Advertisement

Development and Regeneration of Hematopoietic Stem Cells

  • Daniel J. Wesche
  • Hiromitsu Nakauchi
Chapter

Abstract

Hematopoietic stem cells (HSCs) have the capacity to maintain or reconstitute an organism’s immune system for life. Due to limited supply of these rare cells, the generation of HSCs de novo from readily available cell sources has been a central goal in synthetic immunology. While yet unattained, progress towards that goal has been made along three major strategic avenues. First, developmental mimicking attempts to generate HSCs from pluripotent stem cells (PSCs) by recapitulating the embryonic developmental steps towards HSCs in vitro through temporally controlled exposure to signaling factors and inhibitors. Second, HSC development from PSCs is recapitulated randomly inside a forming teratoma in vivo, and hematopoietic differentiation can be enhanced and directed using hematopoietic stromal cells and cytokines. Third, combinatorial transcription factor-mediated transdifferentiation employs forced expression of transcriptional master regulators with known roles in HSCs to convert somatic cells to HSCs. In this chapter we provide a developmental perspective of HSC emergence and review the promises and challenges of the three major approaches to generate HSCs de novo.

Keywords

Hematopoietic Progenitor Inner Cell Mass Primitive Streak Hematopoietic Differentiation Human HSCs 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

We thank Dr. S. Tamir Rashid for careful reading of the manuscript and comments.

References

  1. Amabile G, Welner RS, Nombela-Arrieta C et al (2013) In vivo generation of transplantable human hematopoietic cells from induced pluripotent stem cells. Blood 121:1255–1264. doi: 10.1182/blood-2012-06-434407 PubMedPubMedCentralCrossRefGoogle Scholar
  2. Ambler CA, Nowicki JL, Burke AC, Bautch VL (2001) Assembly of trunk and limb blood vessels involves extensive migration and vasculogenesis of somite-derived angioblasts. Dev Biol 234:352–364. doi: 10.1006/dbio.2001.0267 PubMedCrossRefGoogle Scholar
  3. Anjos-Afonso F, Currie E, Palmer HG et al (2013) CD34(-) cells at the apex of the human hematopoietic stem cell hierarchy have distinctive cellular and molecular signatures. Cell Stem Cell 13:161–174. doi: 10.1016/j.stem.2013.05.025 PubMedCrossRefGoogle Scholar
  4. Batta K, Florkowska M, Kouskoff V, Lacaud G (2014) Direct reprogramming of murine fibroblasts to hematopoietic progenitor cells. Cell Rep 9:1871–1884. doi: 10.1016/j.celrep.2014.11.002 PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bertrand JY, Giroux S, Golub R et al (2005) Characterization of purified intraembryonic hematopoietic stem cells as a tool to define their site of origin. Proc Natl Acad Sci U S A 102:134–139. doi: 10.1073/pnas.0402270102 PubMedCrossRefGoogle Scholar
  6. Bertrand JY, Chi NC, Santoso B et al (2010) Haematopoietic stem cells derive directly from aortic endothelium during development. Nature 464:108–111. doi: 10.1038/nature08738 PubMedPubMedCentralCrossRefGoogle Scholar
  7. Blazsek I, Chagraoui J, Péault B (2000) Ontogenic emergence of the hematon, a morphogenetic stromal unit that supports multipotential hematopoietic progenitors in mouse bone marrow. Blood 96:3763–3771PubMedGoogle Scholar
  8. Boisset J-C, van Cappellen W, Andrieu-Soler C et al (2010) In vivo imaging of haematopoietic cells emerging from the mouse aortic endothelium. Nature 464:116–120. doi: 10.1038/nature08764 PubMedCrossRefGoogle Scholar
  9. Bonzanni N, Garg A, Feenstra KA et al (2013) Hard-wired heterogeneity in blood stem cells revealed using a dynamic regulatory network model. Bioinformatics 29:i80–i88. doi: 10.1093/bioinformatics/btt243 PubMedPubMedCentralCrossRefGoogle Scholar
  10. Burt RK, Verda L, Kim D-A et al (2004) Embryonic stem cells as an alternate marrow donor source: engraftment without graft-versus-host disease. J Exp Med 199:895–904. doi: 10.1084/jem.20031916 PubMedPubMedCentralCrossRefGoogle Scholar
  11. Buta C, David R, Dressel R et al (2013) Reconsidering pluripotency tests: do we still need teratoma assays? Stem Cell Res 11:552–562. doi: 10.1016/j.scr.2013.03.001 PubMedCrossRefGoogle Scholar
  12. Cerdan C, Rouleau A, Bhatia M (2004) VEGF-A165 augments erythropoietic development from human embryonic stem cells. Blood 103:2504–2512. doi: 10.1182/blood-2003-07-2563 PubMedCrossRefGoogle Scholar
  13. Chadwick K, Wang L, Li L et al (2003) Cytokines and BMP-4 promote hematopoietic differentiation of human embryonic stem cells. Blood 102:906–915. doi: 10.1182/blood-2003-03-0832 PubMedCrossRefGoogle Scholar
  14. Chambers SM, Fasano CA, Papapetrou EP et al (2009) Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 27:275–280. doi: 10.1038/nbt.1529 PubMedPubMedCentralCrossRefGoogle Scholar
  15. Chen J, Lansford R, Stewart V et al (1993) RAG-2-deficient blastocyst complementation: an assay of gene function in lymphocyte development. Proc Natl Acad Sci U S A 90:4528–4532PubMedPubMedCentralCrossRefGoogle Scholar
  16. Chen MJ, Yokomizo T, Zeigler BM et al (2009) Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter. Nature 457:887–891. doi: 10.1038/nature07619 PubMedPubMedCentralCrossRefGoogle Scholar
  17. Chew J-L, Loh Y-H, Zhang W et al (2005) Reciprocal transcriptional regulation of Pou5f1 and Sox2 via the Oct4/Sox2 complex in embryonic stem cells. Mol Cell Biol 25:6031–6046. doi: 10.1128/MCB.25.14.6031-6046.2005 PubMedPubMedCentralCrossRefGoogle Scholar
  18. Choi K, Kennedy M, Kazarov A et al (1998) A common precursor for hematopoietic and endothelial cells. Development 125:725–732PubMedGoogle Scholar
  19. Christensen JL, Weissman IL (2001) Flk-2 is a marker in hematopoietic stem cell differentiation: a simple method to isolate long-term stem cells. Proc Natl Acad Sci U S A 98:14541–14546. doi: 10.1073/pnas.261562798 PubMedPubMedCentralCrossRefGoogle Scholar
  20. Christensen JL, Wright DE, Wagers AJ, Weissman IL (2004) Circulation and chemotaxis of fetal hematopoietic stem cells. PLoS Biol 2:E75. doi: 10.1371/journal.pbio.0020075 PubMedPubMedCentralCrossRefGoogle Scholar
  21. Conlon FL, Lyons KM, Takaesu N et al (1994) A primary requirement for nodal in the formation and maintenance of the primitive streak in the mouse. Development 120:1919–1928PubMedGoogle Scholar
  22. Corbel C, Salaün J, Belo-Diabangouaya P, Dieterlen-Lièvre F (2007) Hematopoietic potential of the pre-fusion allantois. Dev Biol 301:478–488. doi: 10.1016/j.ydbio.2006.08.069 PubMedCrossRefGoogle Scholar
  23. Cumano A, Dieterlen-Lièvre F, Godin I (1996) Lymphoid potential, probed before circulation in mouse, is restricted to caudal intraembryonic splanchnopleura. Cell 86:907–916PubMedCrossRefGoogle Scholar
  24. D’Amour KA, Agulnick AD, Eliazer S et al (2005) Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat Biotechnol 23:1534–1541. doi: 10.1038/nbt1163 PubMedCrossRefGoogle Scholar
  25. Davidson AJ, Ernst P, Wang Y et al (2003) cdx4 mutants fail to specify blood progenitors and can be rescued by multiple hox genes. Nature 425:300–306. doi: 10.1038/nature01973 PubMedCrossRefGoogle Scholar
  26. Davis RP, Ng ES, Costa M et al (2008) Targeting a GFP reporter gene to the MIXL1 locus of human embryonic stem cells identifies human primitive streak-like cells and enables isolation of primitive hematopoietic precursors. Blood 111:1876–1884. doi: 10.1182/blood-2007-06-093609 PubMedCrossRefGoogle Scholar
  27. de Bruijn MF, Speck NA, Peeters MC, Dzierzak E (2000) Definitive hematopoietic stem cells first develop within the major arterial regions of the mouse embryo. EMBO J 19:2465–2474. doi: 10.1093/emboj/19.11.2465 PubMedPubMedCentralCrossRefGoogle Scholar
  28. Doetschman TC, Eistetter H, Katz M et al (1985) The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J Embryol Exp Morphol 87:27–45PubMedGoogle Scholar
  29. Doulatov S, Vo LT, Chou SS et al (2013) Induction of multipotential hematopoietic progenitors from human pluripotent stem cells via respecification of lineage-restricted precursors. Cell Stem Cell 13:459–470. doi: 10.1016/j.stem.2013.09.002 PubMedCrossRefGoogle Scholar
  30. Durand C, Robin C, Bollerot K et al (2007) Embryonic stromal clones reveal developmental regulators of definitive hematopoietic stem cells. Proc Natl Acad Sci U S A 104:20838–20843. doi: 10.1073/pnas.0706923105 PubMedPubMedCentralCrossRefGoogle Scholar
  31. Dush MK, Martin GR (1992) Analysis of mouse Evx genes: Evx-1 displays graded expression in the primitive streak. Dev Biol 151:273–287PubMedCrossRefGoogle Scholar
  32. Ema H, Nakauchi H (2000) Expansion of hematopoietic stem cells in the developing liver of a mouse embryo. Blood 95:2284–2288PubMedGoogle Scholar
  33. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156PubMedCrossRefGoogle Scholar
  34. Fares I, Chagraoui J, Gareau Y et al (2014) Cord blood expansion. Pyrimidoindole derivatives are agonists of human hematopoietic stem cell self-renewal. Science 345:1509–1512. doi: 10.1126/science.1256337 PubMedPubMedCentralCrossRefGoogle Scholar
  35. Ferkowicz MJ, Starr M, Xie X et al (2003) CD41 expression defines the onset of primitive and definitive hematopoiesis in the murine embryo. Development 130:4393–4403PubMedCrossRefGoogle Scholar
  36. Fitch SR, Kimber GM, Wilson NK et al (2012) Signaling from the sympathetic nervous system regulates hematopoietic stem cell emergence during embryogenesis. Cell Stem Cell 11:554–566. doi: 10.1016/j.stem.2012.07.002 PubMedPubMedCentralCrossRefGoogle Scholar
  37. Forlani S, Lawson KA, Deschamps J (2003) Acquisition of Hox codes during gastrulation and axial elongation in the mouse embryo. Development 130:3807–3819PubMedCrossRefGoogle Scholar
  38. Funayama N, Sato Y, Matsumoto K et al (1999) Coelom formation: binary decision of the lateral plate mesoderm is controlled by the ectoderm. Development 126:4129–4138PubMedGoogle Scholar
  39. Gadue P, Huber TL, Paddison PJ, Keller GM (2006) Wnt and TGF-beta signaling are required for the induction of an in vitro model of primitive streak formation using embryonic stem cells. Proc Natl Acad Sci U S A 103:16806–16811. doi: 10.1073/pnas.0603916103 PubMedPubMedCentralCrossRefGoogle Scholar
  40. Gekas C, Dieterlen-Lièvre F, Orkin SH, Mikkola HKA (2005) The placenta is a niche for hematopoietic stem cells. Dev Cell 8:365–375. doi: 10.1016/j.devcel.2004.12.016 PubMedCrossRefGoogle Scholar
  41. Gertow K, Wolbank S, Rozell B et al (2004) Organized development from human embryonic stem cells after injection into immunodeficient mice. Stem Cells Dev 13:421–435. doi: 10.1089/1547328041797499 PubMedCrossRefGoogle Scholar
  42. Giorgetti A, Montserrat N, Aasen T et al (2009) Generation of induced pluripotent stem cells from human cord blood using OCT4 and SOX2. Cell Stem Cell 5:353–357. doi: 10.1016/j.stem.2009.09.008 PubMedPubMedCentralCrossRefGoogle Scholar
  43. Goodell MA, Brose K, Paradis G et al (1996) Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 183:1797–1806PubMedCrossRefGoogle Scholar
  44. Graf T, Enver T (2009) Forcing cells to change lineages. Nature 462:587–594. doi: 10.1038/nature08533 PubMedCrossRefGoogle Scholar
  45. Guo G, Huss M, Tong GQ et al (2010) Resolution of cell fate decisions revealed by single-cell gene expression analysis from zygote to blastocyst. Dev Cell 18:675–685. doi: 10.1016/j.devcel.2010.02.012 PubMedCrossRefGoogle Scholar
  46. Gupta S, Zhu H, Zon LI, Evans T (2006) BMP signaling restricts hemato-vascular development from lateral mesoderm during somitogenesis. Development 133:2177–2187. doi: 10.1242/dev.02386 PubMedCrossRefGoogle Scholar
  47. Hanna J, Wernig M, Markoulaki S et al (2007) Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 318:1920–1923. doi: 10.1126/science.1152092 PubMedCrossRefGoogle Scholar
  48. Hart AH, Hartley L, Sourris K et al (2002) Mixl1 is required for axial mesendoderm morphogenesis and patterning in the murine embryo. Development 129:3597–3608PubMedGoogle Scholar
  49. Hole N, Graham GJ, Menzel U, Ansell JD (1996) A limited temporal window for the derivation of multilineage repopulating hematopoietic progenitors during embryonal stem cell differentiation in vitro. Blood 88:1266–1276PubMedGoogle Scholar
  50. Huyhn A, Dommergues M, Izac B et al (1995) Characterization of hematopoietic progenitors from human yolk sacs and embryos. Blood 86:4474–4485PubMedGoogle Scholar
  51. Ieda M, Fu J-D, Delgado-Olguin P et al (2010) Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142:375–386. doi: 10.1016/j.cell.2010.07.002 PubMedPubMedCentralCrossRefGoogle Scholar
  52. Iscove NN, Nawa K (1997) Hematopoietic stem cells expand during serial transplantation in vivo without apparent exhaustion. Curr Biol 7:805–808PubMedCrossRefGoogle Scholar
  53. Ivanovs A, Rybtsov S, Anderson RA et al (2014) Identification of the niche and phenotype of the first human hematopoietic stem cells. Stem Cell Rep 2:449–456. doi: 10.1016/j.stemcr.2014.02.004 CrossRefGoogle Scholar
  54. Jokubaitis VJ, Sinka L, Driessen R et al (2008) Angiotensin-converting enzyme (CD143) marks hematopoietic stem cells in human embryonic, fetal, and adult hematopoietic tissues. Blood 111:4055–4063. doi: 10.1182/blood-2007-05-091710 PubMedCrossRefGoogle Scholar
  55. Kamminga LM, van Os R, Ausema A et al (2005) Impaired hematopoietic stem cell functioning after serial transplantation and during normal aging. Stem Cells 23:82–92. doi: 10.1634/stemcells.2004-0066 PubMedCrossRefGoogle Scholar
  56. Kaufman DS, Hanson ET, Lewis RL et al (2001) Hematopoietic colony-forming cells derived from human embryonic stem cells. Proc Natl Acad Sci U S A 98:10716–10721. doi: 10.1073/pnas.191362598 PubMedPubMedCentralCrossRefGoogle Scholar
  57. Keller G, Kennedy M, Papayannopoulou T, Wiles MV (1993) Hematopoietic commitment during embryonic stem cell differentiation in culture. Mol Cell Biol 13:473–486PubMedPubMedCentralCrossRefGoogle Scholar
  58. Kennedy M, Firpo M, Choi K et al (1997) A common precursor for primitive erythropoiesis and definitive haematopoiesis. Nature 386:488–493. doi: 10.1038/386488a0 PubMedCrossRefGoogle Scholar
  59. Kent DG, Copley MR, Benz C et al (2009) Prospective isolation and molecular characterization of hematopoietic stem cells with durable self-renewal potential. Blood 113:6342–6350. doi: 10.1182/blood-2008-12-192054 PubMedCrossRefGoogle Scholar
  60. Kiel MJ, Yilmaz OH, Iwashita T et al (2005) SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121:1109–1121. doi: 10.1016/j.cell.2005.05.026 PubMedCrossRefGoogle Scholar
  61. Kikuchi K, Kondo M (2006) Developmental switch of mouse hematopoietic stem cells from fetal to adult type occurs in bone marrow after birth. Proc Natl Acad Sci U S A 103:17852–17857. doi: 10.1073/pnas.0603368103 PubMedPubMedCentralCrossRefGoogle Scholar
  62. Kim DK, Fujiki Y, Fukushima T et al (1999) Comparison of hematopoietic activities of human bone marrow and umbilical cord blood CD34 positive and negative cells. Stem Cells 17:286–294. doi: 10.1002/stem.170286 PubMedCrossRefGoogle Scholar
  63. Kim JB, Greber B, Araúzo-Bravo MJ et al (2009) Direct reprogramming of human neural stem cells by OCT4. Nature 461:649–653. doi: 10.1038/nature08436 PubMedCrossRefGoogle Scholar
  64. Kinder SJ, Tsang TE, Quinlan GA et al (1999) The orderly allocation of mesodermal cells to the extraembryonic structures and the anteroposterior axis during gastrulation of the mouse embryo. Development 126:4691–4701PubMedGoogle Scholar
  65. Kinder SJ, Tsang TE, Wakamiya M et al (2001) The organizer of the mouse gastrula is composed of a dynamic population of progenitor cells for the axial mesoderm. Development 128:3623–3634PubMedGoogle Scholar
  66. Kispert A, Herrmann BG (1994) Immunohistochemical analysis of the Brachyury protein in wild-type and mutant mouse embryos. Dev Biol 161:179–193. doi: 10.1006/dbio.1994.1019 PubMedCrossRefGoogle Scholar
  67. Kissa K, Herbomel P (2010) Blood stem cells emerge from aortic endothelium by a novel type of cell transition. Nature 464:112–115. doi: 10.1038/nature08761 PubMedCrossRefGoogle Scholar
  68. Kobayashi T, Yamaguchi T, Hamanaka S et al (2010) Generation of rat pancreas in mouse by interspecific blastocyst injection of pluripotent stem cells. Cell 142:787–799. doi: 10.1016/j.cell.2010.07.039 PubMedCrossRefGoogle Scholar
  69. Kumano K, Chiba S, Kunisato A et al (2003) Notch1 but not Notch2 is essential for generating hematopoietic stem cells from endothelial cells. Immunity 18:699–711PubMedCrossRefGoogle Scholar
  70. Kumaravelu P, Hook L, Morrison AM et al (2002) Quantitative developmental anatomy of definitive haematopoietic stem cells/long-term repopulating units (HSC/RUs): role of the aorta-gonad-mesonephros (AGM) region and the yolk sac in colonisation of the mouse embryonic liver. Development 129:4891–4899PubMedGoogle Scholar
  71. Kyba M, Perlingeiro RCR, Daley GQ (2002) HoxB4 confers definitive lymphoid-myeloid engraftment potential on embryonic stem cell and yolk sac hematopoietic progenitors. Cell 109:29–37PubMedCrossRefGoogle Scholar
  72. Lancrin C, Sroczynska P, Stephenson C et al (2009) The haemangioblast generates haematopoietic cells through a haemogenic endothelium stage. Nature 457:892–895. doi: 10.1038/nature07679 PubMedPubMedCentralCrossRefGoogle Scholar
  73. Larochelle A, Vormoor J, Hanenberg H et al (1996) Identification of primitive human hematopoietic cells capable of repopulating NOD/SCID mouse bone marrow: implications for gene therapy. Nat Med 2:1329–1337PubMedCrossRefGoogle Scholar
  74. Lawson KA, Dunn NR, Roelen BA et al (1999) Bmp4 is required for the generation of primordial germ cells in the mouse embryo. Genes Dev 13:424–436PubMedPubMedCentralCrossRefGoogle Scholar
  75. Le Douarin NM, Dieterlen-Lièvre F, Oliver PD (1984) Ontogeny of primary lymphoid organs and lymphoid stem cells. Am J Anat 170:261–299. doi: 10.1002/aja.1001700305 PubMedCrossRefGoogle Scholar
  76. Li W, Johnson SA, Shelley WC et al (2003) Primary endothelial cells isolated from the yolk sac and para-aortic splanchnopleura support the expansion of adult marrow stem cells in vitro. Blood 102:4345–4353. doi: 10.1182/blood-2003-03-0729 PubMedCrossRefGoogle Scholar
  77. Liu F, Kang I, Park C et al (2012) ER71 specifies Flk-1+ hemangiogenic mesoderm by inhibiting cardiac mesoderm and Wnt signaling. Blood 119:3295–3305. doi: 10.1182/blood-2012-01-403766 PubMedPubMedCentralCrossRefGoogle Scholar
  78. Lu CC, Robertson EJ (2004) Multiple roles for Nodal in the epiblast of the mouse embryo in the establishment of anterior-posterior patterning. Dev Biol 273:149–159. doi: 10.1016/j.ydbio.2004.06.004 PubMedCrossRefGoogle Scholar
  79. Lu LS, Wang SJ, Auerbach R (1996) In vitro and in vivo differentiation into B cells, T cells, and myeloid cells of primitive yolk sac hematopoietic precursor cells expanded > 100-fold by coculture with a clonal yolk sac endothelial cell line. Proc Natl Acad Sci U S A 93:14782–14787PubMedPubMedCentralCrossRefGoogle Scholar
  80. Lu S-J, Li F, Vida L, Honig GR (2004) CD34 + CD38- hematopoietic precursors derived from human embryonic stem cells exhibit an embryonic gene expression pattern. Blood 103:4134–4141. doi: 10.1182/blood-2003-10-3575 PubMedCrossRefGoogle Scholar
  81. Luckett WP (1978) Origin and differentiation of the yolk sac and extraembryonic mesoderm in presomite human and rhesus monkey embryos. Am J Anat 152:59–97. doi: 10.1002/aja.1001520106 PubMedCrossRefGoogle Scholar
  82. Maekawa M, Yamaguchi K, Nakamura T et al (2011) Direct reprogramming of somatic cells is promoted by maternal transcription factor Glis1. Nature 474:225–229. doi: 10.1038/nature10106 PubMedCrossRefGoogle Scholar
  83. Mahlapuu M, Ormestad M, Enerbäck S, Carlsson P (2001) The forkhead transcription factor Foxf1 is required for differentiation of extra-embryonic and lateral plate mesoderm. Development 128:155–166PubMedGoogle Scholar
  84. Marshall CJ, Kinnon C, Thrasher AJ (2000) Polarized expression of bone morphogenetic protein-4 in the human aorta-gonad-mesonephros region. Blood 96:1591–1593PubMedGoogle Scholar
  85. Marshall CJ, Sinclair JC, Thrasher AJ, Kinnon C (2007) Bone morphogenetic protein 4 modulates c-Kit expression and differentiation potential in murine embryonic aorta-gonad-mesonephros haematopoiesis in vitro. Br J Haematol 139:321–330. doi: 10.1111/j.1365-2141.2007.06795.x PubMedPubMedCentralCrossRefGoogle Scholar
  86. Matsumoto K, Isagawa T, Nishimura T et al (2009) Stepwise development of hematopoietic stem cells from embryonic stem cells. PLoS One 4, e4820. doi: 10.1371/journal.pone.0004820 PubMedPubMedCentralCrossRefGoogle Scholar
  87. Matsuoka S, Tsuji K, Hisakawa H et al (2001) Generation of definitive hematopoietic stem cells from murine early yolk sac and paraaortic splanchnopleures by aorta-gonad-mesonephros region-derived stromal cells. Blood 98:6–12PubMedCrossRefGoogle Scholar
  88. Medvinsky AL, Samoylina NL, Müller AM, Dzierzak EA (1993) An early pre-liver intraembryonic source of CFU-S in the developing mouse. Nature 364:64–67. doi: 10.1038/364064a0 PubMedCrossRefGoogle Scholar
  89. Meier-Stiegen F, Schwanbeck R, Bernoth K et al (2010) Activated Notch1 target genes during embryonic cell differentiation depend on the cellular context and include lineage determinants and inhibitors. PLoS One 5, e11481. doi: 10.1371/journal.pone.0011481 PubMedPubMedCentralCrossRefGoogle Scholar
  90. Mikkola HKA, Fujiwara Y, Schlaeger TM et al (2003) Expression of CD41 marks the initiation of definitive hematopoiesis in the mouse embryo. Blood 101:508–516. doi: 10.1182/blood-2002-06-1699 PubMedCrossRefGoogle Scholar
  91. Mitjavila MT, Filippi MD, Cohen-Solal K et al (1998) The Mpl-ligand is involved in the growth-promoting activity of the murine stromal cell line MS-5 on ES cell-derived hematopoiesis. Exp Hematol 26:124–134PubMedGoogle Scholar
  92. Mitrani E, Ziv T, Thomsen G et al (1990) Activin can induce the formation of axial structures and is expressed in the hypoblast of the chick. Cell 63:495–501PubMedCrossRefGoogle Scholar
  93. Miyagi T, Takeno M, Nagafuchi H et al (2002) Flk1+ cells derived from mouse embryonic stem cells reconstitute hematopoiesis in vivo in SCID mice. Exp Hematol 30:1444–1453PubMedCrossRefGoogle Scholar
  94. Montserrat N, Nivet E, Sancho-Martinez I et al (2013) Reprogramming of human fibroblasts to pluripotency with lineage specifiers. Cell Stem Cell 13:341–350. doi: 10.1016/j.stem.2013.06.019 PubMedCrossRefGoogle Scholar
  95. Morita Y, Ema H, Nakauchi H (2010) Heterogeneity and hierarchy within the most primitive hematopoietic stem cell compartment. J Exp Med 207:1173–1182. doi: 10.1084/jem.20091318 PubMedPubMedCentralCrossRefGoogle Scholar
  96. Morrison SJ, Wandycz AM, Akashi K et al (1996) The aging of hematopoietic stem cells. Nat Med 2:1011–1016PubMedCrossRefGoogle Scholar
  97. Müller AM, Medvinsky A, Strouboulis J et al (1994) Development of hematopoietic stem cell activity in the mouse embryo. Immunity 1:291–301PubMedCrossRefGoogle Scholar
  98. Mummery CL, Zhang J, Ng ES et al (2012) Differentiation of human embryonic stem cells and induced pluripotent stem cells to cardiomyocytes: a methods overview. Circ Res 111:344–358. doi: 10.1161/CIRCRESAHA.110.227512 PubMedPubMedCentralCrossRefGoogle Scholar
  99. Najm FJ, Chenoweth JG, Anderson PD et al (2011) Isolation of epiblast stem cells from preimplantation mouse embryos. Cell Stem Cell 8:318–325. doi: 10.1016/j.stem.2011.01.016 PubMedPubMedCentralCrossRefGoogle Scholar
  100. Naka K, Hirao A (2011) Maintenance of genomic integrity in hematopoietic stem cells. Int J Hematol 93:434–439. doi: 10.1007/s12185-011-0793-z PubMedCrossRefGoogle Scholar
  101. Nakagawa M, Ichikawa M, Kumano K et al (2006) AML1/Runx1 rescues Notch1-null mutation-induced deficiency of para-aortic splanchnopleural hematopoiesis. Blood 108:3329–3334. doi: 10.1182/blood-2006-04-019570 PubMedCrossRefGoogle Scholar
  102. Nichols J, Smith A (2009) Naive and primed pluripotent states. Cell Stem Cell 4:487–492. doi: 10.1016/j.stem.2009.05.015 PubMedCrossRefGoogle Scholar
  103. Nishikawa SI, Nishikawa S, Hirashima M et al (1998) Progressive lineage analysis by cell sorting and culture identifies FLK1 + VE-cadherin + cells at a diverging point of endothelial and hemopoietic lineages. Development 125:1747–1757PubMedGoogle Scholar
  104. North TE, de Bruijn MFTR, Stacy T et al (2002) Runx1 expression marks long-term repopulating hematopoietic stem cells in the midgestation mouse embryo. Immunity 16:661–672PubMedCrossRefGoogle Scholar
  105. Nostro MC, Cheng X, Keller GM, Gadue P (2008) Wnt, activin, and BMP signaling regulate distinct stages in the developmental pathway from embryonic stem cells to blood. Cell Stem Cell 2:60–71. doi: 10.1016/j.stem.2007.10.011 PubMedPubMedCentralCrossRefGoogle Scholar
  106. Notta F, Doulatov S, Laurenti E et al (2011) Isolation of single human hematopoietic stem cells capable of long-term multilineage engraftment. Science 333:218–221. doi: 10.1126/science.1201219 PubMedCrossRefGoogle Scholar
  107. Nottingham WT, Jarratt A, Burgess M et al (2007) Runx1-mediated hematopoietic stem-cell emergence is controlled by a Gata/Ets/SCL-regulated enhancer. Blood 110:4188–4197. doi: 10.1182/blood-2007-07-100883 PubMedPubMedCentralCrossRefGoogle Scholar
  108. Oberlin E, Tavian M, Blazsek I, Péault B (2002) Blood-forming potential of vascular endothelium in the human embryo. Development 129:4147–4157PubMedGoogle Scholar
  109. Osawa M, Hanada K, Hamada H et al (1996) Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 273:242–245. doi: 10.1126/science.273.5272.242
  110. Ottersbach K, Dzierzak E (2005) The murine placenta contains hematopoietic stem cells within the vascular labyrinth region. Dev Cell 8:377–387. doi: 10.1016/j.devcel.2005.02.001 PubMedCrossRefGoogle Scholar
  111. Palis J, Robertson S, Kennedy M et al (1999) Development of erythroid and myeloid progenitors in the yolk sac and embryo proper of the mouse. Development 126:5073–5084PubMedGoogle Scholar
  112. Palis J, Chan RJ, Koniski A et al (2001) Spatial and temporal emergence of high proliferative potential hematopoietic precursors during murine embryogenesis. Proc Natl Acad Sci U S A 98:4528–4533. doi: 10.1073/pnas.071002398 PubMedPubMedCentralCrossRefGoogle Scholar
  113. Park C, Afrikanova I, Chung YS et al (2004) A hierarchical order of factors in the generation of FLK1- and SCL-expressing hematopoietic and endothelial progenitors from embryonic stem cells. Development 131:2749–2762. doi: 10.1242/dev.01130 PubMedCrossRefGoogle Scholar
  114. Pereira C-F, Chang B, Qiu J et al (2013) Induction of a hemogenic program in mouse fibroblasts. Cell Stem Cell 13:205–218. doi: 10.1016/j.stem.2013.05.024 PubMedPubMedCentralCrossRefGoogle Scholar
  115. Pick M, Azzola L, Mossman A et al (2007) Differentiation of human embryonic stem cells in serum-free medium reveals distinct roles for bone morphogenetic protein 4, vascular endothelial growth factor, stem cell factor, and fibroblast growth factor 2 in hematopoiesis. Stem Cells 25:2206–2214. doi: 10.1634/stemcells.2006-0713 PubMedCrossRefGoogle Scholar
  116. Pulecio J, Nivet E, Sancho-Martinez I et al (2014) Conversion of human fibroblasts into monocyte-like progenitor cells. Stem Cells 32:2923–2938. doi: 10.1002/stem.1800 PubMedPubMedCentralCrossRefGoogle Scholar
  117. Rao CV, Wolf DM, Arkin AP (2002) Control, exploitation and tolerance of intracellular noise. Nature 420:231–237. doi: 10.1038/nature01258 PubMedCrossRefGoogle Scholar
  118. Rhodes KE, Gekas C, Wang Y et al (2008) The emergence of hematopoietic stem cells is initiated in the placental vasculature in the absence of circulation. Cell Stem Cell 2:252–263. doi: 10.1016/j.stem.2008.01.001 PubMedPubMedCentralCrossRefGoogle Scholar
  119. Riddell J, Gazit R, Garrison BS et al (2014) Reprogramming committed murine blood cells to induced hematopoietic stem cells with defined factors. Cell 157:549–564. doi: 10.1016/j.cell.2014.04.006 PubMedPubMedCentralCrossRefGoogle Scholar
  120. Robert-Moreno A, Espinosa L, la Pompa de JL, Bigas A (2005) RBPjkappa-dependent Notch function regulates Gata2 and is essential for the formation of intra-embryonic hematopoietic cells. Development 132:1117–1126. doi: 10.1242/dev.01660 PubMedCrossRefGoogle Scholar
  121. Robin C, Durand C (2010) The roles of BMP and IL-3 signaling pathways in the control of hematopoietic stem cells in the mouse embryo. Int J Dev Biol 54:1189–1200. doi: 10.1387/ijdb.093040cr PubMedCrossRefGoogle Scholar
  122. Robin C, Bollerot K, Mendes S et al (2009) Human placenta is a potent hematopoietic niche containing hematopoietic stem and progenitor cells throughout development. Cell Stem Cell 5:385–395. doi: 10.1016/j.stem.2009.08.020 PubMedPubMedCentralCrossRefGoogle Scholar
  123. Sandler VM, Lis R, Liu Y et al (2014) Reprogramming human endothelial cells to haematopoietic cells requires vascular induction. Nature 511:312–318. doi: 10.1038/nature13547 PubMedPubMedCentralCrossRefGoogle Scholar
  124. Sasaki H, Hogan BL (1993) Differential expression of multiple fork head related genes during gastrulation and axial pattern formation in the mouse embryo. Development 118:47–59PubMedGoogle Scholar
  125. Sato Y (2013) Dorsal aorta formation: separate origins, lateral-to-medial migration, and remodeling. Dev Growth Differ 55:113–129. doi: 10.1111/dgd.12010 PubMedCrossRefGoogle Scholar
  126. Schmitt TM, de Pooter RF, Gronski MA et al (2004) Induction of T cell development and establishment of T cell competence from embryonic stem cells differentiated in vitro. Nat Immunol 5:410–417. doi: 10.1038/ni1055 PubMedCrossRefGoogle Scholar
  127. Sekiya S, Suzuki A (2011) Direct conversion of mouse fibroblasts to hepatocyte-like cells by defined factors. Nature 475:390–393. doi: 10.1038/nature10263 PubMedCrossRefGoogle Scholar
  128. Sharp JG, Kessinger A, Lynch JC et al (2000) Blood stem cell transplantation: factors influencing cellular immunological reconstitution. J Hematother Stem Cell Res 9:971–981. doi: 10.1089/152581600750062435 PubMedCrossRefGoogle Scholar
  129. Shi Y, Kirwan P, Smith J et al (2012) Human cerebral cortex development from pluripotent stem cells to functional excitatory synapses. Nat Neurosci 15:477–86– S1. doi: 10.1038/nn.3041
  130. Shultz LD, Lyons BL, Burzenski LM et al (2005) Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. J Immunol 174:6477–6489PubMedCrossRefGoogle Scholar
  131. Sieburg HB, Rezner BD, Muller-Sieburg CE (2011) Predicting clonal self-renewal and extinction of hematopoietic stem cells. Proc Natl Acad Sci U S A 108:4370–4375. doi: 10.1073/pnas.1011414108 PubMedPubMedCentralCrossRefGoogle Scholar
  132. Soares ML, Haraguchi S, Torres-Padilla M-E et al (2005) Functional studies of signaling pathways in peri-implantation development of the mouse embryo by RNAi. BMC Dev Biol 5:28. doi: 10.1186/1471-213X-5-28 PubMedPubMedCentralCrossRefGoogle Scholar
  133. Solnica-Krezel L, Sepich DS (2012) Gastrulation: making and shaping germ layers. Annu Rev Cell Dev Biol 28:687–717. doi: 10.1146/annurev-cellbio-092910-154043 PubMedCrossRefGoogle Scholar
  134. Sumi T, Tsuneyoshi N, Nakatsuji N, Suemori H (2008) Defining early lineage specification of human embryonic stem cells by the orchestrated balance of canonical Wnt/beta-catenin, Activin/Nodal and BMP signaling. Development 135:2969–2979. doi: 10.1242/dev.021121 PubMedCrossRefGoogle Scholar
  135. Suzuki N, Yamazaki S, Yamaguchi T et al (2013) Generation of engraftable hematopoietic stem cells from induced pluripotent stem cells by way of teratoma formation. Mol Ther 21:1424–1431. doi: 10.1038/mt.2013.71 PubMedPubMedCentralCrossRefGoogle Scholar
  136. Szabo E, Rampalli S, Risueño RM et al (2010) Direct conversion of human fibroblasts to multilineage blood progenitors. Nature 468:521–526. doi: 10.1038/nature09591 PubMedCrossRefGoogle Scholar
  137. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676. doi: 10.1016/j.cell.2006.07.024 PubMedCrossRefGoogle Scholar
  138. Takahashi K, Tanabe K, Ohnuki M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872. doi: 10.1016/j.cell.2007.11.019 PubMedCrossRefGoogle Scholar
  139. Takashima Y, Guo G, Loos R et al (2014) Resetting transcription factor control circuitry toward ground-state pluripotency in human. Cell 158:1254–1269. doi: 10.1016/j.cell.2014.08.029 PubMedPubMedCentralCrossRefGoogle Scholar
  140. Takeuchi M, Sekiguchi T, Hara T et al (2002) Cultivation of aorta-gonad-mesonephros-derived hematopoietic stem cells in the fetal liver microenvironment amplifies long-term repopulating activity and enhances engraftment to the bone marrow. Blood 99:1190–1196PubMedCrossRefGoogle Scholar
  141. Tavian M, Hallais MF, Péault B (1999) Emergence of intraembryonic hematopoietic precursors in the pre-liver human embryo. Development 126:793–803PubMedGoogle Scholar
  142. Tavian M, Robin C, Coulombel L, Péault B (2001) The human embryo, but not its yolk sac, generates lympho-myeloid stem cells: mapping multipotent hematopoietic cell fate in intraembryonic mesoderm. Immunity 15:487–495PubMedCrossRefGoogle Scholar
  143. Tesar PJ, Chenoweth JG, Brook FA et al (2007) New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448:196–199. doi: 10.1038/nature05972 PubMedCrossRefGoogle Scholar
  144. Theunissen TW, Powell BE, Wang H et al (2014) Systematic identification of culture conditions for induction and maintenance of naive human pluripotency. Cell Stem Cell 15:471–487. doi: 10.1016/j.stem.2014.07.002 PubMedPubMedCentralCrossRefGoogle Scholar
  145. Thomson JA, Itskovitz-Eldor J, Shapiro SS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147PubMedCrossRefGoogle Scholar
  146. Tonegawa A, Takahashi Y (1998) Somitogenesis controlled by Noggin. Dev Biol 202:172–182. doi: 10.1006/dbio.1998.8895 PubMedCrossRefGoogle Scholar
  147. Tonegawa A, Funayama N, Ueno N, Takahashi Y (1997) Mesodermal subdivision along the mediolateral axis in chicken controlled by different concentrations of BMP-4. Development 124:1975–1984PubMedGoogle Scholar
  148. Utikal J, Maherali N, Kulalert W, Hochedlinger K (2009) Sox2 is dispensable for the reprogramming of melanocytes and melanoma cells into induced pluripotent stem cells. J Cell Sci 122:3502–3510. doi: 10.1242/jcs.054783 PubMedPubMedCentralCrossRefGoogle Scholar
  149. Vierbuchen T, Ostermeier A, Pang ZP et al (2010) Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463:1035–1041. doi: 10.1038/nature08797 PubMedPubMedCentralCrossRefGoogle Scholar
  150. Vijayaragavan K, Szabo E, Bossé M et al (2009) Noncanonical Wnt signaling orchestrates early developmental events toward hematopoietic cell fate from human embryonic stem cells. Cell Stem Cell 4:248–262. doi: 10.1016/j.stem.2008.12.011 PubMedPubMedCentralCrossRefGoogle Scholar
  151. Vodyanik MA, Bork JA, Thomson JA, Slukvin II (2005) Human embryonic stem cell-derived CD34+ cells: efficient production in the coculture with OP9 stromal cells and analysis of lymphohematopoietic potential. Blood 105:617–626. doi: 10.1182/blood-2004-04-1649 PubMedCrossRefGoogle Scholar
  152. Wang L, Li L, Shojaei F et al (2004) Endothelial and hematopoietic cell fate of human embryonic stem cells originates from primitive endothelium with hemangioblastic properties. Immunity 21:31–41. doi: 10.1016/j.immuni.2004.06.006 PubMedCrossRefGoogle Scholar
  153. Wang L, Menendez P, Shojaei F et al (2005) Generation of hematopoietic repopulating cells from human embryonic stem cells independent of ectopic HOXB4 expression. J Exp Med 201:1603–1614. doi: 10.1084/jem.20041888 PubMedPubMedCentralCrossRefGoogle Scholar
  154. Weintraub H, Tapscott SJ, Davis RL et al (1989) Activation of muscle-specific genes in pigment, nerve, fat, liver, and fibroblast cell lines by forced expression of MyoD. Proc Natl Acad Sci U S A 86:5434–5438PubMedPubMedCentralCrossRefGoogle Scholar
  155. Wiles MV, Keller G (1991) Multiple hematopoietic lineages develop from embryonic stem (ES) cells in culture. Development 111:259–267PubMedGoogle Scholar
  156. Wilson NK, Foster SD, Wang X et al (2010) Combinatorial transcriptional control in blood stem/progenitor cells: genome-wide analysis of ten major transcriptional regulators. Cell Stem Cell 7:532–544. doi: 10.1016/j.stem.2010.07.016 PubMedCrossRefGoogle Scholar
  157. Wineman J, Moore K, Lemischka I, Müller-Sieburg C (1996) Functional heterogeneity of the hematopoietic microenvironment: rare stromal elements maintain long-term repopulating stem cells. Blood 87:4082–4090PubMedGoogle Scholar
  158. Woll PS, Morris JK, Painschab MS et al (2008) Wnt signaling promotes hematoendothelial cell development from human embryonic stem cells. Blood 111:122–131. doi: 10.1182/blood-2007-04-084186 PubMedPubMedCentralCrossRefGoogle Scholar
  159. Woods N-B, Parker AS, Moraghebi R et al (2011) Brief report: efficient generation of hematopoietic precursors and progenitors from human pluripotent stem cell lines. Stem Cells 29:1158–1164. doi: 10.1002/stem.657 PubMedPubMedCentralCrossRefGoogle Scholar
  160. Xie H, Ye M, Feng R, Graf T (2004) Stepwise reprogramming of B cells into macrophages. Cell 117:663–676PubMedCrossRefGoogle Scholar
  161. Yamamoto R, Morita Y, Ooehara J et al (2013) Clonal analysis unveils self-renewing lineage-restricted progenitors generated directly from hematopoietic stem cells. Cell 154:1112–1126. doi: 10.1016/j.cell.2013.08.007 PubMedCrossRefGoogle Scholar
  162. Yoder MC, Hiatt K, Dutt P et al (1997) Characterization of definitive lymphohematopoietic stem cells in the day 9 murine yolk sac. Immunity 7:335–344PubMedCrossRefGoogle Scholar
  163. Yoon M-J, Koo B-K, Song R et al (2008) Mind bomb-1 is essential for intraembryonic hematopoiesis in the aortic endothelium and the subaortic patches. Mol Cell Biol 28:4794–4804. doi: 10.1128/MCB.00436-08 PubMedPubMedCentralCrossRefGoogle Scholar
  164. Yu J, Vodyanik MA, Smuga-Otto K et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920. doi: 10.1126/science.1151526 PubMedCrossRefGoogle Scholar
  165. Zambidis ET, Péault B, Park TS et al (2005) Hematopoietic differentiation of human embryonic stem cells progresses through sequential hematoendothelial, primitive, and definitive stages resembling human yolk sac development. Blood 106:860–870. doi: 10.1182/blood-2004-11-4522 PubMedPubMedCentralCrossRefGoogle Scholar
  166. Zape JP, Zovein AC (2011) Hemogenic endothelium: origins, regulation, and implications for vascular biology. Semin Cell Dev Biol 22:1036–1047. doi: 10.1016/j.semcdb.2011.10.003 PubMedCrossRefGoogle Scholar
  167. Zeigler BM, Sugiyama D, Chen M et al (2006) The allantois and chorion, when isolated before circulation or chorio-allantoic fusion, have hematopoietic potential. Development 133:4183–4192. doi: 10.1242/dev.02596 PubMedCrossRefGoogle Scholar
  168. Zhou X, Sasaki H, Lowe L et al (1993) Nodal is a novel TGF-beta-like gene expressed in the mouse node during gastrulation. Nature 361:543–547. doi: 10.1038/361543a0 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  1. 1.Institute for Stem Cell Biology and Regenerative MedicineStanford University School of MedicineStanfordUSA
  2. 2.Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical ScienceThe University of TokyoTokyoJapan

Personalised recommendations