Skip to main content

Strategies for Thymic Regeneration: Recent Advances Towards Clinical Therapy

  • Chapter
  • First Online:
Synthetic Immunology
  • 1196 Accesses

Abstract

The thymus plays a critical role in maintaining immune well-being, but paradoxically undergoes progressive age-related atrophy. Many efforts have been made to deepen our understanding of its biology, with future therapies aimed at re-establishing T cell production in immunocompromised patients. This includes the elderly, and patients undergoing cytoablative treatments or chronically infected with immunotropic viruses. Here we discuss major pre-clinical approaches to thymic regeneration, as a representation of the strategies potentially able to be utilised therapeutically. We outline thymic physiology and development to assist in understanding the rationale behind each regenerative strategy – broadly, reactivation of endogenous thymic epithelial progenitor cells, de novo generation of thymic epithelium, and the facilitating effects on these of bioengineering. Continued advancement in these approaches may lead to their clinical translation for the recovery of immune competence in the aged or immune deficient, and tolerance applications in the developing field of stem cell therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

allo-HSCT:

Allogeneic HSCT

ADE:

Anterior definitive endoderm

Aire:

Autoimmune regulator

Bcl2:

B cell lymphoma 2

biomaterials:

Biomimetic materials

BM:

Bone marrow

BMT:

Bone marrow transplantation

Bmp4:

Bone morphogenetic protein 4

CCL21:

Chemokine (C-C motif) ligand 21

CCR7:

Chemokine (C-C motif) receptor 7

CXCL12:

Chemokine (C-X-C motif) ligand 12

CLP:

Common lymphoid progenitor

cTEC:

Cortical

CMJ:

Cortico-medullary junction

CMJ:

Cortico-medullary junction

K8:

Cytokeratin-8

Dll:

Delta-like ligands

DC:

Dendritic cell

DGCR8:

DiGeorge syndrome chromosomal region 8

DP:

Double positive

(E)11.5:

Embryonic day

ESCs:

Embryonic stem cells

EAE:

Experimental autoimmune encephalomyelitis

ECM:

Extracellular matrix

Fgfr2IIIb:

Fgf receptor 2 variant IIIb

Fgf8:

Fibroblast growth factor 8

Foxn1:

Forkhead box-containing gene n1

Foxa2:

Forkhead-box gene a2

GPCRs:

G protein-coupled receptors

GRL:

Ghrelin

Gcm2:

Glial cell missing homologue 2

GvHD:

Graft versus host disease

GH:

Growth hormone

GHRH:

Growth hormone releasing hormone

HSCT:

Hematopoietic stem cell transplantation

Hox:

Homeobox

HIV:

Human immunodeficiency virus

HIF-1α:

Hypoxia inducible factor-1 alpha

iPSCs:

Induced pluripotent stem cells

iTECs:

Induced TECs

Igf1:

Insulin-like growth factor 1

IFNα:

Interferon alpha

IL-7:

Interleukin-7

Jag:

Jagged

KGF:

Keratinocyte growth factor

KO:

Knock-out

Klf4:

Kruppel-like factor 4

LRCs:

Label retaining cells

LHRH:

Luteinising hormone releasing hormone

LTi:

Lymphoid tissue inducer

MHC:

Major histocompatibility complex

mTEC:

Medullary

ME-ADE-PE:

Mesendoderm to anterior definitive endoderm to pharyngeal endoderm

miRNAs:

MicroRNAs

MEFs:

Mouse embryonic fibroblasts

MTS24:

Mouse thymic stroma 24

mTEChi:

mTECs characterised by high MHCII expression

mTEClo:

mTECs characterised by low MHCII expression

MafB:

Musculoaponeurotic fibrosarcoma oncogene homologue B

MOG:

Myelin oligodendrocyte glycoprotein

NC:

Neural crest

OKSM:

Oct4 Klf4, Sox2 and c-Myc

Oct4:

Octamer-binding transcription factor 4

Pax:

Paired box gene

Eya:

Pax-Eyes absent homologue

Plet-1:

Placenta-expressed transcript-1

PSGL1:

Platelet (P)-selectin glycoprotein ligand 1

Pdgfrα:

Platelet-derived growth factor receptor alpha

PEG:

Polyethylene glycol

ROS:

Reactive oxygen species

RA:

Retinoic acid

RNAi:

RNA interference

Sox2:

Sex determining region Y-box 2

SSA:

Sex steroid ablation

Six:

Sine oculis-related homeobox homologue

SP:

Single positive

SMC:

Smooth muscle cell

SDS:

Sodium dodecyl sulfate

SST:

Somatostatin

Shh:

Sonic hedgehog

Spry:

Sprouty

SCF:

Stem cell factor

SL-TBI:

Sub-lethal total body irradiation

Tbx-1:

T box gene

TCR:

T cell receptors

Treg:

T regulatory

pp3:

Third pharyngeal pouch

3D:

Three-dimensional

TECs:

Thymic epithelial cells

TEPC:

Thymic epithelial progenitor cell

TSC:

Thymic stromal cells

TRAs:

Tissue-restricted self-antigens

TGF-β:

Transforming growth factor-β

TA:

Transit amplifying

TN:

Triple negative

TNF:

Tumour necrosis factor

p63:

Tumour protein 63

UEA-1:

Ulex europaeus agglutinin-1

Vegf:

Vascular-endothelial growth factor

c-Myc:

v-myc avian myelocytomatosis viral oncogene homolog

WT:

Wild-type

References

  • Allende ML, Dreier JL, Mandala S, Proia RL (2004) Expression of the sphingosine 1-phosphate receptor, S1P1, on T-cells controls thymic emigration. J Biol Chem 279(15):15396–15401. doi:10.1074/jbc.M314291200

    Article  CAS  PubMed  Google Scholar 

  • Alpdogan O, Hubbard VM, Smith OM, Patel N, Lu S, Goldberg GL, Gray DH, Feinman J, Kochman AA, Eng JM, Suh D, Muriglan SJ, Boyd RL, van den Brink MR (2006) Keratinocyte growth factor (KGF) is required for postnatal thymic regeneration. Blood 107(6):2453–2460. doi:10.1182/blood-2005-07-2831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alvarez CV, Garcia-Lavandeira M, Garcia-Rendueles MER, Diaz-Rodriguez E, Garcia-Rendueles AR, Perez-Romero S, Vila TV, Rodrigues JS, Lear PV, Bravo SB (2012) Defining stem cell types: understanding the therapeutic potential of ESCs, ASCs, and iPS cells. J Mol Endocrinol 49(2):89–111

    Article  CAS  Google Scholar 

  • Alves NL, Takahama Y, Ohigashi I, Ribeiro AR, Baik S, Anderson G, Jenkinson WE (2014) Serial progression of cortical and medullary thymic epithelial microenvironments. Eur J Immunol 44(1):16–22

    Article  CAS  PubMed  Google Scholar 

  • Andrew D, Aspinall R (2002) Age-associated thymic atrophy is linked to a decline in IL-7 production. Exp Gerontol 37(2–3):455–463. doi:10.1016/s0531-5565(01)00213-3

    Article  CAS  PubMed  Google Scholar 

  • Annunziato F, Romagnani P, Cosmi L, Lazzeri E, Romagnani S (2001) Chemokines and lymphopoiesis in human thymus. Trends Immunol 22(5):277–281. doi:10.1016/s1471-4906(01)01889-0

    Article  CAS  PubMed  Google Scholar 

  • Ara T, Itoi M, Kawabata K, Egawa T, Tokoyoda K, Sugiyama T, Fujii N, Amagai T, Nagasawa T (2003) A role of CXC chemokine ligand 12/stromal cell-derived factor-1/pre-B cell growth stimulating factor and its receptor CXCR4 in fetal and adult T cell development in vivo. J Immunol 170(9):4649–4655

    Article  CAS  PubMed  Google Scholar 

  • Aspinall R, Andrew D (2000) Thymic involution in aging. J Clin Immunol 20(4):250–256. doi:10.1023/a:1006611518223

    Article  CAS  PubMed  Google Scholar 

  • Baatar D, Patel K, Taub DD (2011) The effects of ghrelin on inflammation and the immune system. Mol Cell Endocrinol 340(1):44–58

    Article  CAS  PubMed  Google Scholar 

  • Bachiller D, Klingensmith J, Shneyder N, Tran U, Anderson R, Rossant J, De Robertis EM (2003) The role of chordin/Bmp signals in mammalian pharyngeal development and DiGeorge syndrome. Development 130(15):3567–3578

    Article  CAS  PubMed  Google Scholar 

  • Baltimore D, Boldin MP, O’Connell RM, Rao DS, Taganov KD (2008) MicroRNAs: new regulators of immune cell development and function. Nat Immunol 9(8):839–845

    Article  CAS  PubMed  Google Scholar 

  • Baxter RM, Brissette JL (2002) Role of the nude gene in epithelial terminal differentiation. J Invest Dermatol 118(2):303–309

    Article  CAS  PubMed  Google Scholar 

  • Bennett AR, Farley A, Blair NF, Gordon J, Sharp L, Blackburn CC (2002) Identification and characterization of thymic epithelial progenitor cells. Immunity 16(6):803–814. doi:10.1016/s1074-7613(02)00321-7

    Article  CAS  PubMed  Google Scholar 

  • Berrih S, Savino W, Cohen S (1985) Extracellular-matrix of the human thymus – immunofluorescence studies on frozen-sections and cultured epithelial-cells. J Histochem Cytochem 33(7):655–664

    Article  CAS  PubMed  Google Scholar 

  • Blackburn CC, Manley NR (2004) Developing a new paradigm for thymus organogenesis. Nat Rev Immunol 4(4):278–289. doi:10.1038/nri1331

    Article  CAS  PubMed  Google Scholar 

  • Blackburn CC, Augustine CL, Li R, Harvey RP, Malin MA, Boyd RL, Miller JF, Morahan G (1996) The nu gene acts cell-autonomously and is required for differentiation of thymic epithelial progenitors. Proc Natl Acad Sci U S A 93(12):5742–5746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blazar BR, Weisdorf DJ, Defor T, Goldman A, Braun T, Silver S, Ferrara JLM (2006) Phase 1/2 randomized, placebo-control trial of palifermin to prevent graft-versus-host disease (GVHD) after allogeneic hematopoietic stem cell transplantation (HSCT). Blood 108(9):3216–3222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bleul CC, Boehm T (2005) BMP signaling is required for normal thymus development. J Immunol 175(8):5213–5221

    Article  CAS  PubMed  Google Scholar 

  • Bleul CC, Corbeaux T, Reuter A, Fisch P, Mönting JS, Boehm T (2006) Formation of a functional thymus initiated by a postnatal epithelial progenitor cell. Nature 441(7096):992–996

    Article  CAS  PubMed  Google Scholar 

  • Boyd RL, Tucek CL, Godfrey DI, Izon DJ, Wilson TJ, Davidson NJ, Bean AG, Ladyman HM, Ritter MA, Hugo P (1993) The thymic microenvironment. Immunol Today 14(9):445–459

    Article  CAS  PubMed  Google Scholar 

  • Boyd RL, Soh C-L, Boyd NR, Stanley EG, Chidgey AP (2013) Rewiring immunity: generating a functional thymus from hESCs… are we there yet? Cell Stem Cell 13(2):135–136

    Article  CAS  PubMed  Google Scholar 

  • Brauchle M, Fässler R, Werner S (1995) Suppression of keratinocyte growth factor expression by glucocorticoids in vitro and during wound healing. J Invest Dermatol 105(4):579–584

    Article  CAS  PubMed  Google Scholar 

  • Bredenkamp N, Nowell CS, Blackburn CC (2014a) Regeneration of the aged thymus by a single transcription factor. Development 141(8):1627–1637. doi:10.1242/dev.103614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bredenkamp N, Ulyanchenko S, O’Neill KE, Manley NR, Vaidya HJ, Blackburn CC (2014b) An organized and functional thymus generated from FOXN1-reprogrammed fibroblasts. Nat Cell Biol 16(9):902–908. doi:10.1038/ncb3023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brennecke P, Reyes A, Pinto S, Rattay K, Nguyen M, Kuchler R, Huber W, Kyewski B, Steinmetz LM (2015) Single-cell transcriptome analysis reveals coordinated ectopic gene-expression patterns in medullary thymic epithelial cells. Nat Immunol 16(9):933–941. doi:10.1038/ni.3246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brissette JL, Li J, Kamimura J, Lee D, Dotto GP (1996) The product of the mouse nude locus, Whn, regulates the balance between epithelial cell growth and differentiation. Genes Dev 10(17):2212–2221

    Article  CAS  PubMed  Google Scholar 

  • Buinewicz B, Rosen B (2004) Acellular cadaveric dermis (AlloDerm): A new alternative for abdominal hernia repair. Ann Plast Surg 52(2):188–194. doi:10.1097/01.sap.0000100895.41198.27

    Article  PubMed  Google Scholar 

  • Candi E, Rufini A, Terrinoni A, Giamboi-Miraglia A, Lena AM, Mantovani R, Knight R, Melino G (2007) DeltaNp63 regulates thymic development through enhanced expression of FgfR2 and Jag2. Proc Natl Acad Sci U S A 104(29):11999–12004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chambers SM, Goodell MA (2007) Hematopoietic stem cell aging: wrinkles in stem cell potential. Stem Cell Rev 3(3):201–211

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Xiao S, Manley NR (2009) Foxn1 is required to maintain the postnatal thymic microenvironment in a dosage-sensitive manner. Blood 113(3):567–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng L, Guo J, Sun L, Fu J, Barnes PF, Metzger D, Chambon P, Oshima RG, Amagai T, D-m S (2010) Postnatal tissue-specific disruption of transcription factor FoxN1 triggers acute thymic atrophy. J Biol Chem 285(8):5836–5847

    Article  CAS  PubMed  Google Scholar 

  • Chidgey AP, Boyd RL (2006) Stemming the tide of thymic aging. Nat Immunol 7(10):1013–1016

    Article  CAS  PubMed  Google Scholar 

  • Chidgey AP, Layton D, Trounson A, Boyd RL (2008) Tolerance strategies for stem-cell-based therapies. Nature 453(7193):330–337

    Article  CAS  PubMed  Google Scholar 

  • Chinn IK, Blackburn CC, Manley NR, Sempowski GD (2012) Changes in primary lymphoid organs with aging. Semin Immunol 24(5):309–320. doi:10.1016/j.smim.2012.04.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chu Y-W, Memon SA, Sharrow SO, Hakim FT, Eckhaus M, Lucas PJ, Gress RE (2004) Exogenous IL-7 increases recent thymic emigrants in peripheral lymphoid tissue without enhanced thymic function. Blood 104(4):1110–1119. doi:10.1182/blood-2003-10-3635

    Article  CAS  PubMed  Google Scholar 

  • de Haan G, Van Zant G (1997) Intrinsic and extrinsic control of hemopoietic stem cell numbers: mapping of a stem cell gene. J Exp Med 186(4):529–536

    Article  PubMed  PubMed Central  Google Scholar 

  • de Mello CV, Villa-Verde DMS, Farias-de-Oliveira DA, de Brito JM, Dardenne M, Savino W (2002) Functional insulin-like growth factor-1/insulin-like growth factor-1 receptor-mediated circuit in human and murine thymic epithelial cells. Neuroendocrinology 75(2):139–150

    Article  Google Scholar 

  • de Mello-Coelho V, Villa-Verde DMS, Dardenne M, Savino W (1997) Pituitary hormones modulate cell-cell interactions between thymocytes and thymic epithelial cells. J Neuroimmunol 76(1–2):39–49. doi:10.1016/s0165-5728(97)00031-3

    Article  PubMed  Google Scholar 

  • Depreter MG, Blair NF, Gaskell TL, Nowell CS, Davern K, Pagliocca A, Stenhouse FH, Farley AM, Fraser A, Vrana J, Robertson K, Morahan G, Tomlinson SR, Blackburn CC (2008) Identification of Plet-1 as a specific marker of early thymic epithelial progenitor cells. Proc Natl Acad Sci U S A 105(3):961–966. doi:10.1073/pnas.0711170105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Derbinski J, Gäbler J, Brors B, Tierling S, Jonnakuty S, Hergenhahn M, Peltonen L, Walter J, Kyewski B (2005) Promiscuous gene expression in thymic epithelial cells is regulated at multiple levels. J Exp Med 202(1):33–45. doi:10.1084/jem.20050471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dixit VD, Schaffer EM, Pyle RS, Collins GD, Sakthivel SK, Palaniappan R, Lillard JW, Taub DD (2004) Ghrelin inhibits leptin- and activation-induced proinflammatory cytokine expression by human monocytes and T cells. J Clin Invest 114(1):57–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dixit VD, Yang H, Sun Y, Weeraratna AT, Youm Y-H, Smith RG, Taub DD (2007) Ghrelin promotes thymopoiesis during aging. J Clin Invest 117(10):2778–2790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dooley J, Erickson M, Roelink H, Farr AG (2005) Nude thymic rudiment lacking functional foxn1 resembles respiratory epithelium. Dev Dyn 233(4):1605–1612. doi:10.1002/dvdy.20495

    Article  CAS  PubMed  Google Scholar 

  • Dorshkind K, Horseman ND (2000) The roles of prolactin, growth hormone, insulin-like growth factor-I, and thyroid hormones in lymphocyte development and function: insights from genetic models of hormone and hormone receptor deficiency. Endocr Rev 21(3):292–312

    CAS  PubMed  Google Scholar 

  • Dorshkind K, Welniak L, Gault RA, Hixon J, Montecino-Rodriguez E, Horseman ND, Gertner JM, Murphy WJ (2003) Effects of housing on the thymic deficiency in dwarf mice and its reversal by growth hormone administration. Clin Immunol 109(2):197–202

    Article  CAS  PubMed  Google Scholar 

  • Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24(24):4337–4351. doi:10.1016/s0142-9612(03)00340-5

    Article  CAS  PubMed  Google Scholar 

  • Dudakov JA, Goldberg GL, Reiseger JJ, Chidgey AP, Boyd RL (2009a) Withdrawal of sex steroids reverses age- and chemotherapy-related defects in bone marrow lymphopoiesis. J Immunol 182(10):6247–6260

    Article  CAS  PubMed  Google Scholar 

  • Dudakov JA, Goldberg GL, Reiseger JJ, Vlahos K, Chidgey AP, Boyd RL (2009b) Sex steroid ablation enhances hematopoietic recovery following cytotoxic antineoplastic therapy in aged mice. J Immunol 183(11):7084–7094

    Article  CAS  PubMed  Google Scholar 

  • Dudakov JA, Khong DMP, Boyd RL, Chidgey AP (2010) Feeding the fire: the role of defective bone marrow function in exacerbating thymic involution. Trends Immunol 31(5):191–198. doi:10.1016/j.it.2010.02.002

    Article  CAS  PubMed  Google Scholar 

  • Dudakov JA, Hanash AM, Jenq RR, Young LF, Ghosh A, Singer NV, West ML, Smith OM, Holland AM, Tsai JJ, Boyd RL, Van den Brink MRM (2012) Interleukin-22 drives endogenous thymic regeneration in mice. Science 336(6077):91–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eberhart JK, He X, Swartz ME, Yan Y-L, Song H, Boling TC, Kunerth AK, Walker MB, Kimmel CB, Postlethwait JH (2008) MicroRNA Mirn140 modulates Pdgf signaling during palatogenesis. Nat Genet 40(3):290–298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elvin CM, Brownlee AG, Huson MG, Tebb TA, Kim M, Lyons RE, Vuocolo T, Liyou NE, Hughes TC, Ramshaw JAM, Werkmeister JA (2009) The development of photochemically crosslinked native fibrinogen as a rapidly formed and mechanically strong surgical tissue sealant. Biomaterials 30(11):2059–2065. doi:10.1016/j.biomaterials.2008.12.059

    Article  CAS  PubMed  Google Scholar 

  • Elvin CM, Danon SJ, Brownlee AG, White JF, Hickey M, Liyou NE, Edwards GA, Ramshaw JAM, Werkmeister JA (2010) Evaluation of photo-crosslinked fibrinogen as a rapid and strong tissue adhesive. J Biomed Mater Res Part A 93A(2):687–695. doi:10.1002/jbm.a.32572

    CAS  Google Scholar 

  • Fan Y, Tajima A, Goh SK, Geng XH, Gualtierotti G, Grupillo M, Coppola A, Bertera S, Rudert WA, Banerjee I, Bottino R, Trucco M (2015) Bioengineering thymus organoids to restore thymic function and induce donor-specific immune tolerance to allografts. Mol Ther 23(7):1262–1277. doi:10.1038/mt.2015.77

    Article  CAS  PubMed  Google Scholar 

  • Flanagan SP (1966) Nude a new hairless gene with pleiotropic effects in mouse. Genet Res 8(3):295–309

    Article  CAS  PubMed  Google Scholar 

  • Gameiro J, Nagib P, Verinaud L (2010) The thymus microenvironment in regulating thymocyte differentiation. Cell Adh Migr 4(3):382–390

    Article  PubMed  PubMed Central  Google Scholar 

  • Gardiner JR, Jackson AL, Gordon J, Lickert H, Manley NR, Basson MA (2012) Localised inhibition of FGF signalling in the third pharyngeal pouch is required for normal thymus and parathyroid organogenesis. Development 139(18):3456–3466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilbert SF (ed) (2010) Developmental biology. Sinauer Associates, Sunderland

    Google Scholar 

  • Gilbert TW, Sellaro TL, Badylak SF (2006) Decellularization of tissues and organs. Biomaterials 27(19):3675–3683. doi:10.1016/j.biomaterials.2006.02.014

    CAS  PubMed  Google Scholar 

  • Gill J, Malin M, Hollander GA, Boyd R (2002) Generation of a complete thymic microenvironment by MTS24(+) thymic epithelial cells. Nat Immunol 3(7):635–642. doi:10.1038/ni812

    Article  CAS  PubMed  Google Scholar 

  • Gnanapavan S, Kola B, Bustin SA, Morris DG, McGee P, Fairclough P, Bhattacharya S, Carpenter R, Grossman AB, Korbonits M (2002) The tissue distribution of the mRNA of ghrelin and subtypes of its receptor, GHS-R, in humans. J Clin Endocrinol Metab 87(6):2988

    Article  CAS  PubMed  Google Scholar 

  • Godfrey DI, Zlotnik A (1993) Control points in early T-cell development. Immunol Today 14(11):547–553. doi:10.1016/0167-5699(93)90186-o

    Article  CAS  PubMed  Google Scholar 

  • Godfrey D, Kennedy J, Suda T, Zlotnik A (1993) A developmental pathway involving four phenotypically and functionally distinct subsets of CD3-CD4-CD8- triple-negative adult mouse thymocytes defined by CD44 and CD25 expression. J Immunol 150(10):4244–4252

    CAS  PubMed  Google Scholar 

  • Goldberg GL, Sutherland JS, Hammet MV, Milton MK, Heng TSP, Chidgey AP, Boyd RL (2005) Sex steroid ablation enhances lymphoid recovery following autologous hematopoietic stem cell transplantation. Transplantation 80(11):1604–1613

    Article  PubMed  Google Scholar 

  • Goldberg GL, Alpdogan O, Muriglan SJ, Hammett MV, Milton MK, Eng JM, Hubbard VM, Kochman A, Willis LM, Greenberg AS, Tjoe KH, Sutherland JS, Chidgey A, Van den Brink MRM, Boyd RL (2007) Enhanced immune reconstitution by sex steroid ablation following allogeneic hemopoietic stem cell transplantation. J Immunol 178(11):7473–7484

    Article  CAS  PubMed  Google Scholar 

  • Goldberg GL, Dudakov JA, Reiseger JJ, Seach N, Ueno T, Vlahos K, Hammett MV, Young LF, Heng TS, Boyd RL, Chidgey AP (2010) Sex steroid ablation enhances immune reconstitution following cytotoxic antineoplastic therapy in young mice. J Immunol 184(11):6014–6024. doi:10.4049/jimmunol.0802445

    Article  CAS  PubMed  Google Scholar 

  • Goldberg JD, Zheng J, Castro-Malaspina H, Jakubowski AA, Heller G, van den Brink MRM, Perales M-A (2013) Palifermin is efficacious in recipients of TBI-based but not chemotherapy-based allogeneic hematopoietic stem cell transplants. Bone Marrow Transplant 48(1):99–104

    Article  CAS  PubMed  Google Scholar 

  • Goldrath AW, Bevan MJ (1999) Selecting and maintaining a diverse T-cell repertoire. Nature 402(6759):255–262

    Article  CAS  PubMed  Google Scholar 

  • Gordon J, Wilson VA, Blair NF, Sheridan J, Farley A, Wilson L, Manley NR, Blackburn CC (2004) Functional evidence for a single endodermal origin for the thymic epithelium. Nat Immunol 5(5):546–553

    Article  CAS  PubMed  Google Scholar 

  • Gordon J, Patel SR, Mishina Y, Manley NR (2010) Evidence for an early role for BMP4 signaling in thymus and parathyroid morphogenesis. Dev Biol 339(1):141–154. doi:10.1016/j.ydbio.2009.12.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gray DHD, Ueno T, Chidgey AP, Malin M, Goldberg GL, Takahama Y, Boyd RL (2005) Controlling the thymic microenvironment. Curr Opin Immunol 17(2):137–143

    Article  CAS  PubMed  Google Scholar 

  • Greenstein BD, Fitzpatrick FT, Adcock IM, Kendall MD, Wheeler MJ (1986) Reappearance of the thymus in old rats after orchidectomy: inhibition of regeneration by testosterone. J Endocrinol 110(3):417–422

    Article  CAS  PubMed  Google Scholar 

  • Greenstein BD, Fitzpatrick FT, Kendall MD, Wheeler MJ (1987) Regeneration of the thymus in old male rats treated with a stable analogue of LHRH. J Endocrinol 112(3):345–350

    Article  CAS  PubMed  Google Scholar 

  • Griffith AV, Fallahi M, Venables T, Petrie HT (2012) Persistent degenerative changes in thymic organ function revealed by an inducible model of organ regrowth. Aging Cell 11(1):169–177. doi:10.1111/j.1474-9726.2011.00773.x

    Article  CAS  PubMed  Google Scholar 

  • Griffith AV, Venables T, Shi J, Farr A, van Remmen H, Szweda L, Fallahi M, Rabinovitch P, Petrie HT (2015) Metabolic Damage and Premature Thymus Aging Caused by Stromal Catalase Deficiency. Cell Rep 12(7):1071–1079. doi:10.1016/j.celrep.2015.07.008

    Article  CAS  PubMed  Google Scholar 

  • Gruver AL, Hudson LL, Sempowski GD (2007) Immunosenescence of ageing. J Pathol 211(2):144–156. doi:10.1002/path.2104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo J, Feng Y, Barnes P, Huang F-F, Idell S, D-m S, Shams H (2012) Deletion of FoxN1 in the thymic medullary epithelium reduces peripheral T cell responses to infection and mimics changes of aging. PLoS ONE 7(4):e34681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hattori N (2009) Expression, regulation and biological actions of growth hormone (GH) and ghrelin in the immune system. Growth Horm IGF Res 19(3):187–197

    Article  CAS  PubMed  Google Scholar 

  • Heng TSP, Goldberg GL, Gray DHD, Sutherland JS, Chidgey AP, Boyd RL (2005) Effects of castration on thymocyte development in two different models of thymic involution. J Immunol 175(5):2982–2993

    Article  CAS  PubMed  Google Scholar 

  • Heng TSP, Reiseger JJ, Fletcher AL, Leggatt GR, White OJ, Vlahos K, Frazer IH, Turner SJ, Boyd RL (2012) Impact of sex steroid ablation on viral, tumour and vaccine responses in aged mice. PLoS ONE 7(8):e42677. doi:10.1371/journal.pone.0042677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henson SM, Snelgrove R, Hussell T, Wells DJ, Aspinall R (2005) An IL-7 fusion protein that shows increased thymopoietic ability. J Immunol 175(6):4112–4118

    Article  CAS  PubMed  Google Scholar 

  • Hirokawa K, Sato K, Makinodan T (1982) Influence of age of thymic grafts on the differentiation of T cells in nude mice. Clin Immunol Immunopathol 24(2):251–262

    Article  CAS  PubMed  Google Scholar 

  • Hirokawa K, Utsuyama M, Kobayashi S (2001) Hypothalamic control of thymic function. Cell Mol Biol (Noisy-le-grand) 47(1):97–102

    CAS  Google Scholar 

  • Hirokawa K, Utsuyama M, Kikuchi Y (2015) Trade off situation between thymus and growth hormone: age-related decline of growth hormone is a cause of thymic involution but favorable for elongation of lifespan. Biogerontology. doi:10.1007/s10522-015-9590-z

    PubMed  Google Scholar 

  • Hollander GA, Wang B, Nichogiannopoulou A, Platenburg PP, van Ewijk W, Burakoff SJ, Gutierrez-Ramos JC, Terhorst C (1995) Developmental control point in induction of thymic cortex regulated by a subpopulation of prothymocytes. Nature 373(6512):350–353. doi:10.1038/373350a0

    Article  CAS  PubMed  Google Scholar 

  • Holländer G, Gill J, Zuklys S, Iwanami N, Liu C, Takahama Y (2006) Cellular and molecular events during early thymus development. Immunol Rev 209(1):28–46

    Article  PubMed  Google Scholar 

  • Holländer GA, Krenger W, Blazar BR (2010) Emerging strategies to boost thymic function. Curr Opin Pharmacol 10(4):443–453

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Itoi M, Kawamoto H, Katsura Y, Amagai T (2001) Two distinct steps of immigration of hematopoietic progenitors into the early thymus anlage. Int Immunol 13(9):1203–1211

    Article  CAS  PubMed  Google Scholar 

  • Itoi M, Tsukamoto N, Amagai T (2007) Expression of Dll4 and CCL25 in Foxn1-negative epithelial cells in the post-natal thymus. Int Immunol 19(2):127–132

    Article  CAS  PubMed  Google Scholar 

  • Ivey KN, Muth A, Arnold J, King FW, Yeh R-F, Fish JE, Hsiao EC, Schwartz RJ, Conklin BR, Bernstein HS, Srivastava D (2008) MicroRNA regulation of cell lineages in mouse and human embryonic stem cells. Cell Stem Cell 2(3):219–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jenkinson EJ, Anderson G, Owen JJ (1992) Studies on T cell maturation on defined thymic stromal cell populations in vitro. J Exp Med 176(3):845–853

    Article  CAS  PubMed  Google Scholar 

  • Jenkinson WE, Rossi SW, Parnell SM, Agace WW, Takahama Y, Jenkinson EJ, Anderson G (2007) Chemokine receptor expression defines heterogeneity in the earliest thymic migrants. Eur J Immunol 37(8):2090–2096

    Article  CAS  PubMed  Google Scholar 

  • Jin X, Nowell CS, Ulyanchenko S, Stenhouse FH, Blackburn CC (2014) Long-Term Persistence of Functional Thymic Epithelial Progenitor Cells In Vivo under Conditions of Low FOXN1 Expression. PLoS ONE 9(12):e114842. doi:10.1371/journal.pone.0114842

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Johns SA, Soullier S, Rashbass P, Cunliffe VT (2005) Foxn1 is required for tissue assembly and desmosomal cadherin expression in the hair shaft. Dev Dyn 232(4):1062–1068

    Article  CAS  PubMed  Google Scholar 

  • Kanellopoulou C, Muljo SA, Kung AL, Ganesan S, Drapkin R, Jenuwein T, Livingston DM, Rajewsky K (2005) Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev 19(4):489–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kassem M, Marie PJ (2011) Senescence-associated intrinsic mechanisms of osteoblast dysfunctions. Aging Cell 10(2):191–197. doi:10.1111/j.1474-9726.2011.00669.x

    Article  CAS  PubMed  Google Scholar 

  • Kawakami N, Nishizawa F, Sakane N, Iwao M, Tsujikawa K, Ikawa M, Okabe M, Yamamoto H (1999) Roles of integrins and CD44 on the adhesion and migration of fetal liver cells to the fetal thymus. J Immunol 163(6):3211–3216

    CAS  PubMed  Google Scholar 

  • Kendall MD, Fitzpatrick FTA, Greenstein BD, Khoylou F, Safieh B, Hamblin A (1990) Reversal of ageing changes in the thymus of rats by chemical or surgical castration. Cell Tissue Res 261(3):555–564. doi:10.1007/bf00313535

    Article  CAS  PubMed  Google Scholar 

  • Khan IS, Taniguchi RT, Fasano KJ, Anderson MS, Jeker LT (2014) Canonical microRNAs in thymic epithelial cells promote central tolerance. Eur J Immunol 44(5):1313–1319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan IS, Park CY, Mavropoulos A, Shariat N, Pollack JL, Barczak AJ, Erle DJ, McManus MT, Anderson MS, Jeker LT (2015) Identification of MiR-205 As a MicroRNA That Is Highly Expressed in Medullary Thymic Epithelial Cells. PLoS ONE 10(8):e0135440. doi:10.1371/journal.pone.0135440

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ki S, Park D, Selden HJ, Seita J, Chung H, Kim J, Iyer VR, Ehrlich LI (2014) Global transcriptional profiling reveals distinct functions of thymic stromal subsets and age-related changes during thymic involution. Cell Rep 9(1):402–415. doi:10.1016/j.celrep.2014.08.070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kikuchi T, Ichimiya S, Kojima T, Crisa L, Koshiba S, Tonooka A, Kondo N, Van Der Saag PT, Yokoyama S, Sato N (2004) Expression profiles and functional implications of p53-like transcription factors in thymic epithelial cell subtypes. Int Immunol 16(6):831–841

    Article  CAS  PubMed  Google Scholar 

  • Koch U, Fiorini E, Benedito R, Besseyrias V, Schuster-Gossler K, Pierres M, Manley NR, Duarte A, MacDonald HR, Radtke F (2008) Delta-like 4 is the essential, nonredundant ligand for Notch1 during thymic T cell lineage commitment. J Exp Med 205(11):2515–2523. doi:10.1084/jem.20080829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koo GC, Huang C, Camacho R, Trainor C, Blake JT, Sirotina-Meisher A, Schleim KD, Wu TJ, Cheng K, Nargund R, McKissick G (2001) Immune enhancing effect of a growth hormone secretagogue. J Immunol 166(6):4195–4201

    Article  CAS  PubMed  Google Scholar 

  • Kurobe H, Liu C, Ueno T, Saito F, Ohigashi I, Seach N, Arakaki R, Hayashi Y, Kitagawa T, Lipp M, Boyd RL, Takahama Y (2006) CCR7-dependent cortex-to-medulla migration of positively selected thymocytes is essential for establishing central tolerance. Immunity 24(2):165–177

    Article  CAS  PubMed  Google Scholar 

  • Labbaye C, Spinello I, Quaranta MT, Pelosi E, Pasquini L, Petrucci E, Biffoni M, Nuzzolo ER, Billi M, Foà R, Brunetti E, Grignani F, Testa U, Peschle C (2008) A three-step pathway comprising PLZF/miR-146a/CXCR4 controls megakaryopoiesis. Nat Cell Biol 10(7):788–801

    Article  CAS  PubMed  Google Scholar 

  • Lagrota-Cândido JM, Villa-Verde DMS, Vanderlei JFH, Savino W (1996) Extracellular matrix components of the mouse thymus microenvironment. V. Interferon-[gamma] modulates thymic epithelial cell/thymocyte interactions via extracellular matrix ligands and receptors. Cell Immunol 170(2):235–244. doi:10.1006/cimm.1996.0157

    Article  PubMed  Google Scholar 

  • Lai L, Jin J (2009) Generation of thymic epithelial cell progenitors by mouse embryonic stem cells. Stem Cells 27(12):3012–3020

    CAS  PubMed  Google Scholar 

  • Lai L, Cui C, Jin J, Hao Z, Zheng Q, Ying M, Boyd R, Zhao Y (2011) Mouse embryonic stem cell-derived thymic epithelial cell progenitors enhance T-cell reconstitution after allogeneic bone marrow transplantation. Blood 118(12):3410–3418

    Article  CAS  PubMed  Google Scholar 

  • Lannes-Vieira J, Chammas R, Villa-Verde DMS, Vannier-dos-Santos MA, Mello-Coelho V, de Souza SJ, Brentani RR, Savino W (1993) Extracellular matrix components of the mouse thymic microenvironment. III. Thymic epithelial cells express the VLA6 complex that is involved in laminin-mediated interactions with thymocytes. Int Immunol 5(11):1421–1430. doi:10.1093/intimm/5.11.1421

    Article  CAS  PubMed  Google Scholar 

  • Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854

    Article  CAS  PubMed  Google Scholar 

  • Lickorish D, Ramshaw JAM, Werkmeister JA, Glattauer V, Howlett CR (2004) Collagen-hydroxyapatite composite prepared by biomimetic process. J Biomed Mater Res Part A 68A(1):19–27. doi:10.1002/jbm.a.20031

    Article  CAS  Google Scholar 

  • Linhares-Lacerda L, Palu CC, Ribeiro-Alves M, Paredes BD, Morrot A, Garcia-Silva MR, Cayota A, Savino W (2015) Differential Expression of microRNAs in Thymic Epithelial Cells from Trypanosoma cruzi Acutely Infected Mice: Putative Role in Thymic Atrophy. Front Immunol 6:428. doi:10.3389/fimmu.2015.00428

    Article  PubMed  PubMed Central  Google Scholar 

  • Linton PJ, Dorshkind K (2004) Age-related changes in lymphocyte development and function. Nat Immunol 5(2):133–139. doi:10.1038/ni1033

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Ueno T, Kuse S, Saito F, Nitta T, Piali L, Nakano H, Kakiuchi T, Lipp M, Hollander GA, Takahama Y (2005) The role of CCL21 in recruitment of T-precursor cells to fetal thymi. Blood 105(1):31–39. doi:10.1182/blood-2004-04-1369

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Saito F, Liu Z, Lei Y, Uehara S, Love P, Lipp M, Kondo S, Manley N, Takahama Y (2006) Coordination between CCR7- and CCR9-mediated chemokine signals in prevascular fetal thymus colonization. Blood 108(8):2531–2539

    Article  CAS  PubMed  Google Scholar 

  • Lynch HE, Goldberg GL, Chidgey A, Van den Brink MRM, Boyd R, Sempowski GD (2009) Thymic involution and immune reconstitution. Trends Immunol 30(7):366–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma PX (2008) Biomimetic materials for tissue engineering. Adv Drug Deliv Rev 60(2):184–198. doi:10.1016/j.addr.2007.08.041

    Article  CAS  PubMed  Google Scholar 

  • Mackall CL, Fleisher TA, Brown MR, Andrich MP, Chen CC, Feuerstein IM, Magrath IT, Wexler LH, Dimitrov DS, Gress RE (1997) Distinctions between CD8+ and CD4+ T-Cell regenerative pathways result in prolonged T-cell subset imbalance after intensive chemotherapy. Blood 89(10):3700–3707

    CAS  PubMed  Google Scholar 

  • Mackall CL, Fry TJ, Bare C, Morgan P, Galbraith A, Gress RE (2001) IL-7 increases both thymic-dependent and thymic-independent T-cell regeneration after bone marrow transplantation. Blood 97(5):1491–1497. doi:10.1182/blood.V97.5.1491

    Article  CAS  PubMed  Google Scholar 

  • Manley NR, Capecchi MR (1995) The role of Hoxa-3 in mouse thymus and thyroid development. Development 121(7):1989–2003

    CAS  PubMed  Google Scholar 

  • Manley NR, Capecchi MR (1998) Hox group 3 paralogs regulate the development and migration of the thymus, thyroid, and parathyroid glands. Dev Biol 195(1):1–15

    Article  CAS  PubMed  Google Scholar 

  • Mann BK, Gobin AS, Tsai AT, Schmedlen RH, West JL (2001) Smooth muscle cell growth in photopolymerized hydrogels with cell adhesive and proteolytically degradable domains: synthetic ECM analogs for tissue engineering. Biomaterials 22(22):3045–3051

    Article  CAS  PubMed  Google Scholar 

  • Masuda K, Germeraad WTV, Satoh R, Itoi M, Ikawa T, Minato N, Katsura Y, van Ewijk W, Kawamoto H (2009) Notch activation in thymic epithelial cells induces development of thymic microenvironments. Mol Immunol 46(8–9):1756–1767

    Article  CAS  PubMed  Google Scholar 

  • Melchionda F, Fry TJ, Milliron MJ, McKirdy MA, Tagaya Y, Mackall CL (2005) Adjuvant IL-7 or IL-15 overcomes immunodominance and improves survival of the CD8+ memory cell pool. J Clin Invest 115(5):1177–1187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meredith M, Zemmour D, Mathis D, Benoist C (2015) Aire controls gene expression in the thymic epithelium with ordered stochasticity. Nat Immunol 16(9):942–949. doi:10.1038/ni.3247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller JFAP (2002) The discovery of thymus function and of thymus-derived lymphocytes. Immunol Rev 185:7–14

    Article  CAS  PubMed  Google Scholar 

  • Min D, Taylor PA, Panoskaltsis-Mortari A, Chung B, Danilenko DM, Farrell C, Lacey DL, Blazar BR, Weinberg KI (2002) Protection from thymic epithelial cell injury by keratinocyte growth factor: a new approach to improve thymic and peripheral T-cell reconstitution after bone marrow transplantation. Blood 99(12):4592–4600

    Article  CAS  PubMed  Google Scholar 

  • Min D, Panoskaltsis-Mortari A, Kuro-O M, Holländer GA, Blazar BR, Weinberg KI (2007) Sustained thymopoiesis and improvement in functional immunity induced by exogenous KGF administration in murine models of aging. Blood 109(6):2529–2537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montgomery MK, Xu S, Fire A (1998) RNA as a target of double-stranded RNA-mediated genetic interference in Caenorhabditis elegans. Proc Natl Acad Sci U S A 95(26):15502–15507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morley JE (2003) Hormones and the aging process. J Am Geriatr Soc 51(7 Suppl):S333–S337

    Article  PubMed  Google Scholar 

  • Muljo SA, Ansel KM, Kanellopoulou C, Livingston DM, Rao A, Rajewsky K (2005) Aberrant T cell differentiation in the absence of Dicer. J Exp Med 202(2):261–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Napolitano LA, Lo JC, Gotway MB, Mulligan K, Barbour JD, Schmidt D, Grant RM, Halvorsen RA, Schambelan M, McCune JM (2002) Increased thymic mass and circulating naive CD4 T cells in HIV-1-infected adults treated with growth hormone. AIDS 16(8):1103–1111

    Article  CAS  PubMed  Google Scholar 

  • Napolitano LA, Schmidt D, Gotway MB, Ameli N, Filbert EL, Ng MM, Clor JL, Epling L, Sinclair E, Baum PD, Li K, Killian ML, Bacchetti P, McCune JM (2008) Growth hormone enhances thymic function in HIV-1-infected adults. J Clin Invest 118(3):1085–1098

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nehls M, Pfeifer D, Schorpp M, Hedrich H, Boehm T (1994) New member of the winged-helix protein family disrupted in mouse and rat nude mutations. Nature 372(6501):103–107

    Article  CAS  PubMed  Google Scholar 

  • Nehls M, Kyewski B, Messerle M, Waldschütz R, Schüddekopf K, Smith AJ, Boehm T (1996) Two genetically separable steps in the differentiation of thymic epithelium. Science 272(5263):886–889

    Article  CAS  PubMed  Google Scholar 

  • Nowell CS, Farley AM, Blackburn CC (2007a) Thymus organogenesis and development of the thymic stroma. Methods Mol Biol 380:125–162

    Article  CAS  PubMed  Google Scholar 

  • Nowell CS, Richie E, Manley NR, Blackburn CC (2007b) Thymus and parathyroid organogenesis. In: Lanza R, Langer R, Vacanti J (eds) Principles of tissue engineering, 3rd edn. Elsevier Academic Press, San Diego, pp 647–662

    Chapter  Google Scholar 

  • Nowell CS, Bredenkamp N, Tetélin S, Jin X, Tischner C, Vaidya H, Sheridan JM, Stenhouse FH, Heussen R, Smith AJH, Blackburn CC (2011) Foxn1 regulates lineage progression in cortical and medullary thymic epithelial cells but is dispensable for medullary sublineage divergence. PLoS Genet 7(11):e1002348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okuyama R, Abo T, Seki S, Ohteki T, Sugiura K, Kusumi A, Kumagai K (1992) Estrogen administration activates extrathymic T cell differentiation in the liver. J Exp Med 175(3):661–669

    Article  CAS  PubMed  Google Scholar 

  • Olsen NJ, Olson G, Viselli SM, Gu X, Kovacs WJ (2001) Androgen receptors in thymic epithelium modulate thymus size and thymocyte development. Endocrinology 142(3):1278–1283. doi:10.1210/en.142.3.1278

    CAS  PubMed  Google Scholar 

  • Ortman CL, Dittmar KA, Witte PL, Le PT (2002) Molecular characterization of the mouse involuted thymus: aberrations in expression of transcription regulators in thymocyte and epithelial compartments. Int Immunol 14(7):813–822

    Article  CAS  PubMed  Google Scholar 

  • Ott HC, Matthiesen TS, Goh S-K, Black LD, Kren SM, Netoff TI, Taylor DA (2008) Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med 14(2):213–221

    Article  CAS  PubMed  Google Scholar 

  • Palamaro L, Guarino V, Scalia G, Antonini D, De Falco L, Bianchino G, Fusco A, Romano R, Grieco V, Missero C, Del Vecchio L, Ambrosio L, Pignata C (2013) Human skin-derived keratinocytes and fibroblasts co-cultured on 3D poly ε-caprolactone scaffold support in vitro HSC differentiation into T-lineage committed cells. Int Immunol 25(12):703–714

    Article  CAS  PubMed  Google Scholar 

  • Panoskaltsis-Mortari A, Lacey DL, Vallera DA, Blazar BR (1998) Keratinocyte growth factor administered before conditioning ameliorates graft-versus-host disease after allogeneic bone marrow transplantation in mice. Blood 92(10):3960–3967

    CAS  PubMed  Google Scholar 

  • Panoskaltsis-Mortari A, Taylor PA, Rubin JS, Uren A, Welniak LA, Murphy WJ, Farrell CL, Lacey DL, Blazar BR (2000) Keratinocyte growth factor facilitates alloengraftment and ameliorates graft-versus-host disease in mice by a mechanism independent of repair of conditioning-induced tissue injury. Blood 96(13):4350–4356

    CAS  PubMed  Google Scholar 

  • Papadopoulou AS, Dooley J, Linterman MA, Pierson W, Ucar O, Kyewski B, Zuklys S, Holländer GA, Matthys P, Gray DHD, De Strooper B, Liston A (2012) The thymic epithelial microRNA network elevates the threshold for infection-associated thymic involution via miR-29a mediated suppression of the IFN-α receptor. Nat Immunol 13(2):181–187

    Article  CAS  Google Scholar 

  • Parent AV, Russ HA, Khan IS, LaFlam TN, Metzger TC, Anderson MS, Hebrok M (2013) Generation of functional thymic epithelium from human embryonic stem cells that supports host T cell development. Cell Stem Cell 13(2):219–229

    Article  CAS  PubMed  Google Scholar 

  • Patel SR, Gordon J, Mahbub F, Blackburn CC, Manley NR (2006) Bmp4 and Noggin expression during early thymus and parathyroid organogenesis. Gene Expr Patterns 6(8):794–799

    Article  CAS  PubMed  Google Scholar 

  • Pennell LM, Galligan CL, Fish EN (2012) Sex affects immunity. J Autoimmun 38(2–3):J282–J291

    Article  CAS  PubMed  Google Scholar 

  • Perales M-A, Goldberg JD, Yuan J, Koehne G, Lechner L, Papadopoulos EB, Young JW, Jakubowski AA, Zaidi B, Gallardo H, Liu C, Rasalan T, Wolchok JD, Croughs T, Morre M, Devlin SM, Van den Brink MRM (2012) Recombinant human interleukin-7 (CYT107) promotes T-cell recovery after allogeneic stem cell transplantation. Blood 120(24):4882–4891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petersen TH, Calle EA, Zhao LP, Lee EJ, Gui LQ, Raredon MB, Gavrilov K, Yi T, Zhuang ZW, Breuer C, Herzog E, Niklason LE (2010) Tissue-engineered lungs for in vivo implantation. Science 329(5991):538–541. doi:10.1126/science.1189345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petrie HT, van Ewijk W (2002) Thymus by numbers. Nat Immunol 3(7):604–605

    Article  CAS  PubMed  Google Scholar 

  • Petrie HT, Zuniga-Pflucker JC (2007) Zoned out: functional mapping of stromal signaling microenvironments in the thymus. Annu Rev Immunol 25:649–679. doi:10.1146/annurev.immunol.23.021704.115715

    Article  CAS  PubMed  Google Scholar 

  • Ramshaw J, Peng Y, Glattauer V, Werkmeister J (2009) Collagens as biomaterials. J Mater Sci Mater Med 20:3–8. doi:10.1007/s10856-008-3415-4

    Article  CAS  Google Scholar 

  • Rapaport R, Oleske J, Ahdieh H, Solomon S, Delfaus C, Denny T (1986) Suppression of immune function in growth hormone-deficient children during treatment with human growth hormone. J Pediatr 109(3):434–439

    Article  CAS  PubMed  Google Scholar 

  • Redelman D, Welniak LA, Taub D, Murphy WJ (2008) Neuroendocrine hormones such as growth hormone and prolactin are integral members of the immunological cytokine network. Cell Immunol 252(1–2):111–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodewald H-R (2008) Thymus organogenesis. Annu Rev Immunol 26(1):355–388

    Article  CAS  PubMed  Google Scholar 

  • Romano R, Palamaro L, Fusco A, Giardino G, Gallo V, Del Vecchio L, Pignata C (2013) FOXN1: A Master Regulator Gene of Thymic Epithelial Development Program. Front Immunol 4:187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosa A, Spagnoli FM, Brivanlou AH (2009) The miR-430/427/302 family controls mesendodermal fate specification via species-specific target selection. Dev Cell 16(4):517–527

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg SA, Sportès C, Ahmadzadeh M, Fry TJ, Ngo LT, Schwarz SL, Stetler-Stevenson M, Morton KE, Mavroukakis SA, Morre M, Buffet R, Mackall CL, Gress RE (2006) IL-7 administration to humans leads to expansion of CD8+ and CD4+ cells but a relative decrease of CD4+ T-regulatory cells. J Immunother 29(3):313–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rossi S, Blazar BR, Farrell CL, Danilenko DM, Lacey DL, Weinberg KI, Krenger W, Holländer GA (2002) Keratinocyte growth factor preserves normal thymopoiesis and thymic microenvironment during experimental graft-versus-host disease. Blood 100(2):682–691

    Article  CAS  PubMed  Google Scholar 

  • Rossi FM, Corbel SY, Merzaban JS, Carlow DA, Gossens K, Duenas J, So L, Yi L, Ziltener HJ (2005) Recruitment of adult thymic progenitors is regulated by P-selectin and its ligand PSGL-1. Nat Immunol 6(6):626–634. doi:10.1038/ni1203

    Article  CAS  PubMed  Google Scholar 

  • Rossi SW, Jenkinson WE, Anderson G, Jenkinson EJ (2006) Clonal analysis reveals a common progenitor for thymic cortical and medullary epithelium. Nature 441(7096):988–991. doi:10.1038/nature04813

    Article  CAS  PubMed  Google Scholar 

  • Rossi SW, Chidgey AP, Parnell SM, Jenkinson WE, Scott HS, Boyd RL, Jenkinson EJ, Anderson G (2007a) Redefining epithelial progenitor potential in the developing thymus. Eur J Immunol 37(9):2411–2418. doi:10.1002/eji.200737275

    Article  CAS  PubMed  Google Scholar 

  • Rossi SW, Jeker LT, Ueno T, Kuse S, Keller MP, Zuklys S, Gudkov AV, Takahama Y, Krenger W, Blazar BR, Holländer GA (2007b) Keratinocyte growth factor (KGF) enhances postnatal T-cell development via enhancements in proliferation and function of thymic epithelial cells. Blood 109(9):3803–3811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rupp LJ, Brady BL, Carpenter AC, De Obaldia ME, Bhandoola A, Bosselut R, Muljo SA, Bassing CH (2014) The microRNA biogenesis machinery modulates lineage commitment during alphabeta T cell development. J Immunol 193(8):4032–4042. doi:10.4049/jimmunol.1401359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sando L, Danon S, Brownlee AG, McCulloch RJ, Ramshaw JAM, Elvin CM, Werkmeister JA (2011) Photochemically crosslinked matrices of gelatin and fibrinogen promote rapid cell proliferation. J Tissue Eng Regen Med 5(5):337–346. doi:10.1002/term.318

    Article  CAS  PubMed  Google Scholar 

  • Savino W, Villa-Verde DMS, Lannes-Vieira J (1993) Extracellular matrix proteins in intrathymic T-cell migration and differentiation? Immunol Today 14(4):158–161. doi:10.1016/0167-5699(93)90278-s

    Article  CAS  PubMed  Google Scholar 

  • Savino W, Dalmau SR, Dealmeida VC (2000) Role of extracellular matrix-mediated interactions in thymocyte migration. Dev Immunol 7(2–4):279–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Savino W, Mendes-da-Cruz DA, Silva JS, Dardenne M, Cotta-de-Almeida V (2002) Intrathymic T-cell migration: a combinatorial interplay of extracellular matrix and chemokines? Trends Immunol 23(6):305–313

    Article  CAS  PubMed  Google Scholar 

  • Schickel R, Boyerinas B, Park S-M, Peter ME (2008) MicroRNAs: key players in the immune system, differentiation, tumorigenesis and cell death. Oncogene 27(45):5959–5974

    Article  CAS  PubMed  Google Scholar 

  • Schluns KS, Kieper WC, Jameson SC, Lefrançois L (2000) Interleukin-7 mediates the homeostasis of naïve and memory CD8 T cells in vivo. Nat Immunol 1(5):426–432

    Article  CAS  PubMed  Google Scholar 

  • Scott IC, Steiglitz BM, Clark TG, Pappano WN, Greenspan DS (2000) Spatiotemporal expression patterns of mammalian chordin during postgastrulation embryogenesis and in postnatal brain. Dev Dyn 217(4):449–456

    Article  CAS  PubMed  Google Scholar 

  • Seach N, Wong K, Hammett M, Boyd RL, Chidgey AP (2012) Purified enzymes improve isolation and characterization of the adult thymic epithelium. J Immunol Methods 385(1–2):23–34. doi:10.1016/j.jim.2012.07.023

    Article  CAS  PubMed  Google Scholar 

  • Seo K-H, Zhou L, Meng D, Xu J, Dong Z, Mi Q-S (2010) Loss of microRNAs in thymus perturbs invariant NKT cell development and function. Cell Mol Immunol 7(6):447–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slack JMW (2000) Stem cells in epithelial tissues. Science 287(5457):1431–1433. doi:10.1126/science.287.5457.1431

    Article  CAS  PubMed  Google Scholar 

  • Smaniotto S, de Mello CV, Villa-Verde DMS, Pléau J-M, Postel-Vinay MC, Dardenne M, Savino W (2005) Growth hormone modulates thymocyte development in vivo through a combined action of laminin and CXC chemokine ligand 12. Endocrinology 146(7):3005–3017

    Article  CAS  PubMed  Google Scholar 

  • Smaniotto S, Mendes-da-Cruz DA, Carvalho-Pinto CE, Araujo LM, Dardenne M, Savino W (2010) Combined role of extracellular matrix and chemokines on peripheral lymphocyte migration in growth hormone transgenic mice. Brain Behav Immun 24(3):451–461

    Article  CAS  PubMed  Google Scholar 

  • Smith RG, Jiang H, Sun Y (2005) Developments in ghrelin biology and potential clinical relevance. Trends Endocrinol Metab 16(9):436–442

    Article  CAS  PubMed  Google Scholar 

  • Smith KP, Luong MX, Stein GS (2009) Pluripotency: toward a gold standard for human ES and iPS cells. J Cell Physiol 220(1):21–29. doi:10.1002/jcp.21681

    Article  CAS  PubMed  Google Scholar 

  • Soh CL, Giudice A, Jenny RA, Elliott DA, Hatzistavrou T, Micallef SJ, Kianizad K, Seach N, Zuniga-Pflucker JC, Chidgey AP, Trounson A, Nilsson SK, Haylock DN, Boyd RL, Elefanty AG, Stanley EG (2014) FOXN1 (GFP/w) reporter hESCs enable identification of integrin-beta4, HLA-DR, and EpCAM as markers of human PSC-derived FOXN1(+) thymic epithelial progenitors. Stem Cell Reports 2(6):925–937. doi:10.1016/j.stemcr.2014.04.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sportès C, Hakim FT, Memon SA, Zhang H, Chua KS, Brown MR, Fleisher TA, Krumlauf MC, Babb RR, Chow CK, Fry TJ, Engels J, Buffet R, Morre M, Amato RJ, Venzon DJ, Korngold R, Pecora A, Gress RE, Mackall CL (2008) Administration of rhIL-7 in humans increases in vivo TCR repertoire diversity by preferential expansion of naive T cell subsets. J Exp Med 205(7):1701–1714

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Steinmann GG, Klaus B, Müller-Hermelink HK (1985) The involution of the ageing human thymic epithelium is independent of puberty. Scand J Immunol 22(5):563–575. doi:10.1111/j.1365-3083.1985.tb01916.x

    Article  CAS  PubMed  Google Scholar 

  • Storek J, Gillespy T, Lu H, Joseph A, Dawson MA, Gough M, Morris J, Hackman RC, Horn PA, Sale GE, Andrews RG, Maloney DG, Kiem H-P (2003) Interleukin-7 improves CD4 T-cell reconstitution after autologous CD34 cell transplantation in monkeys. Blood 101(10):4209–4218. doi:10.1182/blood-2002-08-2671

    Article  CAS  PubMed  Google Scholar 

  • Su D-m, Navarre S, W-j O, Condie BG, Manley NR (2003) A domain of Foxn1 required for crosstalk-dependent thymic epithelial cell differentiation. Nat Immunol 4(11):1128–1135

    Article  CAS  PubMed  Google Scholar 

  • Su M, Hu R, Jin J, Yan Y, Song Y, Sullivan R, Lai L (2015a) Efficient in vitro generation of functional thymic epithelial progenitors from human embryonic stem cells. Sci Rep 5:9882. doi:10.1038/srep09882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su M, Song Y, He Z, Hu R, Rood D, Lai L (2015b) Administration of embryonic stem cell-derived thymic epithelial progenitors expressing MOG induces antigen-specific tolerance and ameliorates experimental autoimmune encephalomyelitis. J Autoimmun 58:36–47. doi:10.1016/j.jaut.2015.01.002

    Article  CAS  PubMed  Google Scholar 

  • Sudo K, Ema H, Morita Y, Nakauchi H (2000) Age-associated characteristics of murine hematopoietic stem cells. J Exp Med 192(9):1273–1280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sultana DA, Tomita S, Hamada M, Iwanaga Y, Kitahama Y, Khang NV, Hirai S, Ohigashi I, Nitta S, Amagai T, Takahashi S, Takahama Y (2009) Gene expression profile of the third pharyngeal pouch reveals role of mesenchymal MafB in embryonic thymus development. Blood 113(13):2976–2987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun L, Guo J, Brown R, Amagai T, Zhao Y, D-m S (2010) Declining expression of a single epithelial cell-autonomous gene accelerates age-related thymic involution. Aging Cell 9(3):347–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun X, Xu J, Lu H, Liu W, Miao Z, Sui X, Liu H, Su L, Du W, He Q, Chen F, Shi Y, Deng H (2013) Directed differentiation of human embryonic stem cells into thymic epithelial progenitor-like cells reconstitutes the thymic microenvironment in vivo. Cell Stem Cell 13(2):230–236

    Article  CAS  PubMed  Google Scholar 

  • Sutherland JS, Goldberg GL, Hammett MV, Uldrich AP, Berzins SP, Heng TS, Blazar BR, Millar JL, Malin MA, Chidgey AP, Boyd RL (2005) Activation of thymic regeneration in mice and humans following androgen blockade. J Immunol 175(4):2741–2753

    Article  CAS  PubMed  Google Scholar 

  • Sutherland JS, Spyroglou L, Muirhead JL, Heng TS, Prieto-Hinojosa A, Prince HM, Chidgey AP, Schwarer AP, Boyd RL (2008) Enhanced immune system regeneration in humans following allogeneic or autologous hemopoietic stem cell transplantation by temporary sex steroid blockade. Clin Cancer Res 14(4):1138–1149. doi:10.1158/1078-0432.ccr-07-1784

    Article  CAS  PubMed  Google Scholar 

  • Tajima A, Liu W, Pradhan I, Bertera S, Bagia C, Trucco M, Meng WS, Fan Y (2015) Bioengineering mini functional thymic units with EAK16-II/EAKIIH6 self-assembling hydrogel. Clin Immunol 160(1):82–89. doi:10.1016/j.clim.2015.03.010

    Article  CAS  PubMed  Google Scholar 

  • Takahama Y (2006) Journey through the thymus: stromal guides for T-cell development and selection. Nat Rev Immunol 6(2):127–135

    Article  CAS  PubMed  Google Scholar 

  • Tannenbaum GS, Bowers CY (2001) Interactions of growth hormone secretagogues and growth hormone-releasing hormone/somatostatin. Endocrine 14(1):21–27

    Article  CAS  PubMed  Google Scholar 

  • Taub DD, Murphy WJ, Longo DL (2010) Rejuvenation of the aging thymus: growth hormone-mediated and ghrelin-mediated signaling pathways. Curr Opin Pharmacol 10(4):408–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuljapurkar SR, McGuire TR, Brusnahan SK, Jackson JD, Garvin KL, Kessinger MA, Lane JT, O’Kane BJ, Sharp JG (2011) Changes in human bone marrow fat content associated with changes in hematopoietic stem cell numbers and cytokine levels with aging. J Anat 219(5):574–581. doi:10.1111/j.1469-7580.2011.01423.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tzur G, Levy A, Meiri E, Barad O, Spector Y, Bentwich Z, Mizrahi L, Katzenellenbogen M, Ben-Shushan E, Reubinoff BE, Galun E (2008) MicroRNA expression patterns and function in endodermal differentiation of human embryonic stem cells. PLoS ONE 3(11):e3726

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ucar O, Tykocinski L-O, Dooley J, Liston A, Kyewski B (2013) An evolutionarily conserved mutual interdependence between Aire and microRNAs in promiscuous gene expression. Eur J Immunol 43(7):1769–1778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ucar A, Ucar O, Klug P, Matt S, Brunk F, Hofmann TG, Kyewski B (2014) Adult Thymus Contains FoxN1(−) Epithelial Stem Cells that Are Bipotent for Medullary and Cortical Thymic Epithelial Lineages. Immunity 41(2):257–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ueno T, Hara K, Willis MS, Malin MA, Höpken UE, Gray DHD, Matsushima K, Lipp M, Springer TA, Boyd RL, Yoshie O, Takahama Y (2002) Role for CCR7 ligands in the emigration of newly generated T lymphocytes from the neonatal thymus. Immunity 16(2):205–218

    Article  CAS  PubMed  Google Scholar 

  • Unsinger J, McGlynn M, Kasten KR, Hoekzema AS, Watanabe E, Muenzer JT, McDonough JS, Tschoep J, Ferguson TA, McDunn JE, Morre M, Hildeman DA, Caldwell CC, Hotchkiss RS (2010) IL-7 promotes T cell viability, trafficking, and functionality and improves survival in sepsis. J Immunol 184(7):3768–3779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Utsuyama M, Kobayashi S, Hirokawa K (1997) Induction of thymic hyperplasia and suppression of splenic T cells by lesioning of the anterior hypothalamus in aging Wistar rats. J Neuroimmunol 77(2):174–180

    Article  CAS  PubMed  Google Scholar 

  • Uygun BE, Soto-Gutierrez A, Yagi H, Izamis ML, Guzzardi MA, Shulman C, Milwid J, Kobayashi N, Tilles A, Berthiaume F, Hertl M, Nahmias Y, Yarmush ML, Uygun K (2010) Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat Med 16(7):814–820. doi:10.1038/nm.2170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van den Brink MRM, Alpdogan O, Boyd RL (2004) Strategies to enhance T-cell reconstitution in immunocompromised patients. Nat Rev Immunol 4(11):856–867

    Article  PubMed  CAS  Google Scholar 

  • van Ewijk W, Jenkinson EJ, van Soest PL, Owen JJ (1982) Detection of MHC, Thy-1, Lyt-1 and Lyt-2 antigens in the developing mouse thymus. Adv Exp Med Biol 149:241–248

    Article  PubMed  Google Scholar 

  • van Ewijk W, Shores EW, Singer A (1994) Crosstalk in the mouse thymus. Immunol Today 15(5):214–217. doi:10.1016/0167-5699(94)90246-1

    Article  PubMed  Google Scholar 

  • van Ewijk W, Wang BP, Hollander G, Kawamoto H, Spanopoulou E, Itoi M, Amagai T, Jiang YF, Germeraad WTV, Chen WF, Katsura Y (1999) Thymic microenvironments, 3-D versus 2-D? Semin Immunol 11(1):57–64

    Article  PubMed  Google Scholar 

  • van Ewijk W, Hollander G, Terhorst C, Wang BP (2000) Stepwise development of thymic microenvironments in vivo is regulated by thymocyte subsets. Development 127(8):1583–1591

    PubMed  Google Scholar 

  • Vence LM, Wang C, Pappu H, Anson RE, Patel TA, Miller P, Bassett R, Lizee G, Overwijk WW, Komanduri K, Benjamin C, Alvarado G, Patel SP, Kim K, Papadopoulos NE, Bedikian AY, Homsi J, Hwu WJ, Boyd R, Radvanyi L, Hwu P (2013) Chemical castration of melanoma patients does not increase the frequency of tumor-specific CD4 and CD8 T cells after peptide vaccination. J Immunother 36(4):276–286. doi:10.1097/CJI.0b013e31829419f3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ventevogel MS, Sempowski GD (2013) Thymic rejuvenation and aging. Curr Opin Immunol 25(4):516–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wainwright DJ (1995) Use of an acellular allograft dermal matrix (AlloDerm) in the management of full-thickness burns. Burns 21(4):243–248. doi:10.1016/0305-4179(95)93866-i

    Article  CAS  PubMed  Google Scholar 

  • Wainwright DJ, Bury SB (2011) Acellular dermal matrix in the management of the burn patient. Aesthet Surg J 31(7 Suppl):13S–23S

    Article  PubMed  Google Scholar 

  • Wei G, Ma PX (2008) Nanostructured Biomaterials for Regeneration. Adv Funct Mater 18(22):3566–3582

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weissman IL (2000) Translating stem and progenitor cell biology to the clinic: barriers and opportunities. Science 287(5457):1442–1446. doi:10.1126/science.287.5457.1442

    Article  CAS  PubMed  Google Scholar 

  • Weissman IL, Shizuru JA (2008) The origins of the identification and isolation of hematopoietic stem cells, and their capability to induce donor-specific transplantation tolerance and treat autoimmune diseases. Blood 112(9):3543–3553. doi:10.1182/blood-2008-08-078220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Windmill KF, Lee VW (1999) Influences of surgical castration on the thymus of male rats. J Reprod Immunol 44(1–2):29–39

    Article  CAS  PubMed  Google Scholar 

  • Windmill KF, Meade BJ, Lee VW (1993) Effect of prepubertal gonadectomy and sex steroid treatment on the growth and lymphocyte populations of the rat thymus. Reprod Fertil Dev 5(1):73–81

    Article  CAS  PubMed  Google Scholar 

  • Wong K, Lister NL, Barsanti M, Lim JM, Hammett MV, Khong DM, Siatskas C, Gray DH, Boyd RL, Chidgey AP (2014) Multilineage potential and self-renewal define an epithelial progenitor cell population in the adult thymus. Cell Rep 8(4):1198–1209. doi:10.1016/j.celrep.2014.07.029

    Article  CAS  PubMed  Google Scholar 

  • Xiao C, Rajewsky K (2009) MicroRNA control in the immune system: basic principles. Cell 136(1):26–36

    Article  CAS  PubMed  Google Scholar 

  • Xu N, Papagiannakopoulos T, Pan G, Thomson JA, Kosik KS (2009) MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell 137(4):647–658

    Article  CAS  PubMed  Google Scholar 

  • Yamanaka S (2009) Elite and stochastic models for induced pluripotent stem cell generation. Nature 460(7251):49–52. doi:10.1038/nature08180

    Article  CAS  PubMed  Google Scholar 

  • Yano M, Kuroda N, Han H, Meguro-Horike M, Nishikawa Y, Kiyonari H, Maemura K, Yanagawa Y, Obata K, Takahashi S, Ikawa T, Satoh R, Kawamoto H, Mouri Y, Matsumoto M (2008) Aire controls the differentiation program of thymic epithelial cells in the medulla for the establishment of self-tolerance. J Exp Med 205(12):2827–2838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye Y, Li D, Ouyang D, Deng L, Zhang Y, Ma Y, Li Y (2014) MicroRNA expression in the aging mouse thymus. Gene 547(2):218–225. doi:10.1016/j.gene.2014.06.039

    Article  CAS  PubMed  Google Scholar 

  • Zamisch M, Moore-Scott B, D-m S, Lucas PJ, Manley N, Richie ER (2005) Ontogeny and regulation of IL-7-expressing thymic epithelial cells. J Immunol 174(1):60–67

    Article  CAS  PubMed  Google Scholar 

  • Zlotoff DA, Bhandoola A (2011) Hematopoietic progenitor migration to the adult thymus. Ann N Y Acad Sci 1217:122–138. doi:10.1111/j.1749-6632.2010.05881.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zook EC, Krishack PA, Zhang S, Zeleznik-Le NJ, Firulli AB, Witte PL, Le PT (2011) Overexpression of Foxn1 attenuates age-associated thymic involution and prevents the expansion of peripheral CD4 memory T cells. Blood 118(22):5723–5731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuklys S, Mayer CE, Zhanybekova S, Stefanski HE, Nusspaumer G, Gill J, Barthlott T, Chappaz S, Nitta T, Dooley J, Nogales-Cadenas R, Takahama Y, Finke D, Liston A, Blazar BR, Pascual-Montano A, Holländer GA (2012) MicroRNAs control the maintenance of thymic epithelia and their competence for T lineage commitment and thymocyte selection. J Immunol 189(8):3894–3904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ann Chidgey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Barsanti, M., Hun, M., Boyd, R., Chidgey, A. (2016). Strategies for Thymic Regeneration: Recent Advances Towards Clinical Therapy. In: Watanabe, T., Takahama, Y. (eds) Synthetic Immunology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56027-2_3

Download citation

Publish with us

Policies and ethics