Advertisement

Cadherins in the Auditory Sensory Organ

  • Aziz El-AmraouiEmail author
  • Christine PetitEmail author
Chapter

Abstract

The exquisite sensitivity and frequency tuning of hearing depend on the correct structure and functioning of the auditory sensory hair cells, the neighbouring supporting cells, and the homeostasis of their ionic environment. The increasing number of adhesion proteins identified as causing hearing impairment in humans and mice when defective is consistent with a critical role for cell–cell junctions between neighbouring epithelial cells of the cochlea, and of fibrous links within the hair bundle, the sensory hair cell structure responsible for sound reception. Classical cadherins and/or associated adherens-junction proteins, such as p120-catenin or nectin 3, have been shown to be essential for establishment of the regular mosaic cellular pattern of the auditory sensory epithelium. Two cadherin-related proteins, protocadherin-15 and cadherin-23, are key components of both lateral links and tip-links in hair bundles; they are essential components of the mechanoelectrical transduction machinery. Studies of the role of these adhesion proteins and of the pathogenesis of the forms of deafness caused by defects of these proteins have provided considerable insight into the development and functioning of the auditory sensory epithelium, and of the hair cells in particular.

Keywords

Cadherins Usher syndrome Deafness Convergent extension Planar cell polarity Cell-cell contacts Tip-link Stereocilia 

Notes

Acknowledgements

We thank Jean-Pierre Hardelin for critical reading of the manuscript, and Jacques Boutet de Monvel for useful comments. We apologise for omitting to cite certain references, due to space constraints. The work of the authors is supported by Institut Pasteur, INSERM, the European Union Seventh Framework Programme, under grant agreement HEALTH-F2-2010-242013 (TREATRUSH), LHW-Stiftung, Fondation Raymonde & Guy Strittmatter, Fighting Blindness, FAUN Stiftung (Suchert Foundation), Conny Maeva Charitable Foundation, Fondation Orange, European Research Council (ERC) advanced grant “Hair bundle” (ERC-2011-AdG 294570), LABEX Lifesenses [ANR-10-LABX-65], the French National Research Agency (ANR) as part of the second “Investissements d’Avenir” programme (ANR-15-RHUS-0001), Retina France, and the Fondation Voir et Entendre.

References

  1. Ahmed ZM, Riazuddin S, Bernstein SL, Ahmed Z, Khan S, Griffith AJ, Morell RJ, Friedman TB, Riazuddin S, Wilcox ER (2001) Mutations of the protocadherin gene PCDH15 cause Usher syndrome type 1F. Am J Hum Genet 69:25–34PubMedPubMedCentralCrossRefGoogle Scholar
  2. Ahmed ZM, Riazuddin S, Ahmad J, Bernstein SL, Guo Y, Sabar MF, Sieving P, Griffith AJ, Friedman TB, Belyantseva IA, Wilcox ER (2003) PCDH15 is expressed in the neurosensory epithelium of the eye and ear and mutant alleles are responsible for both USH1F and DFNB23. Hum Mol Genet 12:3215–3223PubMedCrossRefGoogle Scholar
  3. Ahmed ZM, Riazuddin S, Aye S, Ali RA, Venselaar H, Anwar S, Belyantseva PP, Qasim M, Friedman TB (2008) Gene structure and mutant alleles of PCDH15: nonsyndromic deafness DFNB23 and type 1 Usher syndrome. Hum Genet 124:215–223PubMedPubMedCentralCrossRefGoogle Scholar
  4. Alagramam KN, Murcia CL, Kwon HY, Pawlowski KS, Wright CG, Woychik RP (2001a) The mouse Ames waltzer hearing-loss mutant is caused by mutation of Pcdh15, a novel protocadherin gene. Nat Genet 27:99–102PubMedGoogle Scholar
  5. Alagramam KN, Yuan H, Kuehn MH, Murcia CL, Wayne S, Srisailpathy CR, Lowry RB, Knaus R, Van Laer L, Bernier FP, Schwartz S, Lee C, Morton CC, Mullins RF, Ramesh A, Van Camp G, Hageman GS, Woychik RP, Smith RJ (2001b) Mutations in the novel protocadherin PCDH15 cause Usher syndrome type 1F. Hum Mol Genet 10:1709–1718PubMedCrossRefGoogle Scholar
  6. Alagramam KN, Goodyear RJ, Geng R, Furness DN, van Aken AF, Marcotti W, Kros CJ, Richardson GP (2011) Mutations in protocadherin 15 and cadherin 23 affect tip links and mechanotransduction in mammalian sensory hair cells. PLoS One 6:e19183PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bahloul A, Simmler MC, Michel V, Leibovici M, Perfettini I, Roux I, Weil D, Nouaille S, Zuo J, Zadro C, Licastro D, Gasparini P, Avan P, Hardelin JP, Petit C (2009) Vezatin, an integral membrane protein of adherens junctions, is required for the sound resilience of cochlear hair cells. EMBO Mol Med 1:125–138PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bahloul A, Michel V, Hardelin J-P, Nouaille S, Hoos S, Houdusse A, England P, Petit C (2010) Cadherin-23, myosin VIIa and harmonin, encoded by Usher syndrome type I genes, form a ternary complex and interact with membrane phospholipids. Hum Mol Genet 19:3557–3565PubMedPubMedCentralCrossRefGoogle Scholar
  9. Beurg M, Xiong W, Zhao B, Muller U, Fettiplace R (2015) Subunit determination of the conductance of hair-cell mechanotransducer channels. Proc Natl Acad Sci U S A 112:1589–1594PubMedPubMedCentralCrossRefGoogle Scholar
  10. Boeda B, El-Amraoui A, Bahloul A, Goodyear R, Daviet L, Blanchard S, Perfettini I, Fath KR, Shorte S, Reiners J, Houdusse A, Legrain P, Wolfrum U, Richardson G, Petit C (2002) Myosin VIIa, harmonin and cadherin 23, three Usher I gene products that cooperate to shape the sensory hair cell bundle. EMBO J 21:6689–6699PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bolz H, von Brederlow B, Ramirez A, Bryda EC, Kutsche K, Nothwang HG, Seeliger M, del C-Salcedó CM, Vila MC, Molina OP, Gal A, Kubisch C (2001) Mutation of CDH23, encoding a new member of the cadherin gene family, causes Usher syndrome type 1D. Nat Genet 27:108–112PubMedCrossRefGoogle Scholar
  12. Borck G, Ur Rehman A, Lee K, Pogoda HM, Kakar N, von Ameln S, Grillet N, Hildebrand MS, Ahmed ZM, Nurnberg G, Ansar M, Basit S, Javed Q, Morell RJ, Nasreen N, Shearer AE, Ahmad A, Kahrizi K, Shaikh RS, Ali RA, Khan SN, Goebel I, Meyer NC, Kimberling WJ, Webster JA, Stephan DA, Schiller MR, Bahlo M, Najmabadi H, Gillespie PG, Nurnberg P, Wollnik B, Riazuddin S, Smith RJ, Ahmad W, Muller U, Hammerschmidt M, Friedman TB, Leal SM, Ahmad J, Kubisch C (2011) Loss-of-function mutations of ILDR1 cause autosomal-recessive hearing impairment DFNB42. Am J Hum Genet 88:127–137PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bork JM, Peters LM, Riazuddin S, Bernstein SL, Ahmed ZM, Ness SL, Polomeno R, Ramesh A, Schloss M, Srisailpathy CRS, Wayne S, Bellman S, Desmukh D, Ahmed Z, Khan SN, Der Kaloustian VM, Li XC, Lalwani A, Riazuddin S, Bitner-Glindzicz M, Nance WE, Liu X-Z, Wistow G, Smith RJH, Griffith AJ, Wilcox ER, Friedman TB, Morell RJ (2001) Usher syndrome 1D and nonsyndromic autosomal recessive deafness DFNB12 are caused by allelic mutations of the novel cadherin-like gene CDH23. Am J Hum Genet 68:26–37PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bosher SK, Warren RL (1978) Very low calcium content of cochlear endolymph, an extracellular fluid. Nature 273:377–378PubMedCrossRefGoogle Scholar
  15. Caberlotto E, Michel V, de Monvel JB, Petit C (2011a) Coupling of the mechanotransduction machinery and F-actin polymerization in the cochlear hair bundles. Biogeosciences 1:169–174Google Scholar
  16. Caberlotto E, Michel V, Foucher I, Bahloul A, Goodyear RJ, Pepermans E, Michalski N, Perfettini I, Alegria-Prevot O, Chardenoux S, Do Cruzeiro M, Hardelin JP, Richardson GP, Avan P, Weil D, Petit C (2011b) Usher type 1G protein sans is a critical component of the tip-link complex, a structure controlling actin polymerization in stereocilia. Proc Natl Acad Sci U S A 108:5825–5830PubMedPubMedCentralCrossRefGoogle Scholar
  17. Chacon-Heszele MF, Ren D, Reynolds AB, Chi F, Chen P (2012) Regulation of cochlear convergent extension by the vertebrate planar cell polarity pathway is dependent on p120-catenin. Development 139:968–978PubMedPubMedCentralCrossRefGoogle Scholar
  18. Choi W, Peifer M (2011) Cell biology. Arranging a cellular checkerboard. Science 333:1099–1100PubMedCrossRefGoogle Scholar
  19. Corey DP, Hudspeth AJ (1983) Kinetics of the receptor current in bullfrog saccular hair cells. J Neurosci 3:962–976PubMedGoogle Scholar
  20. Dallos P, Wu X, Cheatham MA, Gao J, Zheng J, Anderson CT, Jia S, Wang X, Cheng WH, Sengupta S, He DZ, Zuo J (2008) Prestin-based outer hair cell motility is necessary for mammalian cochlear amplification. Neuron 58:333–339PubMedPubMedCentralCrossRefGoogle Scholar
  21. Di Palma F, Holme RH, Bryda EC, Belyantseva IA, Pellegrino R, Kachar B, Steel KP, Noben-Trauth K (2001) Mutations in Cdh23, encoding a new type of cadherin, cause stereocilia disorganization in waltzer, the mouse model for Usher syndrome type 1D. Nat Genet 27:103–107PubMedCrossRefGoogle Scholar
  22. Drummond MC, Barzik M, Bird JE, Zhang DS, Lechene CP, Corey DP, Cunningham LL, Friedman TB (2015) Live-cell imaging of actin dynamics reveals mechanisms of stereocilia length regulation in the inner ear. Nat Commun 6:6873PubMedPubMedCentralCrossRefGoogle Scholar
  23. Ebrahim S, Fujita T, Millis BA, Kozin E, Ma X, Kawamoto S, Baird MA, Davidson M, Yonemura S, Hisa Y, Conti MA, Adelstein RS, Sakaguchi H, Kachar B (2013) NMII forms a contractile transcellular sarcomeric network to regulate apical cell junctions and tissue geometry. Curr Biol 23:731–736PubMedPubMedCentralCrossRefGoogle Scholar
  24. El-Amraoui A, Petit C (2005) Usher I syndrome: unravelling the mechanisms that underlie the cohesion of the growing hair bundle in inner ear sensory cells. J Cell Sci 118:4593–4603PubMedCrossRefGoogle Scholar
  25. El-Amraoui A, Petit C (2010) Cadherins as targets for genetic diseases. Cold Spring Harb Perspect Biol 2:a003095PubMedPubMedCentralCrossRefGoogle Scholar
  26. El-Amraoui A, Petit C (2013) Cadherin defects in inherited human diseases. Prog Mol Biol Transl Sci 116C:361–384CrossRefGoogle Scholar
  27. El-Amraoui A, Petit C (2014) The retinal phenotype of Usher syndrome: pathophysiological insights from animal models. C R Biol 337:167–177PubMedCrossRefGoogle Scholar
  28. Elledge HM, Kazmierczak P, Clark P, Joseph JS, Kolatkar A, Kuhn P, Muller U (2010) Structure of the N terminus of cadherin 23 reveals a new adhesion mechanism for a subset of cadherin superfamily members. Proc Natl Acad Sci U S A 107:10708–10712PubMedPubMedCentralCrossRefGoogle Scholar
  29. Etournay R, Lepelletier L, Boutet de Monvel J, Michel V, Cayet N, Leibovici M, Weil D, Foucher I, Hardelin JP, Petit C (2010) Cochlear outer hair cells undergo an apical circumference remodeling constrained by the hair bundle shape. Development 137:1373–1383PubMedCrossRefGoogle Scholar
  30. Ezan J, Montcouquiol M (2013) Revisiting planar cell polarity in the inner ear. Semin Cell Dev Biol 24:499–506PubMedCrossRefGoogle Scholar
  31. Ezan J, Lasvaux L, Gezer A, Novakovic A, May-Simera H, Belotti E, Lhoumeau AC, Birnbaumer L, Beer-Hammer S, Borg JP, Le Bivic A, Nurnberg B, Sans N, Montcouquiol M (2013) Primary cilium migration depends on G-protein signalling control of subapical cytoskeleton. Nat Cell Biol 15:1107–1115PubMedCrossRefGoogle Scholar
  32. Fukuda T, Kominami K, Wang S, Togashi H, Hirata K, Mizoguchi A, Rikitake Y, Takai Y (2014) Aberrant cochlear hair cell attachments caused by Nectin-3 deficiency result in hair bundle abnormalities. Development 141:399–409PubMedCrossRefGoogle Scholar
  33. Furness DN, Hackney CM (1985) Cross-links between stereocilia in the guinea pig cochlea. Hear Res 18:177–188PubMedCrossRefGoogle Scholar
  34. Furness DN, Katori Y, Nirmal Kumar B, Hackney CM (2008) The dimensions and structural attachments of tip links in mammalian cochlear hair cells and the effects of exposure to different levels of extracellular calcium. Neuroscience 154:10–21PubMedCrossRefGoogle Scholar
  35. Goodyear RJ, Marcotti W, Kros CJ, Richardson GP (2005) Development and properties of stereociliary link types in hair cells of the mouse cochlea. J Comp Neurol 485:75–85PubMedCrossRefGoogle Scholar
  36. Grati M, Kachar B (2011) Myosin VIIa and sans localization at stereocilia upper tip-link density implicates these Usher syndrome proteins in mechanotransduction. Proc Natl Acad Sci U S A 108:11476–11481PubMedPubMedCentralCrossRefGoogle Scholar
  37. Grillet N, Xiong W, Reynolds A, Kazmierczak P, Sato T, Lillo C, Dumont RA, Hintermann E, Sczaniecka A, Schwander M, Williams D, Kachar B, Gillespie PG, Muller U (2009) Harmonin mutations cause mechanotransduction defects in cochlear hair cells. Neuron 62:375–387PubMedPubMedCentralCrossRefGoogle Scholar
  38. Harris TJ, Tepass U (2010) Adherens junctions: from molecules to morphogenesis. Nat Rev Mol Cell Biol 11:502–514PubMedCrossRefGoogle Scholar
  39. Hirano S, Takeichi M (2012) Cadherins in brain morphogenesis and wiring. Physiol Rev 92:597–634PubMedCrossRefGoogle Scholar
  40. Howard J, Hudspeth AJ (1988) Compliance of the hair bundle associated with gating of mechanoelectrical transduction channels in the bullfrog’s saccular hair cell. Neuron 1:189–199PubMedCrossRefGoogle Scholar
  41. Hudspeth AJ, Choe Y, Mehta AD, Martin P (2000) Putting ion channels to work: mechanoelectrical transduction, adaptation, and amplification by hair cells. Proc Natl Acad Sci U S A 97:11765–11772PubMedPubMedCentralCrossRefGoogle Scholar
  42. Hulpiau P, Gul IS, van Roy F (2013) New insights into the evolution of metazoan cadherins and catenins. Prog Mol Biol Transl Sci 116:71–94PubMedCrossRefGoogle Scholar
  43. Jaramillo F, Hudspeth AJ (1993) Displacement-clamp measurement of the forces exerted by gating springs in the hair bundle. Proc Natl Acad Sci U S A 90:1330–1334PubMedPubMedCentralCrossRefGoogle Scholar
  44. Johnson KR, Gagnon LH, Webb LS, Peters LL, Hawes NL, Chang B, Zheng QY (2003) Mouse models of USH1C and DFNB18: phenotypic and molecular analyses of two new spontaneous mutations of the Ush1c gene. Hum Mol Genet 12:3075–3086PubMedPubMedCentralCrossRefGoogle Scholar
  45. Jones C, Chen P (2008) Primary cilia in planar cell polarity regulation of the inner ear. Curr Top Dev Biol 85:197–224PubMedPubMedCentralCrossRefGoogle Scholar
  46. Kachar B, Parakkal M, Kurc M, Zhao Y, Gillespie PG (2000) High-resolution structure of hair-cell tip links. Proc Natl Acad Sci U S A 97:13336–13341PubMedPubMedCentralCrossRefGoogle Scholar
  47. Kamiya K, Michel V, Giraudet F, Riederer B, Foucher I, Papal S, Perfettini I, Le Gal S, Verpy E, Xia W, Seidler U, Georgescu MM, Avan P, El-Amraoui A, Petit C (2014) An unusually powerful mode of low-frequency sound interference due to defective hair bundles of the auditory outer hair cells. Proc Natl Acad Sci U S A 111:9307–9312PubMedPubMedCentralCrossRefGoogle Scholar
  48. Kawashima Y, Geleoc GS, Kurima K, Labay V, Lelli A, Asai Y, Makishima T, Wu DK, Della Santina CC, Holt JR, Griffith AJ (2011) Mechanotransduction in mouse inner ear hair cells requires transmembrane channel-like genes. J Clin Invest 121:4796–4809PubMedPubMedCentralCrossRefGoogle Scholar
  49. Kazmierczak P, Sakaguchi H, Tokita J, Wilson-Kubalek EM, Milligan RA, Muller U, Kachar B (2007) Cadherin 23 and protocadherin 15 interact to form tip-link filaments in sensory hair cells. Nature 449:87–91PubMedCrossRefGoogle Scholar
  50. Keller R, Davidson L, Edlund A, Elul T, Ezin M, Shook D, Skoglund P (2000) Mechanisms of convergence and extension by cell intercalation. Philos Trans R Soc Lond B Biol Sci 355:897–922PubMedPubMedCentralCrossRefGoogle Scholar
  51. Kelly M, Chen P (2007) Shaping the mammalian auditory sensory organ by the planar cell polarity pathway. Int J Dev Biol 51:535–547PubMedPubMedCentralCrossRefGoogle Scholar
  52. Kelly MC, Chen P (2009) Development of form and function in the mammalian cochlea. Curr Opin Neurobiol 19:395–401PubMedPubMedCentralCrossRefGoogle Scholar
  53. Kikkawa Y, Shitara H, Wakana S, Kohara Y, Takada T, Okamoto M, Taya C, Kamiya K, Yoshikawa Y, Tokano H, Kitamura K, Shimizu K, Wakabayashi Y, Shiroishi T, Kominami R, Yonekawa H (2003) Mutations in a new scaffold protein Sans cause deafness in Jackson shaker mice. Hum Mol Genet 12:453–461PubMedCrossRefGoogle Scholar
  54. Kourtidis A, Ngok SP, Anastasiadis PZ (2013) p120 catenin: an essential regulator of cadherin stability, adhesion-induced signalling, and cancer progression. Prog Mol Biol Transl Sci 116:409–432PubMedCrossRefGoogle Scholar
  55. Lagziel A, Ahmed ZM, Schultz JM, Morell RJ, Belyantseva IA, Friedman TB (2005) Spatiotemporal pattern and isoforms of cadherin 23 in wild type and waltzer mice during inner ear hair cell development. Dev Dyn 205:295–306Google Scholar
  56. Lagziel A, Overlack N, Bernstein SL, Morell RJ, Wolfrum U, Friedman TB (2009) Expression of cadherin 23 isoforms is not conserved: implications for a mouse model of Usher syndrome type 1D. Mol Vis 15:1843–1857PubMedPubMedCentralGoogle Scholar
  57. Lefevre G, Michel V, Weil D, Lepelletier L, Bizard E, Wolfrum U, Hardelin JP, Petit C (2008) A core cochlear phenotype in USH1 mouse mutants implicates fibrous links of the hair bundle in its cohesion, orientation and differential growth. Development 135:1427–1437PubMedCrossRefGoogle Scholar
  58. Leonova EV, Raphael Y (1997) Organization of cell junctions and cytoskeleton in the reticular lamina in normal and ototoxically damaged organ of Corti. Hear Res 113:14–28PubMedCrossRefGoogle Scholar
  59. Lepelletier L, de Monvel JB, Buisson J, Desdouets C, Petit C (2013) Auditory hair cell centrioles undergo confined Brownian motion throughout the developmental migration of the kinocilium. Biophys J 105:48–58PubMedPubMedCentralCrossRefGoogle Scholar
  60. Maeda R, Kindt KS, Mo W, Morgan CP, Erickson T, Zhao H, Clemens-Grisham R, Barr-Gillespie PG, Nicolson T (2014) Tip-link protein protocadherin 15 interacts with transmembrane channel-like proteins TMC1 and TMC2. Proc Natl Acad Sci U S A 111:12907–12912PubMedPubMedCentralCrossRefGoogle Scholar
  61. Mahendrasingam S, Katori Y, Furness DN, Hackney CM (1997) Ultrastructural localization of cadherin in the adult guinea-pig organ of Corti. Hear Res 111:85–92PubMedCrossRefGoogle Scholar
  62. Mathur P, Yang J (2015) Usher syndrome: Hearing loss, retinal degeneration and associated abnormalities. Biochim Biophys Acta 1852:406–420PubMedPubMedCentralCrossRefGoogle Scholar
  63. Michalski N, Petit C (2015) Genetics of auditory mechano-electrical transduction. Pflugers Arch 467:49–72PubMedPubMedCentralCrossRefGoogle Scholar
  64. Michalski N, Michel V, Caberlotto E, Lefevre GM, van Aken AF, Tinevez JY, Bizard E, Houbron C, Weil D, Hardelin JP, Richardson GP, Kros CJ, Martin P, Petit C (2009) Harmonin-b, an actin-binding scaffold protein, is involved in the adaptation of mechanoelectrical transduction by sensory hair cells. Pflugers Arch 459:115–130PubMedPubMedCentralCrossRefGoogle Scholar
  65. Michel V, Goodyear RJ, Weil D, Marcotti W, Perfettini I, Wolfrum U, Kros C, Richardson GP, Petit C (2005) Cadherin 23 is a component of the transient lateral links in the developing hair bundles of cochlear sensory cells. Dev Biol 280:281–294PubMedCrossRefGoogle Scholar
  66. Montcouquiol M, Crenshaw EB 3rd, Kelley MW (2006) Noncanonical Wnt signaling and neural polarity. Annu Rev Neurosci 29:363–386PubMedCrossRefGoogle Scholar
  67. Narayanan P, Chatterton P, Ikeda A, Ikeda S, Corey DP, Ervasti JM, Perrin BJ (2015) Length regulation of mechanosensitive stereocilia depends on very slow actin dynamics and filament-severing proteins. Nat Commun 6:6855PubMedPubMedCentralCrossRefGoogle Scholar
  68. Nelson WJ (2008) Regulation of cell-cell adhesion by the cadherin-catenin complex. Biochem Soc Trans 36:149–155PubMedPubMedCentralCrossRefGoogle Scholar
  69. Nunes FD, Lopez LN, Lin HW, Davies C, Azevedo RB, Gow A, Kachar B (2006) Distinct subdomain organization and molecular composition of a tight junction with adherens junction features. J Cell Sci 119:4819–4827PubMedCrossRefGoogle Scholar
  70. Pepermans E, Petit C (2015) The tip-link molecular complex of the auditory mechano-electrical transduction machinery. Hear Res 330(1):10–17PubMedCrossRefGoogle Scholar
  71. Pepermans E, Michel V, Goodyear R, Bonnet C, Abdi S, Dupont T, Gherbi S, Holder M, Makrelouf M, Hardelin JP, Marlin S, Zenati A, Richardson G, Avan P, Bahloul A, Petit C (2014) The CD2 isoform of protocadherin-15 is an essential component of the tip-link complex in mature auditory hair cells. EMBO Mol Med 6:984–992PubMedPubMedCentralCrossRefGoogle Scholar
  72. Petit C, Richardson G (2009) Linking deafness genes to hair-bundle development and function. Nat Neurosci 12:703–710PubMedPubMedCentralCrossRefGoogle Scholar
  73. Phillips KR, Tong S, Goodyear R, Richardson GP, Cyr JL (2006) Stereociliary myosin-1c receptors are sensitive to calcium chelation and absent from cadherin 23 mutant mice. J Neurosci 26:10777–10788PubMedCrossRefGoogle Scholar
  74. Pickles JO, Comis SD, Osborne MP (1984) Cross-links between stereocilia in the guinea pig organ of Corti, and their possible relation to sensory transduction. Hear Res 15:103–112PubMedCrossRefGoogle Scholar
  75. Riazuddin S, Ahmed ZM, Fanning AS, Lagziel A, Kitajiri S, Ramzan K, Khan SN, Chattaraj P, Friedman PL, Anderson JM, Belyantseva IA, Forge A, Friedman TB (2006) Tricellulin is a tight-junction protein necessary for hearing. Am J Hum Genet 79:1040–1051PubMedPubMedCentralCrossRefGoogle Scholar
  76. Richardson GP, Boutet de Monvel J, Petit C (2011) How the genetics of deafness illuminates auditory physiology. Annu Rev Physiol 73:311–334PubMedCrossRefGoogle Scholar
  77. Sahly I, Dufour E, Schietroma C, Michel V, Bahloul A, Perfettini I, Pepermans E, Estivalet A, Carette D, Aghaie A, Ebermann I, Lelli A, Iribarne M, Hardelin JP, Weil D, Sahel JA, El-Amraoui A, Petit C (2012) Localization of Usher 1 proteins to the photoreceptor calyceal processes, which are absent from mice. J Cell Biol 199:381–399PubMedPubMedCentralCrossRefGoogle Scholar
  78. Seiler C, Finger-Baier KC, Rinner O, Makhankov YV, Schwarz H, Neuhauss SC, Nicolson T (2005) Duplicated genes with split functions: independent roles of protocadherin15 orthologues in zebrafish hearing and vision. Development 132:615–623PubMedCrossRefGoogle Scholar
  79. Self T, Mahony M, Fleming J, Walsh J, Brown SD, Steel KP (1998) Shaker-1 mutations reveal roles for myosin VIIA in both development and function of cochlear hair cells. Development 125:557–566PubMedGoogle Scholar
  80. Senften M, Schwander M, Kazmierczak P, Lillo C, Shin JB, Hasson T, Geleoc GS, Gillespie PG, Williams D, Holt JR, Muller U (2006) Physical and functional interaction between protocadherin 15 and myosin VIIa in mechanosensory hair cells. J Neurosci 26:2060–2071PubMedPubMedCentralCrossRefGoogle Scholar
  81. Siemens J, Kazmierczak P, Reynolds A, Sticker M, Littlewood-Evans A, Muller U (2002) The Usher syndrome proteins cadherin 23 and harmonin form a complex by means of PDZ-domain interactions. Proc Natl Acad Sci U S A 99:14946–14951PubMedPubMedCentralCrossRefGoogle Scholar
  82. Siemens J, Lillo C, Dumont RA, Reynolds A, Williams DS, Gillespie PG, Muller U (2004) Cadherin 23 is a component of the tip link in hair-cell stereocilia. Nature 428:950–955PubMedCrossRefGoogle Scholar
  83. Simonneau L, Gallego M, Pujol R (2003) Comparative expression patterns of T-, N-, E-cadherins, beta-catenin, and polysialic acid neural cell adhesion molecule in rat cochlea during development: implications for the nature of Kolliker’s organ. J Comp Neurol 459:113–126PubMedCrossRefGoogle Scholar
  84. Sollner C, Rauch GJ, Siemens J, Geisler R, Schuster SC, Muller U, Nicolson T (2004) Mutations in cadherin 23 affect tip links in zebrafish sensory hair cells. Nature 428:955–959PubMedCrossRefGoogle Scholar
  85. Sotomayor M, Corey DP, Schulten K (2005) In search of the hair-cell gating spring elastic properties of ankyrin and cadherin repeats. Structure 13:669–682PubMedCrossRefGoogle Scholar
  86. Sotomayor M, Weihofen WA, Gaudet R, Corey DP (2010) Structural determinants of cadherin-23 function in hearing and deafness. Neuron 66:85–100PubMedPubMedCentralCrossRefGoogle Scholar
  87. Sotomayor M, Weihofen WA, Gaudet R, Corey DP (2012) Structure of a force-conveying cadherin bond essential for inner-ear mechanotransduction. Nature 492:128–132PubMedPubMedCentralCrossRefGoogle Scholar
  88. Stauffer EA, Scarborough JD, Hirono M, Miller ED, Shah K, Mercer JA, Holt JR, Gillespie PG (2005) Fast adaptation in vestibular hair cells requires myosin-1c activity. Neuron 47:541–553PubMedPubMedCentralCrossRefGoogle Scholar
  89. Takeichi M (2011) Self-organization of animal tissues: cadherin-mediated processes. Dev Cell 21:24–26PubMedCrossRefGoogle Scholar
  90. Takeichi M (2014) Dynamic contacts: rearranging adherens junctions to drive epithelial remodelling. Nat Rev Mol Cell Biol 15:397–410PubMedCrossRefGoogle Scholar
  91. Tarchini B, Jolicoeur C, Cayouette M (2013) A molecular blueprint at the apical surface establishes planar asymmetry in cochlear hair cells. Dev Cell 27:88–102PubMedCrossRefGoogle Scholar
  92. Togashi H, Kominami K, Waseda M, Komura H, Miyoshi J, Takeichi M, Takai Y (2011) Nectins establish a checkerboard-like cellular pattern in the auditory epithelium. Science 333:1144–1147PubMedCrossRefGoogle Scholar
  93. Walsh T, Pierce SB, Lenz DR, Brownstein Z, Dagan-Rosenfeld O, Shahin H, Roeb W, McCarthy S, Nord AS, Gordon CR, Ben-Neriah Z, Sebat J, Kanaan M, Lee MK, Frydman M, King MC, Avraham KB (2010) Genomic duplication and overexpression of TJP2/ZO-2 leads to altered expression of apoptosis genes in progressive nonsyndromic hearing loss DFNA51. Am J Hum Genet 87:101–109PubMedPubMedCentralCrossRefGoogle Scholar
  94. Wangemann P (2006) Supporting sensory transduction: cochlear fluid homeostasis and the endocochlear potential. J Physiol 576:11–21PubMedPubMedCentralCrossRefGoogle Scholar
  95. Webb SW, Grillet N, Andrade LR, Xiong W, Swarthout L, Della Santina CC, Kachar B, Muller U (2011) Regulation of PCDH15 function in mechanosensory hair cells by alternative splicing of the cytoplasmic domain. Development 138:1607–1617PubMedPubMedCentralCrossRefGoogle Scholar
  96. Whitlon DS (1993) E-cadherin in the mature and developing organ of Corti of the mouse. J Neurocytol 22:1030–1038PubMedCrossRefGoogle Scholar
  97. Wilcox ER, Burton QL, Naz S, Riazuddin S, Smith TN, Ploplis B, Belyantseva I, Ben-Yosef T, Liburd NA, Morell RJ, Kachar B, Wu DK, Griffith AJ, Friedman TB (2001) Mutations in the gene encoding tight junction claudin-14 cause autosomal recessive deafness DFNB29. Cell 104:165–172PubMedCrossRefGoogle Scholar
  98. Xiong W, Grillet N, Elledge HM, Wagner TF, Zhao B, Johnson KR, Kazmierczak P, Muller U (2012) TMHS is an integral component of the mechanotransduction machinery of cochlear hair cells. Cell 151:1283–1295PubMedPubMedCentralCrossRefGoogle Scholar
  99. Xu Z, Peng AW, Oshima K, Heller S (2008) MAGI-1, a candidate stereociliary scaffolding protein, associates with the tip-link component cadherin 23. J Neurosci 28:11269–11276PubMedPubMedCentralCrossRefGoogle Scholar
  100. Yamamoto N, Okano T, Ma X, Adelstein RS, Kelley MW (2009) Myosin II regulates extension, growth and patterning in the mammalian cochlear duct. Development 136:1977–1986PubMedPubMedCentralCrossRefGoogle Scholar
  101. Zaidel-Bar R, Itzkovitz S, Ma’ayan A, Iyengar R, Geiger B (2007) Functional atlas of the integrin adhesome. Nat Cell Biol 9:858–867PubMedPubMedCentralCrossRefGoogle Scholar
  102. Zhao B, Wu Z, Grillet N, Yan L, Xiong W, Harkins-Perry S, Muller U (2014) TMIE is an essential component of the mechanotransduction machinery of cochlear hair cells. Neuron 84:954–967PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  1. 1.Unité de Génétique et Physiologie de l’Audition, Département de NeuroscienceInstitut PasteurParisFrance
  2. 2.Unité Mixte de Recherche, UMR-S 1120Institut National de la Santé et de la Recherche Médicale (INSERM)75015 ParisFrance
  3. 3.Sorbonne UniversitésParisFrance
  4. 4.Collège de FranceParisFrance

Personalised recommendations