-II classic cadherins. Biochem J 349:159–167CrossRefPubMedPubMedCentralGoogle Scholar
  65. Sivasankar S, Zhang Y, Nelson WJ, Chu S (2009) Characterizing the initial encounter complex in cadherin adhesion. Structure 17:1075–1081Google Scholar
  66. Sotomayor M, Weihofen WA, Gaudet R, Corey DP (2010) Structural determinants of cadherin-23 function in hearing and deafness. Neuron 66:85–100CrossRefPubMedPubMedCentralGoogle Scholar
  67. Sotomayor M, Weihofen WA, Gaudet R, Corey DP (2012) Structure of a force-conveying cadherin bond essential for inner-ear mechanotransduction. Nature 492:128–132CrossRefPubMedPubMedCentralGoogle Scholar
  68. Takeichi M (1990) Cadherins: a molecular family important in selective cell-cell adhesion. Annu Rev Biochem 59:237–252CrossRefPubMedGoogle Scholar
  69. Takeichi M (1991) Cadherin cell adhesion receptors as a morphogenetic regulator. Science 251:1451–1455CrossRefPubMedGoogle Scholar
  70. Takeichi M (1995) Morphogenetic roles of classic cadherins. Curr Opin Cell Biol 7:619–627CrossRefPubMedGoogle Scholar
  71. Tanoue T, Takeichi M (2005) New insights into Fat cadherins. J Cell Sci 118:2347–2353CrossRefPubMedGoogle Scholar
  72. Taveau JC, Dubois M, Le Bihan O, Trepout S, Almagro S, Hewat E, Durmort C, Heyraud S, Gulino-Debrac D, Lambert O (2008) Structure of artificial and natural VE-cadherin-based adherens junctions. Biochem Soc Trans 36:189–193CrossRefPubMedPubMedCentralGoogle Scholar
  73. Thomason HA, Scothern A, McHarg S, Garrod DR (2010) Desmosomes: adhesive strength and signalling in health and disease. Biochem J 429:419–433CrossRefPubMedGoogle Scholar
  74. Thu CA, Chen WV, Rubinstein R, Chevee M, Wolcott HN, Felsovalyi KO, Tapia JC, Shapiro L, Honig B, Maniatis T (2014) Single-cell identity generated by combinatorial homophilic interactions between alpha, beta, and gamma protocadherins. Cell 158:1045–1059CrossRefPubMedPubMedCentralGoogle Scholar
  75. Troyanovsky RB, Sokolov E, Troyanovsky SM (2003) Adhesive and lateral E-cadherin dimers are mediated by the same interface. Mol Cell Biol 23:7965–7972CrossRefPubMedPubMedCentralGoogle Scholar
  76. Tsukasaki Y, Miyazaki N, Matsumoto A, Nagae S, Yonemura S, Tanoue T, Iwasaki K, Takeichi M (2014) Giant cadherins Fat and Dachsous self-bend to organize properly spaced intercellular junctions. Proc Natl Acad Sci U S A 111:16011–16016CrossRefPubMedPubMedCentralGoogle Scholar
  77. Vendome J, Posy S, Jin X, Bahna F, Ahlsen G, Shapiro L, Honig B (2011) Molecular design principles underlying beta-strand swapping in the adhesive dimerization of cadherins. Nat Struct Mol Biol 18:693–700CrossRefPubMedPubMedCentralGoogle Scholar
  78. Vunnam N, Pedigo S (2011a) Calcium-induced strain in the monomer promotes dimerization in neural cadherin. Biochemistry 50:8437–8444CrossRefPubMedGoogle Scholar
  79. Vunnam N, Pedigo S (2011b) Prolines in betaA-sheet of neural cadherin act as a switch to control the dynamics of the equilibrium between monomer and dimer. Biochemistry 50:6959–6965CrossRefPubMedGoogle Scholar
  80. Wu Y, Jin X, Harrison O, Shapiro L, Honig BH, Ben-Shaul A (2010) Cooperativity between trans and cis interactions in cadherin-mediated junction formation. Proc Natl Acad Sci U S A 107:17592–17597CrossRefPubMedPubMedCentralGoogle Scholar
  81. Wu Y, Vendome J, Shapiro L, Ben-Shaul A, Honig B (2011) Transforming binding affinities from three dimensions to two with application to cadherin clustering. Nature 475:510–513CrossRefPubMedPubMedCentralGoogle Scholar
  82. Yagi T (2012) Molecular codes for neuronal individuality and cell assembly in the brain. Front Mol Neurosci 5:45CrossRefPubMedPubMedCentralGoogle Scholar
  83. Yap AS, Brieher WM, Gumbiner BM (1997) Molecular and functional analysis of cadherin-based adherens junctions. Annu Rev Cell Dev Biol 13:119–146CrossRefPubMedGoogle Scholar
  84. Yonemura S (2011) Cadherin-actin interactions at adherens junctions. Curr Opin Cell Biol 23:515–522CrossRefPubMedGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular BiophysicsColumbia UniversityNew YorkUSA

Personalised recommendations