Advertisement

Evolution of Cadherins and Associated Catenins

  • Paco Hulpiau
  • Ismail Sahin Gul
  • Frans van RoyEmail author
Chapter

Abstract

During more than 600 Ma of multicellular animal evolution, the cadherin superfamily has become strikingly diverse, both structurally and functionally. Cadherins are typically transmembrane proteins with an ectodomain comprising so-called cadherin repeats. Cadherins are involved in cell–cell recognition, intercellular adhesion, and associated signaling, and are major players in morphogenesis and tissue behavior. Members of the three major cadherin families (cadherins, protocadherins, and cadherin-related proteins) differ in many aspects from each other. E-cadherin is the best-studied family member. Its cytoplasmic domain binds armadillo catenins, which form linkages to the cytoskeleton and trigger complex signaling pathways. Alpha-catenins play complementary roles. Even basal animals such as placozoans and cnidarians express several distinct cadherins and catenins, and their study may identify paradigms for ancient though crucial biological processes. The complex domain compositions of the different superfamily members and their respective functionalities appear to be key features of the emergence of multicellular animal life. Moreover, the origin of vertebrates coincided with a large increase in the number of cadherins and armadillo proteins, including modern molecules such as contemporary “classical” cadherins, clustered protocadherins and plakophilins. Although much needs to be learned about the biology of cadherins, the steadily increasing knowledge on cadherins is fascinating and points to key roles in many biological processes and in several important pathologies. This chapter focuses on the evolutionary relationships between different cadherin family members. The aim is to contribute to a deeper insight into their versatile roles in metazoans, and to foster further research on this remarkable superfamily.

Keywords

Metazoans Protein superfamily Molecular evolution Gene duplication Cell-cell adhesion Cadherin repeat Protocadherins Cadherin-related proteins Armadillo catenins α-catenin 

Notes

Acknowledgments

We thank A. Bredan for critical reading and editing of the manuscript. Research was supported by the Research Foundation - Flanders (FWO) and by the Belgian Science Policy (Interuniversity Attraction Poles - IAP7/07).

References

  1. Adamska M, Matus DQ, Adamski M, Green K, Rokhsar DS, Martindale MQ, Degnan BM (2007) The evolutionary origin of hedgehog proteins. Curr Biol 17(19):R836–R837CrossRefPubMedGoogle Scholar
  2. Anastasiadis PZ (2007) p120-ctn: a nexus for contextual signaling via Rho GTPases. Biochim Biophys Acta Mol Cell Res 1773(1):34–46CrossRefGoogle Scholar
  3. Badouel, C., McNeill, H. (2011) SnapShot: The hippo signaling pathway. Cell 145 (3):484–484.e1.Google Scholar
  4. Bertolotti R, Rutishauser U, Edelman GM (1980) A cell surface molecule involved in aggregation of embryonic liver cells. Proc Natl Acad Sci U S A 77(8):4831–4835CrossRefPubMedPubMedCentralGoogle Scholar
  5. Boutin C, Labedan P, Dimidschstein J, Richard F, Cremer H, Andre P, Yang Y, Montcouquiol M, Goffinet AM, Tissir F (2014) A dual role for planar cell polarity genes in ciliated cells. Proc Natl Acad Sci U S A 111(30):E3129–E3138CrossRefPubMedPubMedCentralGoogle Scholar
  6. Cabrera JR, Bouzas-Rodriguez J, Tauszig-Delamasure S, Mehlen P (2011) RET modulates cell adhesion via its cleavage by caspase in sympathetic neurons. J Biol Chem 286(16):14628–14638CrossRefPubMedPubMedCentralGoogle Scholar
  7. Carnahan RH, Rokas A, Gaucher EA, Reynolds AB (2010) The molecular evolution of the p120-catenin subfamily and its functional associations. PLoS One 5(12):e15747CrossRefPubMedPubMedCentralGoogle Scholar
  8. Castillejo-Lopez C, Arias WM, Baumgartner S (2004) The fat-like gene of Drosophila is the true orthologue of vertebrate fat cadherins and is involved in the formation of tubular organs. J Biol Chem 279(23):24034–24043CrossRefPubMedGoogle Scholar
  9. Chen WV, Maniatis T (2013) Clustered protocadherins. Development 140(16):3297–3302CrossRefPubMedPubMedCentralGoogle Scholar
  10. Choi HJ, Weis WI (2005) Structure of the armadillo repeat domain of plakophilin 1. J Mol Biol 346(1):367–376CrossRefPubMedGoogle Scholar
  11. Damsky CH, Knudsen KA, Dorio RJ, Buck CA (1981) Manipulation of cell-cell and cell-substratum interactions in mouse mammary tumor epithelial cells using broad spectrum antisera. J Cell Biol 89:173–184CrossRefPubMedGoogle Scholar
  12. De Craene B, Berx G (2013) Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer 13:97–110CrossRefPubMedGoogle Scholar
  13. Desai BV, Harmon RM, Green KJ (2009) Desmosomes at a glance. J Cell Sci 122(24):4401–4407CrossRefPubMedPubMedCentralGoogle Scholar
  14. Dickinson DJ, Nelson WJ, Weis WI (2011) A polarized epithelium organized by beta- and alpha-catenin predates cadherin and metazoan origins. Science 331(6022):1336–1339CrossRefPubMedPubMedCentralGoogle Scholar
  15. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797CrossRefPubMedPubMedCentralGoogle Scholar
  16. El-Amraoui A, Petit C (2013) Cadherin defects in inherited human diseases. Prog Mol Biol Transl Sci 116:361–384CrossRefPubMedGoogle Scholar
  17. Elledge HM, Kazmierczak P, Clark P, Joseph JS, Kolatkar A, Kuhn P, Muller U (2010) Structure of the N terminus of cadherin 23 reveals a new adhesion mechanism for a subset of cadherin superfamily members. Proc Natl Acad Sci U S A 107(23):10708–10712CrossRefPubMedPubMedCentralGoogle Scholar
  18. Goldberg M, Wei M, Tycko B, Falikovich I, Warburton D (2002) Identification and expression analysis of the human mu-protocadherin gene in fetal and adult kidneys. Am J Physiol Renal Physiol 283(3):F454–F463CrossRefPubMedGoogle Scholar
  19. Goossens S, Janssens B, Bonné S, De Rycke R, Braet F, van Hengel J, van Roy F (2007) A unique and specific interaction between alpha-T-catenin and plakophilin-2 recruits desmosomal proteins to the adherens junctions of the heart. J Cell Sci 120(12):2126–2136CrossRefPubMedGoogle Scholar
  20. Harrison OJ, Jin X, Hong S, Bahna F, Ahlsen G, Brasch J, Wu Y, Vendome J, Felsovalyi K, Hampton CM, Troyanovsky RB, Ben-Shaul A, Frank J, Troyanovsky SM, Shapiro L, Honig B (2011) The extracellular architecture of adherens junctions revealed by crystal structures of type I cadherins. Structure 19(2):244–256CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hatzfeld M, Wolf A, Keil R (2014) Plakophilins in desmosomal adhesion and signaling. Cell Commun Adhes 21(1):25–42CrossRefPubMedGoogle Scholar
  22. Hayashi S, Takeichi M (2015) Emerging roles of protocadherins: from self-avoidance to enhancement of motility. J Cell Sci 128(8):1455–1464CrossRefPubMedGoogle Scholar
  23. Hayashi S, Inoue Y, Kiyonari H, Abe T, Misaki K, Moriguchi H, Tanaka Y, Takeichi M (2014) Protocadherin-17 mediates collective axon extension by recruiting actin regulator complexes to interaxonal contacts. Dev Cell 30(6):673–687CrossRefPubMedGoogle Scholar
  24. Hintsch G, Zurlinden A, Meskenaite V, Steuble M, Fink-Widmer K, Kinter J, Sonderegger P (2002) The calsyntenins – a family of postsynaptic membrane proteins with distinct neuronal expression patterns. Mol Cell Neurosci 21(3):393–409CrossRefPubMedGoogle Scholar
  25. Hirabayashi T, Yagi T (2014) Protocadherins in neurological diseases. Adv Neurobiol 8:293–314CrossRefPubMedGoogle Scholar
  26. Hirano S, Takeichi M (2012) Cadherins in brain morphogenesis and wiring. Physiol Rev 92(2):597–634CrossRefPubMedGoogle Scholar
  27. Hirayama T, Yagi T (2013) Clustered protocadherins and neuronal diversity. Prog Mol Biol Transl Sci 116:145–167CrossRefPubMedGoogle Scholar
  28. Huber AH, Nelson WJ, Weis WI (1997) Three-dimensional structure of the Armadillo repeat region of beta-catenin. Cell 90:871–882CrossRefPubMedGoogle Scholar
  29. Hulpiau P, van Roy F (2009) Molecular evolution of the cadherin superfamily. Int J Biochem Cell Biol 41:349–369CrossRefPubMedGoogle Scholar
  30. Hulpiau P, van Roy F (2011) New insights into the evolution of metazoan cadherins. Mol Biol Evol 28(1):647–657CrossRefPubMedGoogle Scholar
  31. Hulpiau P, Gul I, van Roy F (2013) New insights into the evolution of metazoan cadherins and catenins. Prog Mol Biol Transl Sci 116:71–94CrossRefPubMedGoogle Scholar
  32. Ikeda DD, Duan Y, Matsuki M, Kunitomo H, Hutter H, Hedgecock EM, Iino Y (2008) CASY-1, an ortholog of calsyntenins/alcadeins, is essential for learning in Caenorhabditis elegans. Proc Natl Acad Sci U S A 105(13):5260–5265CrossRefPubMedPubMedCentralGoogle Scholar
  33. Ireton RC, Davis MA, van Hengel J, Mariner DJ, Barnes K, Thoreson MA, Anastasiadis PZ, Matrisian L, Bundy LM, Sealy L, Gilbert B, van Roy F, Reynolds AB (2002) A novel role for p120 catenin in E-cadherin function. J Cell Biol 159(3):465–476CrossRefPubMedPubMedCentralGoogle Scholar
  34. Ishikawa HO, Takeuchi H, Haltiwanger RS, Irvine KD (2008) Four-jointed is a Golgi kinase that phosphorylates a subset of cadherin domains. Science 321(5887):401–404CrossRefPubMedPubMedCentralGoogle Scholar
  35. Ishiyama N, Lee SH, Liu S, Li GY, Smith MJ, Reichardt LF, Ikura M (2010) Dynamic and static interactions between p120 catenin and E-cadherin regulate the stability of cell-cell adhesion. Cell 141(1):117–128CrossRefPubMedGoogle Scholar
  36. Ishiyama N, Tanaka N, Abe K, Yang YJ, Abbas YM, Umitsu M, Nagar B, Bueler SA, Rubinstein JL, Takeichi M, Ikura M (2013) An autoinhibited structure of alpha-catenin and its implications for vinculin recruitment to adherens junctions. J Biol Chem 288(22):15913–15925CrossRefPubMedPubMedCentralGoogle Scholar
  37. Janssens B, Goossens S, Staes K, Gilbert B, van Hengel J, Colpaert C, Bruyneel E, Mareel M, van Roy F (2001) alpha-T-Catenin: a novel tissue-specific beta-catenin-binding protein mediating strong cell-cell adhesion. J Cell Sci 114(17):3177–3188PubMedGoogle Scholar
  38. Jin X, Walker MA, Felsovalyi K, Vendome J, Bahna F, Mannepalli S, Cosmanescu F, Ahlsen G, Honig B, Shapiro L (2012) Crystal structures of Drosophila N-cadherin ectodomain regions reveal a widely used class of Ca(2)+-free interdomain linkers. Proc Natl Acad Sci U S A 109(3):127–134CrossRefGoogle Scholar
  39. Kahr I, Vandepoele K, van Roy F (2013) Delta-protocadherins in health and disease. Prog Mol Biol Transl Sci 116:169–192CrossRefPubMedGoogle Scholar
  40. Kasahara M (2007) The 2R hypothesis: an update. Curr Opin Immunol 19(5):547–552CrossRefPubMedGoogle Scholar
  41. Kazmierczak P, Sakaguchi H, Tokita J, Wilson-Kubalek EM, Milligan RA, Muller U, Kachar B (2007) Cadherin 23 and protocadherin 15 interact to form tip-link filaments in sensory hair cells. Nature 449(7158):87–91CrossRefPubMedGoogle Scholar
  42. Kemler R, Ozawa M (1989) Uvomorulin-catenin complex: cytoplasmic achorage of a Ca2+ dependent cell adhesion molecule. Bioessays 11:88–91CrossRefPubMedGoogle Scholar
  43. Kobielak A, Fuchs E (2004) Alpha-catenin: at the junction of intercellular adhesion and actin dynamics. Nat Rev Mol Cell Biol 5(8):614–625CrossRefPubMedPubMedCentralGoogle Scholar
  44. Kowalczyk AP, Bornslaeger EA, Borgwardt JE, Palka HL, Dhaliwal AS, Corcoran CM, Denning MF, Green KJ (1997) The amino-terminal domain of desmoplakin binds to plakoglobin and clusters desmosomal cadherin-plakoglobin complexes. J Cell Biol 139(3):773–784CrossRefPubMedPubMedCentralGoogle Scholar
  45. Kowalczyk AP, Hatzfeld M, Bornslaeger EA, Kopp DS, Borgwardt JE, Corcoran CM, Settler A, Green KJ (1999) The head domain of plakophilin-1 binds to desmoplakin and enhances its recruitment to desmosomes – implications for cutaneous disease. J Biol Chem 274(26):18145–18148CrossRefPubMedGoogle Scholar
  46. Krishnan A, Schioth HB (2015) The role of G protein-coupled receptors in the early evolution of neurotransmission and the nervous system. J Exp Biol 218(Pt 4):562–571CrossRefPubMedGoogle Scholar
  47. Mahoney PA, Weber U, Onofrechuk P, Biessmann H, Bryant PJ, Goodman CS (1991) The fat tumor suppressor gene in Drosophila encodes a novel member of the cadherin gene superfamily. Cell 67(5):853–868CrossRefPubMedGoogle Scholar
  48. Maiden SL, Hardin J (2011) The secret life of alpha-catenin: moonlighting in morphogenesis. J Cell Biol 195(4):543–552CrossRefPubMedPubMedCentralGoogle Scholar
  49. Mao Y, Mulvaney J, Zakaria S, Yu T, Morgan KM, Allen S, Basson MA, Francis-West P, Irvine KD (2011) Characterization of a Dchs1 mutant mouse reveals requirements for Dchs1-Fat4 signaling during mammalian development. Development 138(5):947–957CrossRefPubMedPubMedCentralGoogle Scholar
  50. McCrea PD, Gu D (2010) The catenin family at a glance. J Cell Sci 123(Pt 5):637–642CrossRefPubMedPubMedCentralGoogle Scholar
  51. McCrea PD, Park JI (2007) Developmental functions of the p120-catenin subfamily. Biochim Biophys Acta Mol Cell Res 1773(1):17–33CrossRefGoogle Scholar
  52. Nagafuchi A, Shirayoshi Y, Okazaki K, Yasuda K, Takeichi M (1987) Transformation of cell adhesion properties by exogenously introduced E-cadherin cDNA. Nature (London) 329:341–343CrossRefGoogle Scholar
  53. Niessen CM, Leckband D, Yap AS (2011) Tissue organization by cadherin adhesion molecules: dynamic molecular and cellular mechanisms of morphogenetic regulation. Physiol Rev 91(2):691–731CrossRefPubMedPubMedCentralGoogle Scholar
  54. Oda H, Tsukita S (1999) Nonchordate classic cadherins have a structurally and functionally unique domain that is absent from chordate classic cadherins. Dev Biol 216(1):406–422CrossRefPubMedGoogle Scholar
  55. Patel SD, Ciatto C, Chen CP, Bahna F, Rajebhosale M, Arkus N, Schieren I, Jessell TM, Honig B, Price SR, Shapiro L (2006) Type II cadherin ectodomain structures: implications for classical cadherin specificity. Cell 124(6):1255–1268CrossRefPubMedGoogle Scholar
  56. Peyrieras N, Hyafil F, Louvard D, Ploegh HL, Jacob F (1983) Uvomorulin: a nonintegral membrane protein of early mouse embryo. Proc Natl Acad Sci U S A 80:6274–6277CrossRefPubMedPubMedCentralGoogle Scholar
  57. Pieters T, van Roy F (2014) Role of cell-cell adhesion complexes in embryonic stem cell biology. J Cell Sci 127:2603–2613CrossRefPubMedGoogle Scholar
  58. Pokutta S, Choi HJ, Ahlsen G, Hansen SD, Weis WI (2014) Structural and thermodynamic characterization of cadherin beta-catenin alpha-catenin complex formation. J Biol Chem 289(19):13589–13601CrossRefPubMedPubMedCentralGoogle Scholar
  59. Rampazzo A, Calore M, van Hengel J, van Roy F (2014) Intercalated discs and arrhythmogenic cardiomyopathy. Circ Cardiovasc Genet 7(6):930–940CrossRefPubMedGoogle Scholar
  60. Riggleman B, Wieschaus E, Schedl P (1989) Molecular analysis of the armadillo locus: uniformly distributed transcripts and a protein with novel internal repeats are associated with Drosophila segment polarity gene. Genes Dev 3:96–113CrossRefPubMedGoogle Scholar
  61. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61(3):539–542CrossRefPubMedPubMedCentralGoogle Scholar
  62. Schalm SS, Ballif BA, Buchanan SM, Phillips GR, Maniatis T (2010) Phosphorylation of protocadherin proteins by the receptor tyrosine kinase Ret. Proc Natl Acad Sci U S A 107(31):13894–13899CrossRefPubMedPubMedCentralGoogle Scholar
  63. Schneider SQ, Finnerty JR, Martindale MQ (2003) Protein evolution: structure-function relationships of the oncogene beta-catenin in the evolution of multicellular animals. J Exp Zool B Mol Dev Evol 295(1):25–44CrossRefPubMedGoogle Scholar
  64. Schreiner D, Weiner JA (2010) Combinatorial homophilic interaction between {gamma}-protocadherin multimers greatly expands the molecular diversity of cell adhesion. Proc Natl Acad Sci U S A 107(33):14893–14898CrossRefPubMedPubMedCentralGoogle Scholar
  65. Seiler C, FingerBaier KC, Rinner O, Makhankov YV, Schwarz H, Neuhauss SCF, Nicolson T (2005) Duplicated genes with split functions: independent roles of protocadherin15 orthologues in zebraf ish hearing and vision. Development 132(3):615–623CrossRefPubMedGoogle Scholar
  66. Solovyev V, Kosarev P, Seledsov I, Vorobyev D (2006) Automatic annotation of eukaryotic genes, pseudogenes and promoters. Genome Biol 7 Suppl 1:S10 11–12.Google Scholar
  67. Sotomayor M, Weihofen WA, Gaudet R, Corey DP (2012) Structure of a force-conveying cadherin bond essential for inner-ear mechanotransduction. Nature 492(7427):128–132CrossRefPubMedPubMedCentralGoogle Scholar
  68. Sotomayor M, Gaudet R, Corey DP (2014) Sorting out a promiscuous superfamily: towards cadherin connectomics. Trends Cell Biol 24(9):524–536CrossRefPubMedPubMedCentralGoogle Scholar
  69. Striegl H, Andrade-Navarro MA, Heinemann U (2010) Armadillo motifs involved in vesicular transport. PLoS One 5(2):e8991CrossRefPubMedPubMedCentralGoogle Scholar
  70. Swope D, Li J, Radice GL (2013) Beyond cell adhesion: the role of armadillo proteins in the heart. Cell Signal 25(1):93–100CrossRefPubMedPubMedCentralGoogle Scholar
  71. Takeichi M (2014) Dynamic contacts: rearranging adherens junctions to drive epithelial remodelling. Nat Rev Mol Cell Biol 15(6):397–410CrossRefPubMedGoogle Scholar
  72. Thu CA, Chen WV, Rubinstein R, Chevee M, Wolcott HN, Felsovalyi KO, Tapia JC, Shapiro L, Honig B, Maniatis T (2014) Single-cell identity generated by combinatorial homophilic interactions between alpha, beta, and gamma protocadherins. Cell 158(5):1045–1059CrossRefPubMedPubMedCentralGoogle Scholar
  73. Tissir F, Goffinet AM (2013) Shaping the nervous system: role of the core planar cell polarity genes. Nat Rev Neurosci 14(8):525–535CrossRefPubMedGoogle Scholar
  74. Tsukasaki Y, Miyazaki N, Matsumoto A, Nagae S, Yonemura S, Tanoue T, Iwasaki K, Takeichi M (2014) Giant cadherins Fat and Dachsous self-bend to organize properly spaced intercellular junctions. Proc Natl Acad Sci U S A 111(45):16011–16016CrossRefPubMedPubMedCentralGoogle Scholar
  75. van Es JH, Barker N, Clevers H (2003) You Wnt some, you lose some: oncogenes in the Wnt signaling pathway. Curr Opin Genet Dev 13(1):28–33CrossRefPubMedGoogle Scholar
  76. van Roy F (2014) Beyond E-cadherin: Roles of other cadherin superfamily members in cancer. Nat Rev Cancer 14(2):121–134CrossRefPubMedGoogle Scholar
  77. van Roy F, Berx G (2008) The cell-cell adhesion molecule E-cadherin. Cell Mol Life Sci 65(23):3756–3788CrossRefPubMedGoogle Scholar
  78. Watson GM, Pham L, Graugnard EM, Mire P (2008) Cadherin 23-like polypeptide in hair bundle mechanoreceptors of sea anemones. J Comp Physiol Neuroethol Sens Neural Behav Physiol 194(9):811–820CrossRefGoogle Scholar
  79. Wu Q, Maniatis T (1999) A striking organization of a large family of human neural cadherin-like cell adhesion genes. Cell 97(6):779–790CrossRefPubMedGoogle Scholar
  80. Xing Y, Takemaru K, Liu J, Berndt JD, Zheng JJ, Moon RT, Xu W (2008) Crystal structure of a full-length beta-catenin. Structure 16(3):478–487CrossRefPubMedPubMedCentralGoogle Scholar
  81. Yagi T (2008) Clustered protocadherin family. Dev Growth Differ 50:S131–S140CrossRefPubMedGoogle Scholar
  82. Yoshida-Noro C, Suzuki N, Takeichi M (1984) Molecular nature of the calcium-dependent cell-cell adhesion system in mouse teratocarcinoma and embryonic cells studied with a monoclonal antibody. Dev Biol 101(1):19–27CrossRefPubMedGoogle Scholar
  83. Zhao ZM, Reynolds AB, Gaucher EA (2011) The evolutionary history of the catenin gene family during metazoan evolution. BMC Evol Biol 11:198CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  • Paco Hulpiau
    • 1
    • 2
  • Ismail Sahin Gul
    • 1
    • 2
  • Frans van Roy
    • 1
    • 2
    Email author
  1. 1.Inflammation Research Center, VIBGhent (Zwijnaarde)Belgium
  2. 2.Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium

Personalised recommendations