Advertisement

Cadherins in Cancer

  • Lauren V. Albrecht
  • Kathleen J. Green
  • Adi D. DubashEmail author
Chapter

Abstract

Despite decades of research, cancer remains one of the leading causes of death worldwide. Progression of cancer includes the breakdown or loss of normal tissue structure, which closely depends on the proper expression and regulation of numerous cell–cell adhesion molecules. Not surprisingly, the multifunctional cadherin cell–cell adhesion protein family members have emerged as critical regulators of tumorigenesis. The maintenance of cell–cell junctions and adhesion-mediated signaling pathways are tightly regulated by cadherin expression in a tissue-specific manner. In addition to their adhesive functions, cadherins integrate diverse cellular inputs (from cell–cell adhesion to mechanical forces or receptor tyrosine kinase activity) and translate these cues into biochemical intracellular signaling events involved in cell proliferation, motility, survival, and tissue homeostasis. Alterations in cadherin function can lead to cancer progression through a variety of molecular mechanisms including cadherin switching/EMT and the misregulation of different signaling mediators, including Rho GTPases, Ras/MAPK, Hippo/YAP, PI3K/Akt, and other pathways that have been implicated in tumor progression. Furthermore, cadherins have been recently implicated in mechanotransduction and cancer stem cell signaling. In this chapter, we report both fundamental findings and novel insights that define the roles of cadherins in human cancer and discuss how changes in the expression and regulation of these molecules contribute to cancer progression.

Keywords

Cadherins Cancer progression Metastasis E-cadherin Cadherin switching EMT EGFR MAP Kinase YAP VE-cadherin Angiogenesis Desmosomal cadherins 

References

  1. Agiostratidou G, Li M, Suyama K et al (2009) Loss of retinal cadherin facilitates mammary tumor progression and metastasis. Cancer Res 69:5030–5038. doi: 10.1158/0008-5472.CAN-08-4007 PubMedPubMedCentralCrossRefGoogle Scholar
  2. Alessandri K, Sarangi BR, Gurchenkov VV et al (2013) Cellular capsules as a tool for multicellular spheroid production and for investigating the mechanics of tumor progression in vitro. Proc Natl Acad Sci U S A 110:14843–14848. doi: 10.1073/pnas.1309482110 PubMedPubMedCentralCrossRefGoogle Scholar
  3. Andreeva AV, Kutuzov MA (2010) Cadherin 13 in cancer. Genes Chromosomes Cancer 49:775–790. doi: 10.1002/gcc.20787 PubMedGoogle Scholar
  4. Arthur WT, Noren NK, Burridge K (2002) Regulation of Rho family GTPases by cell-cell and cell-matrix adhesion. Biol Res 35:239–246PubMedCrossRefGoogle Scholar
  5. Auersperg N, Pan J, Grove BD et al (1999) E-cadherin induces mesenchymal-to-epithelial transition in human ovarian surface epithelium. Proc Natl Acad Sci U S A 96:6249–6254PubMedPubMedCentralCrossRefGoogle Scholar
  6. Augustine CK, Yoshimoto Y, Gupta M et al (2008) Targeting N-cadherin enhances antitumor activity of cytotoxic therapies in melanoma treatment. Cancer Res 68:3777–3784. doi: 10.1158/0008-5472.CAN-07-5949 PubMedCrossRefGoogle Scholar
  7. Bao Y, Hata Y, Ikeda M, Withanage K (2011a) Mammalian Hippo pathway: from development to cancer and beyond. J Biochem 149:361–379. doi: 10.1093/jb/mvr021 PubMedCrossRefGoogle Scholar
  8. Bao Y, Nakagawa K, Yang Z et al (2011b) A cell-based assay to screen stimulators of the Hippo pathway reveals the inhibitory effect of dobutamine on the YAP-dependent gene transcription. J Biochem 150:199–208. doi: 10.1093/jb/mvr063 PubMedCrossRefGoogle Scholar
  9. Becker KF, Atkinson MJ, Reich U et al (1993) Exon skipping in the E-cadherin gene transcript in metastatic human gastric carcinomas. Hum Mol Genet 2:803–804PubMedCrossRefGoogle Scholar
  10. Becker KF, Atkinson MJ, Reich U et al (1994) E-cadherin gene mutations provide clues to diffuse type gastric carcinomas. Cancer Res 54:3845–3852PubMedGoogle Scholar
  11. Becker KF, Kremmer E, Eulitz M et al (1999) Analysis of E-cadherin in diffuse-type gastric cancer using a mutation-specific monoclonal antibody. Am J Pathol 155:1803–1809. doi: 10.1016/S0002-9440(10)65497-1 PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bentley K, Franco CA, Philippides A et al (2014) The role of differential VE-cadherin dynamics in cell rearrangement during angiogenesis. Nat Cell Biol 16:309–321. doi: 10.1038/ncb2926 PubMedCrossRefGoogle Scholar
  13. Beronja S, Janki P, Heller E et al (2013) RNAi screens in mice identify physiological regulators of oncogenic growth. Nature 501:185–190. doi: 10.1038/nature12464 PubMedPubMedCentralCrossRefGoogle Scholar
  14. Berx G, van Roy F (2009) Involvement of members of the cadherin superfamily in cancer. Cold Spring Harb Perspect Biol 1:a003129. doi: 10.1101/cshperspect.a003129 PubMedPubMedCentralCrossRefGoogle Scholar
  15. Berx G, Cleton-Jansen AM, Strumane K et al (1996) E-cadherin is inactivated in a majority of invasive human lobular breast cancers by truncation mutations throughout its extracellular domain. Oncogene 13:1919–1925PubMedGoogle Scholar
  16. Berx G, Becker KF, Höfler H, van Roy F (1998) Mutations of the human E-cadherin (CDH1) gene. Hum Mutat 12:226–237. doi: 10.1002/(SICI)1098-1004(1998)12:4<226::AID-HUMU2>3.0.CO;2-D PubMedCrossRefGoogle Scholar
  17. Biedermann K, Vogelsang H, Becker I et al (2005) Desmoglein 2 is expressed abnormally rather than mutated in familial and sporadic gastric cancer. J Pathol 207:199–206. doi: 10.1002/path.1821 PubMedCrossRefGoogle Scholar
  18. Blanco MJ, Moreno-Bueno G, Sarrio D et al (2002) Correlation of Snail expression with histological grade and lymph node status in breast carcinomas. Oncogene 21:3241–3246. doi: 10.1038/sj.onc.1205416 PubMedCrossRefGoogle Scholar
  19. Bolós V, Peinado H, Pérez-Moreno MA et al (2003) The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors. J Cell Sci 116:499–511PubMedCrossRefGoogle Scholar
  20. Breier G, Grosser M, Rezaei M (2014) Endothelial cadherins in cancer. Cell Tissue Res 355:523–527. doi: 10.1007/s00441-014-1851-7 PubMedCrossRefGoogle Scholar
  21. Brennan D, Mahoney MG (2009) Increased expression of Dsg2 in malignant skin carcinomas: A tissue-microarray based study. Cell Adh Migr 3:148–154PubMedPubMedCentralCrossRefGoogle Scholar
  22. Brennan D, Hu Y, Joubeh S et al (2007) Suprabasal Dsg2 expression in transgenic mouse skin confers a hyperproliferative and apoptosis-resistant phenotype to keratinocytes. J Cell Sci 120:758–771. doi: 10.1242/jcs.03392 PubMedCrossRefGoogle Scholar
  23. Brooke MA, Nitoiu D, Kelsell DP (2012) Cell-cell connectivity: desmosomes and disease. J Pathol 226:158–171. doi: 10.1002/path.3027 PubMedCrossRefGoogle Scholar
  24. Brooks SA, Lomax-Browne HJ, Carter TM et al (2010) Molecular interactions in cancer cell metastasis. Acta Histochem 112:3–25. doi: 10.1016/j.acthis.2008.11.022 PubMedCrossRefGoogle Scholar
  25. Brown L, Wan H (2015) Desmoglein 3: a help or a hindrance in cancer progression? Cancers 7(1):266–286. doi: 10.3390/cancers7010266 PubMedPubMedCentralCrossRefGoogle Scholar
  26. Brown L, Waseem A, Cruz IN et al (2014) Desmoglein 3 promotes cancer cell migration and invasion by regulating activator protein 1 and protein kinase C-dependent-Ezrin activation. Oncogene 33:2363–2374. doi: 10.1038/onc.2013.186 PubMedCrossRefGoogle Scholar
  27. Butz S, Stappert J, Weissig H, Kemler R (1992) Plakoglobin and beta-catenin: distinct but closely related. Science 257:1142–1144PubMedCrossRefGoogle Scholar
  28. Cano A, Pérez-Moreno MA, Rodrigo I et al (2000) The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2:76–83. doi: 10.1038/35000025 PubMedCrossRefGoogle Scholar
  29. Carmona FJ, Villanueva A, Vidal A et al (2012) Epigenetic disruption of cadherin-11 in human cancer metastasis. J Pathol 228:230–240. doi: 10.1002/path.4011 PubMedPubMedCentralCrossRefGoogle Scholar
  30. Carneiro F, Machado JC, Seruca R, Sobrinho-Simöes M (1999) E-cadherin changes in gastric carcimona. Histopathology 35:477–478PubMedCrossRefGoogle Scholar
  31. Carroll DK, Brugge JS, Attardi LD (2007) p63, cell adhesion and survival. Cell Cycle 6:255–261PubMedCrossRefGoogle Scholar
  32. Carvalho J, van Grieken NC, Pereira PM et al (2012) Lack of microRNA-101 causes E-cadherin functional deregulation through EZH2 up-regulation in intestinal gastric cancer. J Pathol 228:31–44. doi: 10.1002/path.4032 PubMedGoogle Scholar
  33. Cavallaro U, Liebner S, Dejana E (2006) Endothelial cadherins and tumor angiogenesis. Exp Cell Res 312:659–667. doi: 10.1016/j.yexcr.2005.09.019 PubMedCrossRefGoogle Scholar
  34. Charrasse S, Comunale F, Gilbert E et al (2004) Variation in cadherins and catenins expression is linked to both proliferation and transformation of Rhabdomyosarcoma. Oncogene 23:2420–2430. doi: 10.1038/sj.onc.1207382 PubMedCrossRefGoogle Scholar
  35. Chen Y-J, Chang JT, Lee L et al (2007) DSG3 is overexpressed in head neck cancer and is a potential molecular target for inhibition of oncogenesis. Oncogene 26:467–476. doi: 10.1038/sj.onc.1209802 PubMedCrossRefGoogle Scholar
  36. Chen Y-J, Lee L-Y, Chao Y-K et al (2013) DSG3 facilitates cancer cell growth and invasion through the DSG3-plakoglobin-TCF/LEF-Myc/cyclin D1/MMP signaling pathway. PLoS One 8:e64088. doi: 10.1371/journal.pone.0064088 PubMedPubMedCentralCrossRefGoogle Scholar
  37. Cheung LWT, Leung PCK, Wong AST (2010) Cadherin switching and activation of p120 catenin signaling are mediators of gonadotropin-releasing hormone to promote tumor cell migration and invasion in ovarian cancer. Oncogene 29:2427–2440. doi: 10.1038/onc.2009.523 PubMedCrossRefGoogle Scholar
  38. Cheung LWT, Mak ASC, Cheung ANY et al (2011) P-cadherin cooperates with insulin-like growth factor-1 receptor to promote metastatic signaling of gonadotropin-releasing hormone in ovarian cancer via p120 catenin. Oncogene 30:2964–2974. doi: 10.1038/onc.2011.7 PubMedCrossRefGoogle Scholar
  39. Chu K, Cheng C-J, Ye X et al (2008) Cadherin-11 promotes the metastasis of prostate cancer cells to bone. Mol Cancer Res 6:1259–1267. doi: 10.1158/1541-7786.MCR-08-0077 PubMedPubMedCentralCrossRefGoogle Scholar
  40. Cleton-Jansen AM, Callen DF, Seshadri R et al (2001) Loss of heterozygosity mapping at chromosome arm 16q in 712 breast tumors reveals factors that influence delineation of candidate regions. Cancer Res 61:1171–1177PubMedGoogle Scholar
  41. Comijn J, Berx G, Vermassen P et al (2001) The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell 7:1267–1278PubMedCrossRefGoogle Scholar
  42. Conacci-Sorrell ME, Ben-Yedidia T, Shtutman M et al (2002) Nr-CAM is a target gene of the beta-catenin/LEF-1 pathway in melanoma and colon cancer and its expression enhances motility and confers tumorigenesis. Genes Dev 16:2058–2072. doi: 10.1101/gad.227502 PubMedPubMedCentralCrossRefGoogle Scholar
  43. Corada M, Zanetta L, Orsenigo F et al (2002) A monoclonal antibody to vascular endothelial-cadherin inhibits tumor angiogenesis without side effects on endothelial permeability. Blood 100:905–911PubMedCrossRefGoogle Scholar
  44. Covington MD, Burghardt RC, Parrish AR (2006) Ischemia-induced cleavage of cadherins in NRK cells requires MT1-MMP (MMP-14). Am J Physiol Renal Physiol 290:F43–F51. doi: 10.1152/ajprenal.00179.2005 PubMedCrossRefGoogle Scholar
  45. Cui T, Chen Y, Yang L et al (2012a) The p53 target gene desmocollin 3 acts as a novel tumor suppressor through inhibiting EGFR/ERK pathway in human lung cancer. Carcinogenesis 33:2326–2333. doi: 10.1093/carcin/bgs273 PubMedCrossRefGoogle Scholar
  46. Cui T, Chen Y, Yang L et al (2012b) Diagnostic and prognostic impact of desmocollins in human lung cancer. J Clin Pathol 65:1100–1106. doi: 10.1136/jclinpath-2011-200630 PubMedCrossRefGoogle Scholar
  47. Das T, Safferling K, Rausch S, Grabe N, Boehm H, Spatz JP (2015) A molecular mechanotransduction pathway regulates collective migration of epithelial cells. Nat Cell Biol 17(3):276–287. doi: 10.1038/ncb3115 PubMedCrossRefGoogle Scholar
  48. Davies G, Jiang WG, Mason MD (2001) Matrilysin mediates extracellular cleavage of E-cadherin from prostate cancer cells: a key mechanism in hepatocyte growth factor/scatter factor-induced cell-cell dissociation and in vitro invasion. Clin Cancer Res 7:3289–3297PubMedGoogle Scholar
  49. de Beco S, Amblard F, Coscoy S (2012) New insights into the regulation of E-cadherin distribution by endocytosis. Int Rev Cell Mol Biol 295:63–108. doi: 10.1016/B978-0-12-394306-4.00008-3 PubMedCrossRefGoogle Scholar
  50. De Craene B, Berx G (2013) Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer 13:97–110. doi: 10.1038/nrc3447 PubMedCrossRefGoogle Scholar
  51. De Wever O, Derycke L, Hendrix A et al (2007) Soluble cadherins as cancer biomarkers. Clin Exp Metastasis 24:685–697. doi: 10.1007/s10585-007-9104-8 PubMedCrossRefGoogle Scholar
  52. Denzel MS, Hebbard LW, Shostak G et al (2009) Adiponectin deficiency limits tumor vascularization in the MMTV-PyV-mT mouse model of mammary cancer. Clin Cancer Res 15:3256–3264. doi: 10.1158/1078-0432.CCR-08-2661 PubMedPubMedCentralCrossRefGoogle Scholar
  53. Denzel MS, Scimia M-C, Zumstein PM et al (2010) T-cadherin is critical for adiponectin-mediated cardioprotection in mice. J Clin Invest 120:4342–4352. doi: 10.1172/JCI43464 PubMedPubMedCentralCrossRefGoogle Scholar
  54. Deplazes J, Fuchs M, Rauser S et al (2009) Rac1 and Rho contribute to the migratory and invasive phenotype associated with somatic E-cadherin mutation. Hum Mol Genet 18:3632–3644. doi: 10.1093/hmg/ddp312 PubMedCrossRefGoogle Scholar
  55. Devaud C, John LB, Westwood JA et al (2013) Immune modulation of the tumor microenvironment for enhancing cancer immunotherapy. Oncoimmunology 2:e25961. doi: 10.4161/onci.25961 PubMedPubMedCentralCrossRefGoogle Scholar
  56. Devaud C, Westwood JA, John LB et al (2014) Tissues in different anatomical sites can sculpt and vary the tumor microenvironment to affect responses to therapy. Mol Ther 22:18–27. doi: 10.1038/mt.2013.219 PubMedPubMedCentralCrossRefGoogle Scholar
  57. Ding W, You H, Dang H et al (2010) Epithelial-to-mesenchymal transition of murine liver tumor cells promotes invasion. Hepatology 52:945–953. doi: 10.1002/hep.23748 PubMedPubMedCentralCrossRefGoogle Scholar
  58. Dusek RL, Attardi LD (2011) Desmosomes: new perpetrators in tumour suppression. Nat Rev Cancer 11:317–323. doi: 10.1038/nrc3051 PubMedPubMedCentralCrossRefGoogle Scholar
  59. Eastham AM, Spencer H, Soncin F et al (2007) Epithelial-mesenchymal transition events during human embryonic stem cell differentiation. Cancer Res 67:11254–11262. doi: 10.1158/0008-5472.CAN-07-2253 PubMedCrossRefGoogle Scholar
  60. Engl W, Arasi B, Yap LL et al (2014) Actin dynamics modulate mechanosensitive immobilization of E-cadherin at adherens junctions. Nat Cell Biol 16:587–594. doi: 10.1038/ncb2973 PubMedCrossRefGoogle Scholar
  61. Fang W-K, Liao L-D, Li L-Y et al (2013) Down-regulated desmocollin-2 promotes cell aggressiveness through redistributing adherens junctions and activating beta-catenin signalling in oesophageal squamous cell carcinoma. J Pathol 231:257–270. doi: 10.1002/path.4236 PubMedCrossRefGoogle Scholar
  62. Farahani E, Patra HK, Jangamreddy JR et al (2014) Cell adhesion molecules and their relation to (cancer) cell stemness. Carcinogenesis 35:747–759. doi: 10.1093/carcin/bgu045 PubMedCrossRefGoogle Scholar
  63. Faurobert E, Bouin A-P, Albiges-Rizo C (2015) Microenvironment, tumor cell plasticity, and cancer. Curr Opin Oncol 27:64–70. doi: 10.1097/CCO.0000000000000154 PubMedCrossRefGoogle Scholar
  64. Ferreira AC, Suriano G, Mendes N et al (2012) E-cadherin impairment increases cell survival through Notch-dependent upregulation of Bcl-2. Hum Mol Genet 21:334–343. doi: 10.1093/hmg/ddr469 PubMedCrossRefGoogle Scholar
  65. Floor S, van Staveren WCG, Larsimont D et al (2011) Cancer cells in epithelial-to-mesenchymal transition and tumor-propagating-cancer stem cells: distinct, overlapping or same populations. Oncogene 30:4609–4621. doi: 10.1038/onc.2011.184 PubMedCrossRefGoogle Scholar
  66. Flores ER, Sengupta S, Miller JB et al (2005) Tumor predisposition in mice mutant for p63 and p73: evidence for broader tumor suppressor functions for the p53 family. Cancer Cell 7:363–373. doi: 10.1016/j.ccr.2005.02.019 PubMedCrossRefGoogle Scholar
  67. Francavilla C, Maddaluno L, Cavallaro U (2009) The functional role of cell adhesion molecules in tumor angiogenesis. Semin Cancer Biol 19:298–309. doi: 10.1016/j.semcancer.2009.05.004 PubMedCrossRefGoogle Scholar
  68. Fuchs E, Raghavan S (2002) Getting under the skin of epidermal morphogenesis. Nat Rev Genet 3:199–209. doi: 10.1038/nrg758 PubMedCrossRefGoogle Scholar
  69. Fujita Y, Krause G, Scheffner M et al (2002) Hakai, a c-Cbl-like protein, ubiquitinates and induces endocytosis of the E-cadherin complex. Nat Cell Biol 4:222–231. doi: 10.1038/ncb758 PubMedCrossRefGoogle Scholar
  70. Gaggioli C, Hooper S, Hidalgo-Carcedo C et al (2007) Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat Cell Biol 9:1392–1400. doi: 10.1038/ncb1658 PubMedCrossRefGoogle Scholar
  71. Gasparini G, Longo R (2012) The paradigm of personalized therapy in oncology. Expert Opin Ther Targets 16(Suppl 1):S7–S16. doi: 10.1517/14728222.2011.637921 PubMedCrossRefGoogle Scholar
  72. Gayther SA, Gorringe KL, Ramus SJ et al (1998) Identification of germ-line E-cadherin mutations in gastric cancer families of European origin. Cancer Res 58:4086–4089PubMedGoogle Scholar
  73. Giampietro C, Taddei A, Corada M et al (2012) Overlapping and divergent signaling pathways of N-cadherin and VE-cadherin in endothelial cells. Blood 119:2159–2170. doi: 10.1182/blood-2011-09-381012 PubMedCrossRefGoogle Scholar
  74. Gladden AB, Hebert AM, Schneeberger EE, McClatchey AI (2010) The NF2 tumor suppressor, Merlin, regulates epidermal development through the establishment of a junctional polarity complex. Dev Cell 19:727–739. doi: 10.1016/j.devcel.2010.10.008 PubMedPubMedCentralCrossRefGoogle Scholar
  75. Goetz JG, Minguet S, Navarro-Lérida I et al (2011) Biomechanical remodeling of the microenvironment by stromal caveolin-1 favors tumor invasion and metastasis. Cell 146:148–163. doi: 10.1016/j.cell.2011.05.040 PubMedPubMedCentralCrossRefGoogle Scholar
  76. Graff JR, Herman JG, Lapidus RG et al (1995) E-cadherin expression is silenced by DNA hypermethylation in human breast and prostate carcinomas. Cancer Res 55:5195–5199PubMedGoogle Scholar
  77. Graff JR, Greenberg VE, Herman JG et al (1998) Distinct patterns of E-cadherin CpG island methylation in papillary, follicular, Hurthle’s cell, and poorly differentiated human thyroid carcinoma. Cancer Res 58:2063–2066PubMedGoogle Scholar
  78. Graff JR, Gabrielson E, Fujii H et al (2000) Methylation patterns of the E-cadherin 5′ CpG island are unstable and reflect the dynamic, heterogeneous loss of E-cadherin expression during metastatic progression. J Biol Chem 275:2727–2732PubMedCrossRefGoogle Scholar
  79. Gregory PA, Bert AG, Paterson EL et al (2008) The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 10:593–601. doi: 10.1038/ncb1722 PubMedCrossRefGoogle Scholar
  80. Gregory DJ, Mikhaylova L, Fedulov AV (2012) Selective DNA demethylation by fusion of TDG with a sequence-specific DNA-binding domain. Epigenetics 7:344–349. doi: 10.4161/epi.19509 PubMedPubMedCentralCrossRefGoogle Scholar
  81. Grotegut S, von Schweinitz D, Christofori G, Lehembre F (2006) Hepatocyte growth factor induces cell scattering through MAPK/Egr-1-mediated upregulation of Snail. EMBO J 25:3534–3545. doi: 10.1038/sj.emboj.7601213 PubMedPubMedCentralCrossRefGoogle Scholar
  82. Gurevich-Panigrahi T, Panigrahi S, Wiechec E, Los M (2009) Obesity: pathophysiology and clinical management. Curr Med Chem 16:506–521PubMedCrossRefGoogle Scholar
  83. Ha CH, Bennett AM, Jin Z-G (2008) A novel role of vascular endothelial cadherin in modulating c-Src activation and downstream signaling of vascular endothelial growth factor. J Biol Chem 283(11):7261–7270. doi: 10.1074/jbc.M702881200 PubMedPubMedCentralCrossRefGoogle Scholar
  84. Haidari M, Zhang W, Caivano A et al (2012) Integrin α2β1 mediates tyrosine phosphorylation of vascular endothelial cadherin induced by invasive breast cancer cells. J Biol Chem 287:32981–32992. doi: 10.1074/jbc.M112.395905 PubMedPubMedCentralCrossRefGoogle Scholar
  85. Hamidov Z, Altendorf-Hofmann A, Chen Y et al (2011) Reduced expression of desmocollin 2 is an independent prognostic biomarker for shorter patients survival in pancreatic ductal adenocarcinoma. J Clin Pathol 64:990–994. doi: 10.1136/jclinpath-2011-200099 PubMedCrossRefGoogle Scholar
  86. Hammers CM, Stanley JR (2013) Desmoglein-1, differentiation, and disease. J Clin Invest 123(4):1419–1422. doi: 10.1172/JCI69071 PubMedPubMedCentralCrossRefGoogle Scholar
  87. Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86:353–364PubMedCrossRefGoogle Scholar
  88. Harmon RM, Simpson CL, Johnson JL, Koetsier JL, Dubash AD, Najor NA et al (2013) Desmoglein-1/Erbin interaction suppresses ERK activation to support epidermal differentiation. J Clin Invest 123(4):1556–1570. doi: 10.1172/JCI65220 PubMedPubMedCentralCrossRefGoogle Scholar
  89. Hazan RB, Qiao R, Keren R et al (2004) Cadherin switch in tumor progression. Ann N Y Acad Sci 1014:155–163PubMedCrossRefGoogle Scholar
  90. Hendrix MJ, Seftor EA, Meltzer PS et al (2001) Expression and functional significance of VE-cadherin in aggressive human melanoma cells: role in vasculogenic mimicry. Proc Natl Acad Sci U S A 98:8018–8023. doi: 10.1073/pnas.131209798 PubMedPubMedCentralCrossRefGoogle Scholar
  91. Herranz N, Pasini D, Díaz VM et al (2008) Polycomb complex 2 is required for E-cadherin repression by the Snail1 transcription factor. Mol Cell Biol 28:4772–4781. doi: 10.1128/MCB.00323-08 PubMedPubMedCentralCrossRefGoogle Scholar
  92. Hirate Y, Hirahara S, Inoue K-I et al (2013) Polarity-dependent distribution of angiomotin localizes Hippo signaling in preimplantation embryos. Curr Biol 23:1181–1194. doi: 10.1016/j.cub.2013.05.014 PubMedPubMedCentralCrossRefGoogle Scholar
  93. Hoffmann I, Balling R (1995) Cloning and expression analysis of a novel mesodermally expressed cadherin. Dev Biol 169:337–346. doi: 10.1006/dbio.1995.1148 PubMedCrossRefGoogle Scholar
  94. Hulit J, Suyama K, Chung S et al (2007) N-cadherin signaling potentiates mammary tumor metastasis via enhanced extracellular signal-regulated kinase activation. Cancer Res 67:3106–3116. doi: 10.1158/0008-5472.CAN-06-3401 PubMedCrossRefGoogle Scholar
  95. Hurteau GJ, Carlson JA, Spivack SD, Brock GJ (2007) Overexpression of the microRNA hsa-miR-200c leads to reduced expression of transcription factor 8 and increased expression of E-cadherin. Cancer Res 67:7972–7976. doi: 10.1158/0008-5472.CAN-07-1058 PubMedCrossRefGoogle Scholar
  96. Ihrie RA, Marques MR, Nguyen BT et al (2005) Perp is a p63-regulated gene essential for epithelial integrity. Cell 120:843–856. doi: 10.1016/j.cell.2005.01.008 PubMedCrossRefGoogle Scholar
  97. Jacobs K, Feys L, Vanhoecke B et al (2011) P-cadherin expression reduces melanoma growth, invasion, and responsiveness to growth factors in nude mice. Eur J Cancer Prev 20:207–216. doi: 10.1097/CEJ.0b013e3283429e8b PubMedCrossRefGoogle Scholar
  98. Jamora C, Lee P, Kocieniewski P et al (2005) A signaling pathway involving TGF-beta2 and snail in hair follicle morphogenesis. PLoS Biol 3:e11. doi: 10.1371/journal.pbio.0030011 PubMedPubMedCentralCrossRefGoogle Scholar
  99. Jemal A, Bray F, Center MM et al (2011) Global cancer statistics. CA Cancer J Clin 61:69–90. doi: 10.3322/caac.20107 PubMedCrossRefGoogle Scholar
  100. Jiang B-H, Liu L-Z (2008) PI3K/PTEN signaling in tumorigenesis and angiogenesis. Biochimica Et Biophysica Acta 1784(1):150–158. doi: 10.1016/j.bbapap.2007.09.008 PubMedCrossRefGoogle Scholar
  101. Jiang R, Shi Z, Johnson JJ et al (2011) Kallikrein-5 promotes cleavage of desmoglein-1 and loss of cell-cell cohesion in oral squamous cell carcinoma. J Biol Chem 286:9127–9135. doi: 10.1074/jbc.M110.191361 PubMedPubMedCentralCrossRefGoogle Scholar
  102. Johnson SK, Ramani VC, Hennings L, Haun RS (2007) Kallikrein 7 enhances pancreatic cancer cell invasion by shedding E-cadherin. Cancer 109:1811–1820. doi: 10.1002/cncr.22606 PubMedCrossRefGoogle Scholar
  103. Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Invest 119:1420–1428. doi: 10.1172/JCI39104 PubMedPubMedCentralCrossRefGoogle Scholar
  104. Kanai Y, Ushijima S, Tsuda H et al (2000) Aberrant DNA methylation precedes loss of heterozygosity on chromosome 16 in chronic hepatitis and liver cirrhosis. Cancer Lett 148:73–80PubMedCrossRefGoogle Scholar
  105. Katafiasz D, Smith LM, Wahl JK (2011) Slug (SNAI2) expression in oral SCC cells results in altered cell-cell adhesion and increased motility. Cell Adh Migr 5:315–322PubMedPubMedCentralCrossRefGoogle Scholar
  106. Kaur H, Phillips-Mason PJ, Burden-Gulley SM et al (2012) Cadherin-11, a marker of the mesenchymal phenotype, regulates glioblastoma cell migration and survival in vivo. Mol Cancer Res 10:293–304. doi: 10.1158/1541-7786.MCR-11-0457 PubMedPubMedCentralCrossRefGoogle Scholar
  107. Kershaw MH, Devaud C, John LB et al (2013) Enhancing immunotherapy using chemotherapy and radiation to modify the tumor microenvironment. Oncoimmunology 2:e25962. doi: 10.4161/onci.25962 PubMedPubMedCentralCrossRefGoogle Scholar
  108. Kim SH, Li Z, Sacks DB (2000) E-cadherin-mediated cell-cell attachment activates Cdc42. J Biol Chem 275:36999–37005. doi: 10.1074/jbc.M003430200 PubMedCrossRefGoogle Scholar
  109. Kim N-G, Koh E, Chen X, Gumbiner BM (2011) E-cadherin mediates contact inhibition of proliferation through Hippo signaling-pathway components. Proc Natl Acad Sci U S A 108:11930–11935. doi: 10.1073/pnas.1103345108 PubMedPubMedCentralCrossRefGoogle Scholar
  110. Kimura TE, Merritt AJ, Garrod DR (2007) Calcium-independent desmosomes of keratinocytes are hyper-adhesive. J Invest Dermatol 127:775–781. doi: 10.1038/sj.jid.5700643 PubMedCrossRefGoogle Scholar
  111. Klonisch T, Wiechec E, Hombach-Klonisch S et al (2008) Cancer stem cell markers in common cancers – therapeutic implications. Trends Mol Med 14:450–460. doi: 10.1016/j.molmed.2008.08.003 PubMedCrossRefGoogle Scholar
  112. Klucky B, Mueller R, Vogt I et al (2007) Kallikrein 6 induces E-cadherin shedding and promotes cell proliferation, migration, and invasion. Cancer Res 67:8198–8206. doi: 10.1158/0008-5472.CAN-07-0607 PubMedCrossRefGoogle Scholar
  113. Koehler A, Bataille F, Schmid C et al (2004) Gene expression profiling of colorectal cancer and metastases divides tumours according to their clinicopathological stage. J Pathol 204:65–74. doi: 10.1002/path.1606 PubMedCrossRefGoogle Scholar
  114. Kolegraff K, Nava P, Helms MN et al (2011) Loss of desmocollin-2 confers a tumorigenic phenotype to colonic epithelial cells through activation of Akt/β-catenin signaling. Mol Biol Cell 22:1121–1134. doi: 10.1091/mbc.E10-10-0845 PubMedPubMedCentralCrossRefGoogle Scholar
  115. Korpal M, Lee ES, Hu G, Kang Y (2008) The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem 283:14910–14914. doi: 10.1074/jbc.C800074200 PubMedPubMedCentralCrossRefGoogle Scholar
  116. Kotb AM, Hierholzer A, Kemler R (2011) Replacement of E-cadherin by N-cadherin in the mammary gland leads to fibrocystic changes and tumor formation. Breast Cancer Res 13:R104. doi: 10.1186/bcr3046 PubMedPubMedCentralCrossRefGoogle Scholar
  117. Kowalczyk AP, Green KJ (2013) Structure, function, and regulation of desmosomes. Prog Mol Biol Transl Sci 116:95–118. doi: 10.1016/B978-0-12-394311-8.00005-4 PubMedPubMedCentralCrossRefGoogle Scholar
  118. Kraemer A, Goodwin M, Verma S et al (2007) Rac is a dominant regulator of cadherin-directed actin assembly that is activated by adhesive ligation independently of Tiam1. Am J Physiol Cell Physiol 292:C1061–C1069. doi: 10.1152/ajpcell.00073.2006 PubMedCrossRefGoogle Scholar
  119. Kucharczak J, Charrasse S, Comunale F et al (2008) R-Cadherin expression inhibits myogenesis and induces myoblast transformation via Rac1 GTPase. Cancer Res 68:6559–6568. doi: 10.1158/0008-5472.CAN-08-0196 PubMedCrossRefGoogle Scholar
  120. Kurzen H, Münzing I, Hartschuh W (2003) Expression of desmosomal proteins in squamous cell carcinomas of the skin. J Cutan Pathol 30:621–630PubMedCrossRefGoogle Scholar
  121. Kyriakakis E, Maslova K, Philippova M et al (2012) T-Cadherin is an auxiliary negative regulator of EGFR pathway activity in cutaneous squamous cell carcinoma: impact on cell motility. J Invest Dermatol 132:2275–2285. doi: 10.1038/jid.2012.131 PubMedCrossRefGoogle Scholar
  122. Labelle M, Schnittler HJ, Aust DE et al (2008) Vascular endothelial cadherin promotes breast cancer progression via transforming growth factor beta signaling. Cancer Res 68:1388–1397. doi: 10.1158/0008-5472.CAN-07-2706 PubMedCrossRefGoogle Scholar
  123. Lammens T, Swerts K, Derycke L et al (2012) N-cadherin in neuroblastoma disease: expression and clinical significance. PLoS One 7:e31206. doi: 10.1371/journal.pone.0031206 PubMedPubMedCentralCrossRefGoogle Scholar
  124. Lampugnani MG, Orsenigo F, Gagliani MC et al (2006) Vascular endothelial cadherin controls VEGFR-2 internalization and signaling from intracellular compartments. J Cell Biol 174:593–604. doi: 10.1083/jcb.200602080 PubMedPubMedCentralCrossRefGoogle Scholar
  125. Lebeau S, Masouyé I, Berti M, Augsburger E, Saurat J-H, Borradori L, Fontao L (2005) Comparative analysis of the expression of ERBIN and Erb-B2 in normal human skin and cutaneous carcinomas. Br J Dermatol 152(6):1248–1255. doi: 10.1111/j.1365-2133.2005.06687.x PubMedCrossRefGoogle Scholar
  126. Lee SW (1996) H-cadherin, a novel cadherin with growth inhibitory functions and diminished expression in human breast cancer. Nat Med 2:776–782PubMedCrossRefGoogle Scholar
  127. Lee M-Y, Chou C-Y, Tang M-J, Shen M-R (2008) Epithelial-mesenchymal transition in cervical cancer: correlation with tumor progression, epidermal growth factor receptor overexpression, and snail up-regulation. Clin Cancer Res 14:4743–4750. doi: 10.1158/1078-0432.CCR-08-0234 PubMedCrossRefGoogle Scholar
  128. Lei Q-Y, Zhang H, Zhao B et al (2008) TAZ promotes cell proliferation and epithelial-mesenchymal transition and is inhibited by the hippo pathway. Mol Cell Biol 28:2426–2436. doi: 10.1128/MCB.01874-07 PubMedPubMedCentralCrossRefGoogle Scholar
  129. Leight JL, Wozniak MA, Chen S et al (2012) Matrix rigidity regulates a switch between TGF-β1-induced apoptosis and epithelial-mesenchymal transition. Mol Biol Cell 23:781–791. doi: 10.1091/mbc.E11-06-0537 PubMedPubMedCentralCrossRefGoogle Scholar
  130. Leong KG, Niessen K, Kulic I et al (2007) Jagged1-mediated Notch activation induces epithelial-to-mesenchymal transition through Slug-induced repression of E-cadherin. J Exp Med 204:2935–2948. doi: 10.1084/jem.20071082 PubMedPubMedCentralCrossRefGoogle Scholar
  131. Leroy P, Mostov KE (2007) Slug is required for cell survival during partial epithelial-mesenchymal transition of HGF-induced tubulogenesis. Mol Biol Cell 18:1943–1952. doi: 10.1091/mbc.E06-09-0823 PubMedPubMedCentralCrossRefGoogle Scholar
  132. Li Y, Laterra J (2012) Cancer stem cells: distinct entities or dynamically regulated phenotypes? Cancer Res 72:576–580. doi: 10.1158/0008-5472.CAN-11-3070 PubMedPubMedCentralCrossRefGoogle Scholar
  133. Li L, Ying J, Li H et al (2012) The human cadherin 11 is a pro-apoptotic tumor suppressor modulating cell stemness through Wnt/β-catenin signaling and silenced in common carcinomas. Oncogene 31:3901–3912. doi: 10.1038/onc.2011.541 PubMedPubMedCentralCrossRefGoogle Scholar
  134. Liao F, Li Y, O’Connor W et al (2000) Monoclonal antibody to vascular endothelial-cadherin is a potent inhibitor of angiogenesis, tumor growth, and metastasis. Cancer Res 60:6805–6810PubMedGoogle Scholar
  135. Libusova L, Stemmler MP, Hierholzer A et al (2010) N-cadherin can structurally substitute for E-cadherin during intestinal development but leads to polyp formation. Development 137:2297–2305. doi: 10.1242/dev.048488 PubMedCrossRefGoogle Scholar
  136. Liu-Chittenden Y, Huang B, Shim JS et al (2012) Genetic and pharmacological disruption of the TEAD-YAP complex suppresses the oncogenic activity of YAP. Genes Dev 26:1300–1305. doi: 10.1101/gad.192856.112 PubMedPubMedCentralCrossRefGoogle Scholar
  137. Lochter A, Galosy S, Muschler J et al (1997) Matrix metalloproteinase stromelysin-1 triggers a cascade of molecular alterations that leads to stable epithelial-to-mesenchymal conversion and a premalignant phenotype in mammary epithelial cells. J Cell Biol 139:1861–1872PubMedPubMedCentralCrossRefGoogle Scholar
  138. Ma L, Young J, Prabhala H et al (2010) miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol 12:247–256. doi: 10.1038/ncb2024 PubMedPubMedCentralGoogle Scholar
  139. Machado JC, Oliveira C, Carvalho R et al (2001) E-cadherin gene (CDH1) promoter methylation as the second hit in sporadic diffuse gastric carcinoma. Oncogene 20:1525–1528. doi: 10.1038/sj.onc.1204234 PubMedCrossRefGoogle Scholar
  140. Makrilia N, Kollias A, Manolopoulos L, Syrigos K (2009) Cell adhesion molecules: role and clinical significance in cancer. Cancer Invest 27:1023–1037. doi: 10.3109/07357900902769749 PubMedCrossRefGoogle Scholar
  141. Marchong MN, Yurkowski C, Ma C et al (2010) Cdh11 acts as a tumor suppressor in a murine retinoblastoma model by facilitating tumor cell death. PLoS Genet 6:e1000923. doi: 10.1371/journal.pgen.1000923 PubMedPubMedCentralCrossRefGoogle Scholar
  142. Mateus AR, Seruca R, Machado JC et al (2007) EGFR regulates RhoA-GTP dependent cell motility in E-cadherin mutant cells. Hum Mol Genet 16:1639–1647. doi: 10.1093/hmg/ddm113 PubMedCrossRefGoogle Scholar
  143. Mateus AR, Simões-Correia J, Figueiredo J et al (2009) E-cadherin mutations and cell motility: a genotype-phenotype correlation. Exp Cell Res 315:1393–1402. doi: 10.1016/j.yexcr.2009.02.020 PubMedCrossRefGoogle Scholar
  144. May CD, Sphyris N, Evans KW et al (2011) Epithelial-mesenchymal transition and cancer stem cells: a dangerously dynamic duo in breast cancer progression. Breast Cancer Res 13:202. doi: 10.1186/bcr2789 PubMedPubMedCentralCrossRefGoogle Scholar
  145. McCrea PD, Turck CW, Gumbiner B (1991) A homolog of the armadillo protein in Drosophila (plakoglobin) associated with E-cadherin. Science 254:1359–1361PubMedCrossRefGoogle Scholar
  146. McEwen AE, Escobar DE, Gottardi CJ (2012) Signaling from the adherens junction. Sub-Cell Biochem 60:171–196. doi: 10.1007/978-94-007-4186-7_8 CrossRefGoogle Scholar
  147. Minn AJ, Gupta GP, Siegel PM et al (2005) Genes that mediate breast cancer metastasis to lung. Nature 436:518–524. doi: 10.1038/nature03799 PubMedPubMedCentralCrossRefGoogle Scholar
  148. Miotto E, Sabbioni S, Veronese A et al (2004) Frequent aberrant methylation of the CDH4 gene promoter in human colorectal and gastric cancer. Cancer Res 64:8156–8159. doi: 10.1158/0008-5472.CAN-04-3000 PubMedCrossRefGoogle Scholar
  149. Mo J-S, Meng Z, Kim YC et al (2015) Cellular energy stress induces AMPK-mediated regulation of YAP and the Hippo pathway. Nat Cell Biol 17:500–510. doi: 10.1038/ncb3111 PubMedPubMedCentralCrossRefGoogle Scholar
  150. Mosesson Y, Mills GB, Yarden Y (2008) Derailed endocytosis: an emerging feature of cancer. Nat Rev Cancer 8:835–850. doi: 10.1038/nrc2521 PubMedCrossRefGoogle Scholar
  151. Nakagawa M, Fukata M, Yamaga M et al (2001) Recruitment and activation of Rac1 by the formation of E-cadherin-mediated cell-cell adhesion sites. J Cell Sci 114:1829–1838PubMedGoogle Scholar
  152. Nakajima G, Patino-Garcia A, Bruheim S et al (2008) CDH11 expression is associated with survival in patients with osteosarcoma. Cancer Genomics Proteomics 5:37–42PubMedGoogle Scholar
  153. Nass SJ, Herman JG, Gabrielson E et al (2000) Aberrant methylation of the estrogen receptor and E-cadherin 5′ CpG islands increases with malignant progression in human breast cancer. Cancer Res 60:4346–4348PubMedGoogle Scholar
  154. Näthke IS, Hinck L, Swedlow JR et al (1994) Defining interactions and distributions of cadherin and catenin complexes in polarized epithelial cells. J Cell Biol 125:1341–1352PubMedCrossRefGoogle Scholar
  155. Nieman MT, Prudoff RS, Johnson KR, Wheelock MJ (1999) N-cadherin promotes motility in human breast cancer cells regardless of their E-cadherin expression. J Cell Biol 147:631–644PubMedPubMedCentralCrossRefGoogle Scholar
  156. Niessen K, Fu Y, Chang L et al (2008) Slug is a direct Notch target required for initiation of cardiac cushion cellularization. J Cell Biol 182:315–325. doi: 10.1083/jcb.200710067 PubMedPubMedCentralCrossRefGoogle Scholar
  157. Nishioka N, Inoue K-I, Adachi K et al (2009) The Hippo signaling pathway components Lats and Yap pattern Tead4 activity to distinguish mouse trophectoderm from inner cell mass. Dev Cell 16:398–410. doi: 10.1016/j.devcel.2009.02.003 PubMedCrossRefGoogle Scholar
  158. Noë V, Fingleton B, Jacobs K et al (2001) Release of an invasion promoter E-cadherin fragment by matrilysin and stromelysin-1. J Cell Sci 114:111–118PubMedGoogle Scholar
  159. Noren NK, Niessen CM, Gumbiner BM, Burridge K (2001) Cadherin engagement regulates Rho family GTPases. J Biol Chem 276:33305–33308. doi: 10.1074/jbc.C100306200 PubMedCrossRefGoogle Scholar
  160. Novak A, Hsu SC, Leung-Hagesteijn C et al (1998) Cell adhesion and the integrin-linked kinase regulate the LEF-1 and beta-catenin signaling pathways. Proc Natl Acad Sci U S A 95:4374–4379PubMedPubMedCentralCrossRefGoogle Scholar
  161. Nyberg P, Xie L, Kalluri R (2005) Endogenous inhibitors of angiogenesis. Cancer Res 65:3967–3979. doi: 10.1158/0008-5472.CAN-04-2427 PubMedCrossRefGoogle Scholar
  162. O’Shea C, Fitzpatrick JE, Koch PJ (2014) Desmosomal defects in acantholytic squamous cell carcinomas. J Cutan Pathol 41:873–879. doi: 10.1111/cup.12390 PubMedPubMedCentralCrossRefGoogle Scholar
  163. Oki Y, Issa J-PJ (2010) Epigenetic mechanisms in AML – a target for therapy. Cancer Treat Res 145:19–40. doi: 10.1007/978-0-387-69259-3_2 PubMedCrossRefGoogle Scholar
  164. Oliveira C, Pinheiro H, Figueiredo J et al (2013) E-cadherin alterations in hereditary disorders with emphasis on hereditary diffuse gastric cancer. Prog Mol Biol Transl Sci 116:337–359. doi: 10.1016/B978-0-12-394311-8.00015-7 PubMedCrossRefGoogle Scholar
  165. Oloumi A, McPhee T, Dedhar S (2004) Regulation of E-cadherin expression and beta-catenin/Tcf transcriptional activity by the integrin-linked kinase. Biochim Biophys Acta 1691:1–15. doi: 10.1016/j.bbamcr.2003.12.002 PubMedCrossRefGoogle Scholar
  166. Oshiro MM, Kim CJ, Wozniak RJ et al (2005) Epigenetic silencing of DSC3 is a common event in human breast cancer. Breast Cancer Res 7:R669–R680. doi: 10.1186/bcr1273 PubMedPubMedCentralCrossRefGoogle Scholar
  167. Overholtzer M, Zhang J, Smolen GA et al (2006) Transforming properties of YAP, a candidate oncogene on the chromosome 11q22 amplicon. Proc Natl Acad Sci U S A 103:12405–12410. doi: 10.1073/pnas.0605579103 PubMedPubMedCentralCrossRefGoogle Scholar
  168. Paredes J, Albergaria A, Oliveira JT et al (2005) P-cadherin overexpression is an indicator of clinical outcome in invasive breast carcinomas and is associated with CDH3 promoter hypomethylation. Clin Cancer Res 11:5869–5877. doi: 10.1158/1078-0432.CCR-05-0059 PubMedCrossRefGoogle Scholar
  169. Paredes J, Correia AL, Ribeiro AS et al (2008) Breast carcinomas that co-express E- and P-cadherin are associated with p120-catenin cytoplasmic localisation and poor patient survival. J Clin Pathol 61:856–862. doi: 10.1136/jcp.2007.052704 PubMedCrossRefGoogle Scholar
  170. Park S-M, Gaur AB, Lengyel E, Peter ME (2008) The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev 22:894–907. doi: 10.1101/gad.1640608 PubMedPubMedCentralCrossRefGoogle Scholar
  171. Peglion F, Llense F, Etienne-Manneville S (2014) Adherens junction treadmilling during collective migration. Nat Cell Biol 16:639–651. doi: 10.1038/ncb2985 PubMedCrossRefGoogle Scholar
  172. Peinado H, Ballestar E, Esteller M, Cano A (2004) Snail mediates E-cadherin repression by the recruitment of the Sin3A/histone deacetylase 1 (HDAC1)/HDAC2 complex. Mol Cell Biol 24:306–319PubMedPubMedCentralCrossRefGoogle Scholar
  173. Philippova M, Pfaff D, Kyriakakis E et al (2013) T-cadherin loss promotes experimental metastasis of squamous cell carcinoma. Eur J Cancer 49:2048–2058. doi: 10.1016/j.ejca.2012.12.026 PubMedCrossRefGoogle Scholar
  174. Pinho SS, Osório H, Nita-Lazar M et al (2009) Role of E-cadherin N-glycosylation profile in a mammary tumor model. Biochem Biophys Res Commun 379:1091–1096. doi: 10.1016/j.bbrc.2009.01.024 PubMedCrossRefGoogle Scholar
  175. Pinho SS, Seruca R, Gärtner F et al (2011) Modulation of E-cadherin function and dysfunction by N-glycosylation. Cell Mol Life Sci 68:1011–1020. doi: 10.1007/s00018-010-0595-0 PubMedCrossRefGoogle Scholar
  176. Qian X, Karpova T, Sheppard AM et al (2004) E-cadherin-mediated adhesion inhibits ligand-dependent activation of diverse receptor tyrosine kinases. EMBO J 23:1739–1748. doi: 10.1038/sj.emboj.7600136 PubMedPubMedCentralCrossRefGoogle Scholar
  177. Ranscht B, Dours-Zimmermann MT (1991) T-cadherin, a novel cadherin cell adhesion molecule in the nervous system lacks the conserved cytoplasmic region. Neuron 7:391–402PubMedCrossRefGoogle Scholar
  178. Rezaei M, Friedrich K, Wielockx B et al (2012) Interplay between neural-cadherin and vascular endothelial-cadherin in breast cancer progression. Breast Cancer Res 14:R154. doi: 10.1186/bcr3367 PubMedPubMedCentralCrossRefGoogle Scholar
  179. Ribeiro AS, Sousa B, Carreto L et al (2013) P-cadherin functional role is dependent on E-cadherin cellular context: a proof of concept using the breast cancer model. J Pathol 229:705–718. doi: 10.1002/path.4143 PubMedCrossRefGoogle Scholar
  180. Rodriguez FJ, Lewis-Tuffin LJ, Anastasiadis PZ (2012) E-cadherin’s dark side: possible role in tumor progression. Biochim Biophys Acta 1826:23–31. doi: 10.1016/j.bbcan.2012.03.002 PubMedPubMedCentralGoogle Scholar
  181. Rudini N, Felici A, Giampietro C et al (2008) VE-cadherin is a critical endothelial regulator of TGF-beta signalling. EMBO J 27:993–1004. doi: 10.1038/emboj.2008.46 PubMedPubMedCentralCrossRefGoogle Scholar
  182. Ruhrberg C, Watt FM (1997) The plakin family: versatile organizers of cytoskeletal architecture. Curr Opin Genet Dev 7:392–397PubMedCrossRefGoogle Scholar
  183. Sahlgren C, Gustafsson MV, Jin S et al (2008) Notch signaling mediates hypoxia-induced tumor cell migration and invasion. Proc Natl Acad Sci U S A 105:6392–6397. doi: 10.1073/pnas.0802047105 PubMedPubMedCentralCrossRefGoogle Scholar
  184. Sanchez-Heras E, Howell FV, Williams G, Doherty P (2006) The fibroblast growth factor receptor acid box is essential for interactions with N-cadherin and all of the major isoforms of neural cell adhesion molecule. J Biol Chem 281:35208–35216. doi: 10.1074/jbc.M608655200 PubMedCrossRefGoogle Scholar
  185. Sarrio D, Rodriguez-Pinilla SM, Hardisson D et al (2008) Epithelial-mesenchymal transition in breast cancer relates to the basal-like phenotype. Cancer Res 68:989–997. doi: 10.1158/0008-5472.CAN-07-2017 PubMedCrossRefGoogle Scholar
  186. Schmitt CJ, Franke WW, Goerdt S et al (2007) Homo- and heterotypic cell contacts in malignant melanoma cells and desmoglein 2 as a novel solitary surface glycoprotein. J Invest Dermatol 127:2191–2206. doi: 10.1038/sj.jid.5700849 PubMedCrossRefGoogle Scholar
  187. Schober M, Fuchs E (2011) Tumor-initiating stem cells of squamous cell carcinomas and their control by TGF-β and integrin/focal adhesion kinase (FAK) signaling. Proc Natl Acad Sci U S A 108:10544–10549. doi: 10.1073/pnas.1107807108 PubMedPubMedCentralCrossRefGoogle Scholar
  188. Schulenburg A, Ulrich-Pur H, Thurnher D et al (2006) Neoplastic stem cells: a novel therapeutic target in clinical oncology. Cancer 107:2512–2520. doi: 10.1002/cncr.22277 PubMedCrossRefGoogle Scholar
  189. Serrano I, McDonald PC, Lock FE, Dedhar S (2013) Role of the integrin-linked kinase (ILK)/Rictor complex in TGFβ-1-induced epithelial-mesenchymal transition (EMT). Oncogene 32:50–60. doi: 10.1038/onc.2012.30 PubMedCrossRefGoogle Scholar
  190. Shamir ER, Pappalardo E, Jorgens DM et al (2014) Twist1-induced dissemination preserves epithelial identity and requires E-cadherin. J Cell Biol 204:839–856. doi: 10.1083/jcb.201306088 PubMedPubMedCentralCrossRefGoogle Scholar
  191. Shen Y, Hirsch DS, Sasiela CA, Wu WJ (2008) Cdc42 regulates E-cadherin ubiquitination and degradation through an epidermal growth factor receptor to Src-mediated pathway. J Biol Chem 283:5127–5137. doi: 10.1074/jbc.M703300200 PubMedCrossRefGoogle Scholar
  192. Shintani Y, Fukumoto Y, Chaika N et al (2008) ADH-1 suppresses N-cadherin-dependent pancreatic cancer progression. Int J Cancer 122:71–77. doi: 10.1002/ijc.23027 PubMedCrossRefGoogle Scholar
  193. Simões-Correia J, Figueiredo J, Oliveira C et al (2008) Endoplasmic reticulum quality control: a new mechanism of E-cadherin regulation and its implication in cancer. Hum Mol Genet 17:3566–3576. doi: 10.1093/hmg/ddn249 PubMedCrossRefGoogle Scholar
  194. Smith AG (2001) Embryo-derived stem cells: of mice and men. Annu Rev Cell Dev Biol 17:435–462. doi: 10.1146/annurev.cellbio.17.1.435 PubMedCrossRefGoogle Scholar
  195. Smutny M, Cox HL, Leerberg JM et al (2010) Myosin II isoforms identify distinct functional modules that support integrity of the epithelial zonula adherens. Nat Cell Biol 12:696–702. doi: 10.1038/ncb2072 PubMedPubMedCentralCrossRefGoogle Scholar
  196. Soncin F, Mohamet L, Ritson S et al (2011) E-cadherin acts as a regulator of transcripts associated with a wide range of cellular processes in mouse embryonic stem cells. PLoS One 6:e21463. doi: 10.1371/journal.pone.0021463 PubMedPubMedCentralCrossRefGoogle Scholar
  197. Sonnenberg A, Liem RKH (2007) Plakins in development and disease. Exp Cell Res 313:2189–2203. doi: 10.1016/j.yexcr.2007.03.039 PubMedCrossRefGoogle Scholar
  198. Soto E, Yanagisawa M, Marlow LA et al (2008) p120 catenin induces opposing effects on tumor cell growth depending on E-cadherin expression. J Cell Biol 183:737–749. doi: 10.1083/jcb.200805113 PubMedPubMedCentralCrossRefGoogle Scholar
  199. Spaderna S, Schmalhofer O, Hlubek F et al (2006) A transient, EMT-linked loss of basement membranes indicates metastasis and poor survival in colorectal cancer. Gastroenterology 131:830–840. doi: 10.1053/j.gastro.2006.06.016 PubMedCrossRefGoogle Scholar
  200. Spencer HL, Eastham AM, Merry CLR et al (2007) E-cadherin inhibits cell surface localization of the pro-migratory 5T4 oncofetal antigen in mouse embryonic stem cells. Mol Biol Cell 18:2838–2851. doi: 10.1091/mbc.E06-09-0875 PubMedPubMedCentralCrossRefGoogle Scholar
  201. Spoelstra NS, Manning NG, Higashi Y et al (2006) The transcription factor ZEB1 is aberrantly expressed in aggressive uterine cancers. Cancer Res 66:3893–3902. doi: 10.1158/0008-5472.CAN-05-2881 PubMedCrossRefGoogle Scholar
  202. Stahley SN, Kowalczyk AP (2015) Desmosomes in acquired disease. Cell Tissue Res 360:439–456. doi: 10.1007/s00441-015-2155-2 PubMedPubMedCentralCrossRefGoogle Scholar
  203. Strathdee G (2002) Epigenetic versus genetic alterations in the inactivation of E-cadherin. Semin Cancer Biol 12:373–379PubMedCrossRefGoogle Scholar
  204. Sun L, Hu H, Peng L et al (2011) P-cadherin promotes liver metastasis and is associated with poor prognosis in colon cancer. Am J Pathol 179:380–390. doi: 10.1016/j.ajpath.2011.03.046 PubMedPubMedCentralCrossRefGoogle Scholar
  205. Suyama K, Shapiro I, Guttman M, Hazan RB (2002) A signaling pathway leading to metastasis is controlled by N-cadherin and the FGF receptor. Cancer Cell 2:301–314PubMedCrossRefGoogle Scholar
  206. Symowicz J, Adley BP, Gleason KJ et al (2007) Engagement of collagen-binding integrins promotes matrix metalloproteinase-9-dependent E-cadherin ectodomain shedding in ovarian carcinoma cells. Cancer Res 67:2030–2039. doi: 10.1158/0008-5472.CAN-06-2808 PubMedCrossRefGoogle Scholar
  207. Tada H, Hatoko M, Tanaka A, Kuwahara M, Muramatsu T (2000) Expression of desmoglein I and plakoglobin in skin carcinomas. J Cutan Pathol 27(1):24–29PubMedCrossRefGoogle Scholar
  208. Takeuchi T, Ohtsuki Y (2001) Recent progress in T-cadherin (CDH13, H-cadherin) research. Histol Histopathol 16:1287–1293PubMedGoogle Scholar
  209. Tambe DT, Hardin CC, Angelini TE et al (2011) Collective cell guidance by cooperative intercellular forces. Nat Mater 10:469–475. doi: 10.1038/nmat3025 PubMedPubMedCentralCrossRefGoogle Scholar
  210. Tamura D, Hiraga T, Myoui A et al (2008) Cadherin-11-mediated interactions with bone marrow stromal/osteoblastic cells support selective colonization of breast cancer cells in bone. Int J Oncol 33:17–24PubMedGoogle Scholar
  211. Tan H-X, Wang Q, Chen L-Z et al (2010) MicroRNA-9 reduces cell invasion and E-cadherin secretion in SK-Hep-1 cell. Med Oncol 27:654–660. doi: 10.1007/s12032-009-9264-2 PubMedCrossRefGoogle Scholar
  212. Tanaka H, Kono E, Tran CP et al (2010) Monoclonal antibody targeting of N-cadherin inhibits prostate cancer growth, metastasis and castration resistance. Nat Med 16:1414–1420. doi: 10.1038/nm.2236 PubMedPubMedCentralCrossRefGoogle Scholar
  213. Taniuchi K, Nakagawa H, Hosokawa M et al (2005) Overexpressed P-cadherin/CDH3 promotes motility of pancreatic cancer cells by interacting with p120ctn and activating rho-family GTPases. Cancer Res 65:3092–3099. doi: 10.1158/0008.5472.CAN-04-3646 PubMedGoogle Scholar
  214. Thiery JP (2002) Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2:442–454. doi: 10.1038/nrc822 PubMedCrossRefGoogle Scholar
  215. Thiery JP, Acloque H, Huang RYJ, Nieto MA (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139:871–890. doi: 10.1016/j.cell.2009.11.007 PubMedCrossRefGoogle Scholar
  216. Thuault S, Hayashi S, Lagirand-Cantaloube J et al (2013) P-cadherin is a direct PAX3-FOXO1A target involved in alveolar rhabdomyosarcoma aggressiveness. Oncogene 32:1876–1887. doi: 10.1038/onc.2012.217 PubMedCrossRefGoogle Scholar
  217. Tomita K, van Bokhoven A, van Leenders GJ et al (2000) Cadherin switching in human prostate cancer progression. Cancer Res 60:3650–3654PubMedGoogle Scholar
  218. Trepat X, Fredberg JJ (2011) Plithotaxis and emergent dynamics in collective cellular migration. Trends Cell Biol 21:638–646. doi: 10.1016/j.tcb.2011.06.006 PubMedPubMedCentralCrossRefGoogle Scholar
  219. Trojan L, Schaaf A, Steidler A et al (2005) Identification of metastasis-associated genes in prostate cancer by genetic profiling of human prostate cancer cell lines. Anticancer Res 25:183–191PubMedGoogle Scholar
  220. Tsang SM, Liu L, Teh M-T, Wheeler A, Grose R, Hart IR et al (2010) Desmoglein 3, via an interaction with E-cadherin, is associated with activation of Src. PLoS One 5(12):e14211. doi: 10.1371/journal.pone.0014211 PubMedPubMedCentralCrossRefGoogle Scholar
  221. Tsang SM, Brown L, Gadmor H, Gammon L, Fortune F, Wheeler A, Wan H (2012) Desmoglein 3 acting as an upstream regulator of Rho GTPases, Rac-1/Cdc42 in the regulation of actin organisation and dynamics. Exp Cell Res 318(18):2269–2283. doi: 10.1016/j.yexcr.2012.07.002 PubMedCrossRefGoogle Scholar
  222. Turashvili G, McKinney SE, Goktepe O et al (2011) P-cadherin expression as a prognostic biomarker in a 3992 case tissue microarray series of breast cancer. Mod Pathol 24:64–81. doi: 10.1038/modpathol.2010.189 PubMedCrossRefGoogle Scholar
  223. Van Marck V, Stove C, Van Den Bossche K et al (2005) P-cadherin promotes cell-cell adhesion and counteracts invasion in human melanoma. Cancer Res 65:8774–8783. doi: 10.1158/0008-5472.CAN-04-4414 PubMedCrossRefGoogle Scholar
  224. Van Marck V, Stove C, Jacobs K et al (2011) P-cadherin in adhesion and invasion: opposite roles in colon and bladder carcinoma. Int J Cancer 128:1031–1044. doi: 10.1002/ijc.25427 PubMedCrossRefGoogle Scholar
  225. van Roy F, Berx G (2008) The cell-cell adhesion molecule E-cadherin. Cell Mol Life Sci 65:3756–3788. doi: 10.1007/s00018-008-8281-1 PubMedCrossRefGoogle Scholar
  226. van Zijl F, Krupitza G, Mikulits W (2011) Initial steps of metastasis: cell invasion and endothelial transmigration. Mutat Res 728:23–34. doi: 10.1016/j.mrrev.2011.05.002 PubMedPubMedCentralCrossRefGoogle Scholar
  227. Vandewalle C, Comijn J, De Craene B et al (2005) SIP1/ZEB2 induces EMT by repressing genes of different epithelial cell-cell junctions. Nucleic Acids Res 33:6566–6578. doi: 10.1093/nar/gki965 PubMedPubMedCentralCrossRefGoogle Scholar
  228. Virani S, Virani S, Colacino JA et al (2012) Cancer epigenetics: a brief review. ILAR J 53:359–369. doi: 10.1093/ilar.53.3-4.359 PubMedPubMedCentralCrossRefGoogle Scholar
  229. Vlahova L, Doerflinger Y, Houben R et al (2012) P-cadherin expression in Merkel cell carcinomas is associated with prolonged recurrence-free survival. Br J Dermatol 166:1043–1052. doi: 10.1111/j.1365-2133.2012.10853.x PubMedCrossRefGoogle Scholar
  230. von Burstin J, Eser S, Paul MC et al (2009) E-cadherin regulates metastasis of pancreatic cancer in vivo and is suppressed by a SNAIL/HDAC1/HDAC2 repressor complex. Gastroenterology 137:361–71–371.e1–5. doi: 10.1053/j.gastro.2009.04.004
  231. Wang W, Xiao Z-D, Li X et al (2015) AMPK modulates Hippo pathway activity to regulate energy homeostasis. Nat Cell Biol 17:490–499. doi: 10.1038/ncb3113 PubMedPubMedCentralCrossRefGoogle Scholar
  232. Werling AM, Doerflinger Y, Brandner JM et al (2011) Homo- and heterotypic cell-cell contacts in Merkel cells and Merkel cell carcinomas: heterogeneity and indications for cadherin switching. Histopathology 58:286–303. doi: 10.1111/j.1365-2559.2011.03748.x PubMedCrossRefGoogle Scholar
  233. Wheelock MJ, Shintani Y, Maeda M et al (2008) Cadherin switching. J Cell Sci 121:727–735. doi: 10.1242/jcs.000455 PubMedCrossRefGoogle Scholar
  234. Wicha MS, Liu S, Dontu G (2006) Cancer stem cells: an old idea--a paradigm shift. Cancer Res 66:1883–1890–discussion 1895–6. doi: 10.1158/0008-5472.CAN-05-3153
  235. Williams EJ, Furness J, Walsh FS, Doherty P (1994) Activation of the FGF receptor underlies neurite outgrowth stimulated by L1, N-CAM, and N-cadherin. Neuron 13:583–594PubMedCrossRefGoogle Scholar
  236. Yashiro M, Nishioka N, Hirakawa K (2006) Decreased expression of the adhesion molecule desmoglein-2 is associated with diffuse-type gastric carcinoma. Eur J Cancer 42:2397–2403. doi: 10.1016/j.ejca.2006.03.024 PubMedCrossRefGoogle Scholar
  237. Zanetta L, Corada M, Grazia Lampugnani M et al (2005) Downregulation of vascular endothelial-cadherin expression is associated with an increase in vascular tumor growth and hemorrhagic complications. Thromb Haemost 93:1041–1046. doi: 10.1267/THRO05061041 PubMedGoogle Scholar
  238. Zeisberg M, Hanai J-I, Sugimoto H et al (2003) BMP-7 counteracts TGF-beta1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat Med 9:964–968. doi: 10.1038/nm888 PubMedCrossRefGoogle Scholar
  239. Zhang CC, Yan Z, Zhang Q et al (2010) PF-03732010: a fully human monoclonal antibody against P-cadherin with antitumor and antimetastatic activity. Clin Cancer Res 16:5177–5188. doi: 10.1158/1078-0432.CCR-10-1343 PubMedCrossRefGoogle Scholar
  240. Zhao B, Ye X, Yu J et al (2008) TEAD mediates YAP-dependent gene induction and growth control. Genes Dev 22:1962–1971. doi: 10.1101/gad.1664408 PubMedPubMedCentralCrossRefGoogle Scholar
  241. Zhurinsky J, Shtutman M, Ben-Ze’ev A (2000) Plakoglobin and beta-catenin: protein interactions, regulation and biological roles. J Cell Sci 113(Pt 18):3127–3139PubMedGoogle Scholar
  242. Zohn IE, Li Y, Skolnik EY et al (2006) p38 and a p38-interacting protein are critical for downregulation of E-cadherin during mouse gastrulation. Cell 125:957–969. doi: 10.1016/j.cell.2006.03.048 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  • Lauren V. Albrecht
    • 1
  • Kathleen J. Green
    • 1
    • 2
  • Adi D. Dubash
    • 1
    • 3
    Email author
  1. 1.Department of PathologyNorthwestern University Feinberg School of MedicineChicagoUSA
  2. 2.Department of DermatologyNorthwestern University Feinberg School of MedicineChicagoUSA
  3. 3.Department of BiologyFurman UniversityGreenvilleUSA

Personalised recommendations