Skip to main content

Cancer in General

  • Chapter
  • First Online:
  • 751 Accesses

Abstract

I define the term <cancer> as a combined concept for both tumor and leukemia. Tumor represents mass or solid tumor in a strict sense and leukemia seldom forms mass. However, in order for tumor to achieve hematogenous metastasis, the tumor cells need to make an entry into circulation as leukemic cells usually do. Some researchers call circulating tumor cells (CTC) <tumor cells in leukemic phase.> Both malignancy and neoplasm are synonymous with cancer.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Linder D, Gartler SM. Glucose-6-phosphate dehydrogenase mosaicism: utilization as a cell marker in the study of leiomyomas. Science. 1965;150:67–9.

    Article  CAS  PubMed  Google Scholar 

  2. Friedenstein AJ, Chailakhjan RK, Lalykina KS. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet. 1970;3:393–403.

    CAS  PubMed  Google Scholar 

  3. Sutherland H, Eaves C, Eaves A, et al. Characterization and partial purification of human marrow cells capable of initiating long-term hematopoiesis in vitro. Blood. 1989;74:1563–70.

    CAS  PubMed  Google Scholar 

  4. Manz MG, Miyamoto T, Akashi K, et al. Prospective isolation of human clonogenic common myeloid progenitors. Proc Natl Acad Sci. 2002;99:11872–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dick JE, Bhatia M, Gan O, et al. Assay of human stem cells by repopulation of NOD/SCID mice. Stem Cells. 1997;15 Suppl 1:199–203. discussion 4–7.

    Article  PubMed  Google Scholar 

  6. Glimm H, Eisterer W, Lee K, et al. Previously undetected human hematopoietic cell populations with short-term repopulating activity selectively engraft NOD/SCID-β2 microglobulin–null mice. J Clin Invest. 2001;107:199–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bosma GC, Custer RP, Bosma MJ. A severe combined immunodeficiency mutation in the mouse. Nature. 1983;301:527–30.

    Article  CAS  PubMed  Google Scholar 

  8. Roder J, Duwe A. The beige mutation in the mouse selectively impairs natural killer cell function. Nature. 1979;278:451–3.

    Article  CAS  PubMed  Google Scholar 

  9. Leiter EH, Prochazka M, Coleman DL. The non-obese diabetic (NOD) mouse. Am J Pathol. 1987;128:380–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Kollet O, Peled A, Byk T, et al. beta2 microglobulin-deficient (B2m(null)) NOD/SCID mice are excellent recipients for studying human stem cell function. Blood. 2000;95:3102–5.

    CAS  PubMed  Google Scholar 

  11. Katano I, Ito R, Eto T, et al. Immunodeficient NOD-scid IL-2Rg(null) mice do not display T and B cell leakiness. Exp Anim. 2011;60:181–6.

    Article  CAS  PubMed  Google Scholar 

  12. Shultz LD, Lyons BL, Burzenski LM, et al. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. J Immunol. 2005;174:6477–89.

    Article  CAS  PubMed  Google Scholar 

  13. Dameshek W. Some speculations on the myeloproliferative syndromes. Blood. 1951;6:372–5.

    CAS  PubMed  Google Scholar 

  14. Nowell PC. Discovery of the Philadelphia chromosome: a personal perspective. J Clin Invest. 2007;117:2033–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fialkow PJ, Gartler SM, Yoshida A. Clonal origin of chronic myelocytic leukemia in man. Proc Natl Acad Sci U S A. 1967;58:1468–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dube I, Arlin Z, Kalousek D, et al. Nonclonal hemopoietic progenitor cells detected in long-term marrow cultures from a Turner syndrome mosaic with chronic myeloid leukemia. Blood. 1984;64:1284–7.

    CAS  PubMed  Google Scholar 

  17. Fialkow PJ, Jacobson RJ, Papayannopoulou T. Chronic myelocytic leukemia: clonal origin in a stem cell common to the granulocyte, erythrocyte, platelet and monocyte/macrophage. Am J Med. 1977;63:125–30.

    Article  CAS  PubMed  Google Scholar 

  18. O’Brien S, Kantarjian H, Shtalrid M, et al. Lack of breakpoint cluster region rearrangement in marrow fibroblasts of patients with Philadelphia chromosome-positive chronic myelogenous leukemia. Hematol Pathol. 1988;2:25–9.

    PubMed  Google Scholar 

  19. Tough IM, Jacobs PA, Court Brown WM, et al. Cytogenetic studies on bone-marrow in chronic myeloid leukaemia. Lancet. 1963;1:844–6.

    Article  CAS  PubMed  Google Scholar 

  20. Sloma I, Imren S, Beer PA, et al. Ex vivo expansion of normal and chronic myeloid leukemia stem cells without functional alteration using a NUP98HOXA10homeodomain fusion gene. Leukemia. 2013;27:159–69.

    Article  CAS  PubMed  Google Scholar 

  21. Ichimaru M, Tomonaga M, Amenomori T, et al. Atomic bomb and leukemia. J Radiat Res. 1991;32:162–7.

    Article  PubMed  Google Scholar 

  22. Muller HJ. Artificial transmutation of the gene. Science. 1927;66:84–7.

    Article  CAS  PubMed  Google Scholar 

  23. Biernaux C, Loos M, Sels A, et al. Detection of major bcr-abl gene expression at a very low level in blood cells of some healthy individuals. Blood. 1995;86:3118–22.

    CAS  PubMed  Google Scholar 

  24. Bose S, Deininger M, Gora-Tybor J, et al. The presence of typical and atypical BCR-ABL fusion genes in leukocytes of normal individuals: biologic significance and implications for the assessment of minimal residual disease. Blood. 1998;92:3362–7.

    CAS  PubMed  Google Scholar 

  25. Jamieson CHM, Ailles LE, Dylla SJ, et al. Granulocyte–macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med. 2004;351:657–67.

    Article  CAS  PubMed  Google Scholar 

  26. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3:730–7.

    Article  CAS  PubMed  Google Scholar 

  27. Turhan AG, Lemoine FM, Debert C, et al. Highly purified primitive hematopoietic stem cells are PML-RARA negative and generate nonclonal progenitors in acute promyelocytic leukemia. Blood. 1995;85:2154–61.

    CAS  PubMed  Google Scholar 

  28. Spiers ASD, Baikie AG, Galton DAG, et al. Chronic granulocytic leukaemia: effect of elective splenectomy on the course of disease. Br Med J. 1975;1:175–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schemionek M, Spieker T, Kerstiens L, et al. Leukemic spleen cells are more potent than bone marrow-derived cells in a transgenic mouse model of CML. Leukemia. 2012;26:1030–7.

    Article  CAS  PubMed  Google Scholar 

  30. Wang X, Prakash S, Lu M, et al. Spleens of myelofibrosis patients contain malignant hematopoietic stem cells. J Clin Invest. 2012;122:3888–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. González D, van der Burg M, García-Sanz R, et al. Immunoglobulin gene rearrangements and the pathogenesis of multiple myeloma. Blood. 2007;110:3112–21.

    Article  PubMed  Google Scholar 

  32. Schmitt C, Balogh B, Grundt A, et al. The bcl-2/IgH rearrangement in a population of 204 healthy individuals: occurrence, age and gender distribution, breakpoints, and detection method validity. Leuk Res. 2006;30:745–50.

    Article  CAS  PubMed  Google Scholar 

  33. D’Amato RJ, Loughnan MS, Flynn E, et al. Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci U S A. 1994;91:4082–5.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lu G, Middleton RE, Sun H, et al. The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins. Science. 2014;343:305–9.

    Article  CAS  PubMed  Google Scholar 

  35. Fernandez de Larrea C, Kyle RA, Durie BGM, et al. Plasma cell leukemia: consensus statement on diagnostic requirements, response criteria and treatment recommendations by the International Myeloma Working Group. Leukemia. 2013;27:780–91.

    Article  CAS  PubMed  Google Scholar 

  36. Southam CM, Brunschwig A. Quantitative studies of autotransplantation of human cancer. Preliminary report. Cancer. 1961;14:971–8.

    Article  Google Scholar 

  37. Jolie A. My medical choice by Angelina Jolie – NYTimes.com. The New York Times. 2013. 14 May 2013.

    Google Scholar 

  38. Miki Y, Swensen J, Shattuck-Eidens D, et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science. 1994;266:66–71.

    Article  CAS  PubMed  Google Scholar 

  39. Hacia JG, Brody LC, Chee MS, et al. Detection of heterozygous mutations in BRCA1 using high density oligonucleotide arrays and two-colour fluorescence analysis. Nat Genet. 1996;14:441–7.

    Article  CAS  PubMed  Google Scholar 

  40. Evans DG, Shenton A, Woodward E, et al. Penetrance estimates for BRCA1 and BRCA2 based on genetic testing in a Clinical Cancer Genetics service setting: risks of breast/ovarian cancer quoted should reflect the cancer burden in the family. BMC Cancer. 2008;8:155.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Rio PG, Pernin D, Bay JO, et al. Loss of heterozygosity of BRCA1, BRCA2 and ATM genes in sporadic invasive ductal breast carcinoma. Int J Oncol. 1998;13:849–53.

    CAS  PubMed  Google Scholar 

  42. Malkin D, Li FP, Strong LC, et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science. 1990;250:1233–8.

    Article  CAS  PubMed  Google Scholar 

  43. Srivastava S, Tong YA, Devadas K, et al. Detection of both mutant and wild-type p53 protein in normal skin fibroblasts and demonstration of a shared ‘second hit’ on p53 in diverse tumors from a cancer-prone family with Li-Fraumeni syndrome. Oncogene. 1992;7:987–91.

    CAS  PubMed  Google Scholar 

  44. Knudson Jr AG. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A. 1971;68:820–3.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Laakso M, Loman N, Borg A, et al. Cytokeratin 5/14-positive breast cancer: true basal phenotype confined to BRCA1 tumors. Mod Pathol. 2005;18:1321–8.

    Article  CAS  PubMed  Google Scholar 

  46. Petersen OW, Hoyer PE, van Deurs B. Frequency and distribution of estrogen receptor-positive cells in normal, nonlactating human breast tissue. Cancer Res. 1987;47:5748–51.

    CAS  PubMed  Google Scholar 

  47. Gluck S. Extending the clinical benefit of endocrine therapy for women with hormone receptor-positive metastatic breast cancer: differentiating mechanisms of action. Clin Breast Cancer. 2014;14:75–84.

    Article  CAS  PubMed  Google Scholar 

  48. Slamon D, Clark G, Wong S, et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987;235:177–82.

    Article  CAS  PubMed  Google Scholar 

  49. Perou CM, Sorlie T, Eisen MB, et al. Molecular portraits of human breast tumours. Nature. 2000;406:747–52.

    Article  CAS  PubMed  Google Scholar 

  50. Elsawaf Z, Sinn HP. Triple-negative breast cancer: clinical and histological correlations. Breast Care (Basel). 2011;6:273–8.

    Google Scholar 

  51. Bauer KR, Brown M, Cress RD, et al. Descriptive analysis of estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and HER2-negative invasive breast cancer, the so-called triple-negative phenotype: a population-based study from the California cancer Registry. Cancer. 2007;109:1721–8.

    Article  PubMed  Google Scholar 

  52. Lee E, McKean-Cowdin R, Ma H, et al. Characteristics of triple-negative breast cancer in patients with a BRCA1 mutation: results from a population-based study of young women. J Clin Oncol. 2011;29:4373–80.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Tung N, Garber JE, Lincoln A, et al. Frequency of triple-negative breast cancer in BRCA1 mutation carriers: comparison between common Ashkenazi Jewish and other mutations. J Clin Oncol. 2012;30:4447–8.

    Article  PubMed  Google Scholar 

  54. von Minckwitz G, Eidtmann H, Rezai M, et al. Neoadjuvant chemotherapy and bevacizumab for HER2-negative breast cancer. N Engl J Med. 2012;366:299–309.

    Article  Google Scholar 

  55. Mastin WM. Recurrence at a late period after operation for cancer of the breast. Ann Surg. 1908;48:527–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Park BW, Oh JW, Kim JH, et al. Preoperative CA 15–3 and CEA serum levels as predictor for breast cancer outcomes. Ann Oncol. 2008;19:675–81.

    Article  PubMed  Google Scholar 

  57. Xie Z, Zhang H, Tsai W, et al. Zinc finger protein ZBTB20 is a key repressor of alpha-fetoprotein gene transcription in liver. Proc Natl Acad Sci U S A. 2008;105:10859–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ji P, Diederichs S, Wang W, et al. MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene. 2003;22:8031–41.

    Article  PubMed  Google Scholar 

  59. Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 2011;12:861–74.

    Article  CAS  PubMed  Google Scholar 

  60. Hangauer MJ, Vaughn IW, McManus MT. Pervasive transcription of the human genome produces thousands of previously unidentified long intergenic noncoding RNAs. PLoS Genet. 2013;9:e1003569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Han P, Li W, Lin CH, et al. A long noncoding RNA protects the heart from pathological hypertrophy. Nature. 2014;514:102–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Carter CL, Allen C, Henson DE. Relation of tumor size, lymph node status, and survival in 24,740 breast cancer cases. Cancer. 1989;63:181–7.

    Article  CAS  PubMed  Google Scholar 

  63. Riethdorf S, Fritsche H, Muller V, et al. Detection of circulating tumor cells in peripheral blood of patients with metastatic breast cancer: a validation study of the cell search system. Clin Cancer Res. 2007;13:920–8.

    Article  CAS  PubMed  Google Scholar 

  64. Cristofanilli M, Budd GT, Ellis MJ, et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med. 2004;351:781–91.

    Article  CAS  PubMed  Google Scholar 

  65. Spizzo G, Went P, Dirnhofer S, et al. High Ep-CAM expression is associated with poor prognosis in node-positive breast cancer. Breast Cancer Res Treat. 2004;86:207–13.

    Article  CAS  PubMed  Google Scholar 

  66. Sarrio D, Rodriguez-Pinilla SM, Hardisson D, et al. Epithelial-mesenchymal transition in breast cancer relates to the basal-like phenotype. Cancer Res. 2008;68:989–97.

    Article  CAS  PubMed  Google Scholar 

  67. Rao CG, Chianese D, Doyle GV, et al. Expression of epithelial cell adhesion molecule in carcinoma cells present in blood and primary and metastatic tumors. Int J Oncol. 2005;27:49–57.

    CAS  PubMed  Google Scholar 

  68. Konigsberg R, Obermayr E, Bises G, et al. Detection of EpCAM positive and negative circulating tumor cells in metastatic breast cancer patients. Acta Oncol. 2011;50:700–10.

    Article  PubMed  Google Scholar 

  69. Pestrin M, Bessi S, Galardi F, et al. Correlation of HER2 status between primary tumors and corresponding circulating tumor cells in advanced breast cancer patients. Breast Cancer Res Treat. 2009;118:523–30.

    Article  CAS  PubMed  Google Scholar 

  70. Fehm T, Muller V, Aktas B, et al. HER2 status of circulating tumor cells in patients with metastatic breast cancer: a prospective, multicenter trial. Breast Cancer Res Treat. 2010;124:403–12.

    Article  CAS  PubMed  Google Scholar 

  71. Xenidis N, Ignatiadis M, Apostolaki S, et al. Cytokeratin-19 mRNA-positive circulating tumor cells after adjuvant chemotherapy in patients with early breast cancer. J Clin Oncol. 2009;27:2177–84.

    Article  CAS  PubMed  Google Scholar 

  72. Al-Hajj M, Wicha MS, Benito-Hernandez A, et al. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100:3983–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Aktas B, Tewes M, Fehm T, et al. Stem cell and epithelial-mesenchymal transition markers are frequently overexpressed in circulating tumor cells of metastatic breast cancer patients. Breast Cancer Res. 2009;11:R46.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Balic M, Lin H, Young L, et al. Most early disseminated cancer cells detected in bone marrow of breast cancer patients have a putative breast cancer stem cell phenotype. Clin Cancer Res. 2006;12:5615–21.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Maru, Y. (2016). Cancer in General. In: Inflammation and Metastasis. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56024-1_9

Download citation

Publish with us

Policies and ethics