Autoinflammatory Disorders

  • Yoshiro Maru


We have discussed the actual presence of the endogenous ligands for TLR. In this chapter, I will describe their potential involvement in human diseases. Given that metastasis is a clinical name or name of a disease, I believe that any research irrelevant to or in disagreement to clinical information is of low value. There is no doubt that fever is one of the fundamental symptoms of ambiguously defined “inflammatory disorders” in clinical settings. For example, if clinical manifestations of a patient involve fever of unknown origin (FUO), being febrile >38.3 °C for more than 3 weeks with failure to reach diagnosis, medical doctors usually think of (1) infectious, (2) neoplastic, and (3) noninfectious inflammatory diseases [1]. The third group mainly includes autoimmune disorders, such as systemic lupus erythematosus (SLE) (see Chap.  4), which affect connective tissues. Patients with autoimmune disorders almost always have autoantibodies, pathologically directed against their own cells or tissue components as seen with Guillain-Barré syndrome (see Chap.  4). However, their etiology is not well defined.


Kawasaki Disease Familial Mediterranean Fever Autoinflammatory Disease Hemophagocytic Lymphohistiocytosis Blau Syndrome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Dennis K, Anthony F, Stephen H, et al. Harrison’s principles of internal medicine. 19th edn. McGraw-Hill Education, New York, 2015.Google Scholar
  2. 2.
    Masters SL, Simon A, Aksentijevich I, et al. Horror autoinflammaticus: the molecular pathophysiology of autoinflammatory disease*. Annu Rev Immunol. 2009;27:621–68.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Li S, Ballou LR, Morham SG, et al. Cyclooxygenase-2 mediates the febrile response of mice to interleukin-1β. Brain Res. 2001;910:163–73.CrossRefPubMedGoogle Scholar
  4. 4.
    Lazarus M. The differential role of prostaglandin E2 receptors EP3 and EP4 in regulation of fever. Mol Nutr Food Res. 2006;50:451–5.CrossRefPubMedGoogle Scholar
  5. 5.
    Chida D, Iwakura Y. Peripheral TNFα, but not peripheral IL-1, requires endogenous IL-1 or TNFα induction in the brain for the febrile response. Biochem Biophys Res Commun. 2007;364:765–70.CrossRefPubMedGoogle Scholar
  6. 6.
    Chai Z, Gatti S, Toniatti C, et al. Interleukin (IL)-6 gene expression in the central nervous system is necessary for fever response to lipopolysaccharide or IL-1 β: a study on IL-6-deficient mice. J Exp Med. 1996;183:311–6.CrossRefPubMedGoogle Scholar
  7. 7.
    Dias MB, Almeida MC, Carnio EC, et al. Role of nitric oxide in tolerance to lipopolysaccharide in mice. J Appl Physiol (1985). 2005;98:1322–7.CrossRefGoogle Scholar
  8. 8.
    Dinarello CA. Infection, fever, and exogenous and endogenous pyrogens: some concepts have changed. J Endotoxin Res. 2004;10:201–22.PubMedGoogle Scholar
  9. 9.
    Dinarello C, Arend W, Sims J, et al. IL-1 family nomenclature. Nat Immunol. 2010;11:973.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Wang D, Zhang S, Li L, et al. Structural insights into the assembly and activation of IL-1[β] with its receptors. Nat Immunol. 2010;11:905–11.CrossRefPubMedGoogle Scholar
  11. 11.
    Schroder K, Tschopp J. The inflammasomes. Cell. 2010;140:821–32.CrossRefPubMedGoogle Scholar
  12. 12.
    Yamasaki K, Muto J, Taylor KR, et al. NLRP3/cryopyrin is necessary for interleukin-1β (IL-1β) release in response to Hyaluronan, an endogenous trigger of inflammation in response to injury. J Biol Chem. 2009;284:12762–71.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Tomasinsig L, Pizzirani C, Skerlavaj B, et al. The human cathelicidin LL-37 modulates the activities of the P2X7 receptor in a structure-dependent manner. J Biol Chem. 2008;283:30471–81.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Byfield FJ, Wen Q, Leszczyńska K, et al. Cathelicidin LL-37 peptide regulates endothelial cell stiffness and endothelial barrier permeability. Am J Physiol Cell Physiol. 2010;300:C105–12.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Niemi K, Teirilä L, Lappalainen J, et al. Serum amyloid A activates the NLRP3 inflammasome via P2X7 receptor and a cathepsin B-sensitive pathway. J Immunol. 2011;186:6119–28.CrossRefPubMedGoogle Scholar
  16. 16.
    Mao K, Chen S, Chen M, et al. Nitric oxide suppresses NLRP3 inflammasome activation and protects against LPS-induced septic shock. Cell Res. 2013;23:201–12.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Carswell EA, Old LJ, Kassel RL, et al. An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci U S A. 1975;72:3666–70.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Cheng J, Turksen K, Yu QC, et al. Cachexia and graft-vs.-host-disease-type skin changes in keratin promoter-driven TNF α transgenic mice. Genes Dev. 1992;6:1444–56.CrossRefPubMedGoogle Scholar
  19. 19.
    Centola M, Aksentijevich I, Kastner DL. The hereditary periodic fever syndromes: molecular analysis of a new family of inflammatory diseases. Hum Mol Genet. 1998;7:1581–8.CrossRefPubMedGoogle Scholar
  20. 20.
    Chae JJ, Komarow HD, Cheng J, et al. Targeted disruption of pyrin, the FMF protein, causes heightened sensitivity to endotoxin and a defect in macrophage apoptosis. Mol Cell. 2003;11:591–604.CrossRefPubMedGoogle Scholar
  21. 21.
    Aksentijevich I, Masters SL, Ferguson PJ, et al. An autoinflammatory disease with deficiency of the interleukin-1-receptor antagonist. N Engl J Med. 2009;360:2426–37.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Lobito AA, Kimberley FC, Muppidi JR, et al. Abnormal disulfide-linked oligomerization results in ER retention and altered signaling by TNFR1 mutants in TNFR1-associated periodic fever syndrome (TRAPS). Blood. 2006;108:1320–7.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Arima K, Kinoshita A, Mishima H, et al. Proteasome assembly defect due to a proteasome subunit β type 8 (PSMB8) mutation causes the autoinflammatory disorder, Nakajo-Nishimura syndrome. Proc Natl Acad Sci. 2011;108:14914–9.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Onouchi Y, Gunji T, Burns JC, et al. ITPKC functional polymorphism associated with Kawasaki disease susceptibility and formation of coronary artery aneurysms. Nat Genet. 2008;40:35–42.CrossRefPubMedGoogle Scholar
  25. 25.
    Tremoulet AH, Pancoast P, Franco A, et al. Calcineurin inhibitor treatment of intravenous immunoglobulin–resistant Kawasaki disease. J Pediatr. 2012;161:506–12. e1.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Kang YJ, Kusler B, Otsuka M, et al. Calcineurin negatively regulates TLR-mediated activation pathways. J Immunol. 2007;179:4598–607.CrossRefPubMedGoogle Scholar
  27. 27.
    Okada Y, Wu D, Trynka G, et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature. 2014;506:376–81.CrossRefPubMedGoogle Scholar
  28. 28.
    Jessen B, Maul-Pavicic A, Ufheil H, et al. Subtle differences in CTL cytotoxicity determine susceptibility to hemophagocytic lymphohistiocytosis in mice and humans with Chediak-Higashi syndrome. Blood. 2011;118:4620–9.CrossRefPubMedGoogle Scholar
  29. 29.
    Turer EE, Tavares RM, Mortier E, et al. Homeostatic MyD88-dependent signals cause lethal inflammation in the absence of A20. J Exp Med. 2008;205:451–64.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Matmati M, Jacques P, Maelfait J, et al. A20 (TNFAIP3) deficiency in myeloid cells triggers erosive polyarthritis resembling rheumatoid arthritis. Nat Genet. 2011;43:908–12.CrossRefPubMedGoogle Scholar
  31. 31.
    Song X-T, Kabler KE, Shen L, et al. A20 is an antigen presentation attenuator, and its inhibition overcomes regulatory T cell-mediated suppression. Nat Med. 2008;14:258–65.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Kuemmerle-Deschner JB, Ramos E, Blank N, et al. Canakinumab (ACZ885, a fully human IgG1 anti-IL-1β mAb) induces sustained remission in pediatric patients with cryopyrin-associated periodic syndrome (CAPS). Arthritis Res Ther. 2011;13:R34.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Wittkowski H, Kuemmerle-Deschner JB, Austermann J, et al. MRP8 and MRP14, phagocyte-specific danger signals, are sensitive biomarkers of disease activity in cryopyrin-associated periodic syndromes. Ann Rheum Dis. 2011;70:2075–81.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Zreiqat H, Belluoccio D, Smith MM, et al. S100A8 and S100A9 in experimental osteoarthritis. Arthritis Res Ther. 2010;12:R16.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Frosch M, Ahlmann M, Vogl T, et al. The myeloid-related proteins 8 and 14 complex, a novel ligand of toll-like receptor 4, and interleukin-1β form a positive feedback mechanism in systemic-onset juvenile idiopathic arthritis. Arthritis Rheum. 2009;60:883–91.CrossRefPubMedGoogle Scholar
  36. 36.
    Holzinger D, Austermann J, Lohse P, et al. A novel mutation in the PSTPIP1 gene is associated with an autoinflammatory disease distinct from classical PAPA syndrome. Pediatr Rheumatol. 2011;9:O39.CrossRefGoogle Scholar
  37. 37.
    Qin J, Qian Y, Yao J, et al. SIGIRR inhibits interleukin-1 receptor- and Toll-like receptor 4-mediated signaling through different mechanisms. J Biol Chem. 2005;280:25233–41.CrossRefPubMedGoogle Scholar
  38. 38.
    Martinon F, Petrilli V, Mayor A, et al. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature. 2006;440:237–41.CrossRefPubMedGoogle Scholar
  39. 39.
    Rajamäki K, Lappalainen J, Öörni K, et al. Cholesterol crystals activate the NLRP3 inflammasome in human macrophages: a novel link between cholesterol metabolism and inflammation. PLoS ONE. 2010;5:e11765.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Mulay SR, Kulkarni OP, Rupanagudi KV, et al. Calcium oxalate crystals induce renal inflammation by NLRP3-mediated IL-1β secretion. J Clin Invest. 2013;123:236–46.CrossRefPubMedGoogle Scholar
  41. 41.
    Shimada K, Crother TR, Karlin J, et al. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity. 2012;36:401–14.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Newton RC, Uhl J, Covington M, et al. The distribution and clearance of radiolabeled human interleukin-1 β in mice. Lymphokine Res. 1988;7:207–16.PubMedGoogle Scholar
  43. 43.
    Braude AI, Carey FJ, Zalesky M. Studies with radioactive endotoxin. II. Correlation of physiologic effects with distribution of radioactivity in rabbits injected with lethal doses of E. coli endotoxin labelled with radioactive sodium chromate1. J Clin Invest. 1955;34:858–66.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Wilderman MJ, Sun J, Jassar AS, et al. Intrapulmonary IFN-β gene therapy using an adenoviral vector is highly effective in a murine orthotopic model of bronchogenic adenocarcinoma of the lung. Cancer Res. 2005;65:8379–87.CrossRefPubMedGoogle Scholar
  45. 45.
    Castell JV, Geiger T, Gross V, et al. Plasma clearance, organ distribution and target cells of interleukin-6/hepatocyte-stimulating factor in the rat. Eur J Biochem. 1988;177:357–61.CrossRefPubMedGoogle Scholar
  46. 46.
    Marleau S, Dallaire N, Poubelle PE, et al. Metabolic disposition of leukotriene B4 (LTB4) and oxidation-resistant analogues of LTB4 in conscious rabbits. Br J Pharmacol. 1994;112:654–8.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Yu AY, Frid MG, Shimoda LA, et al. Temporal, spatial, and oxygen-regulated expression of hypoxia-inducible factor-1 in the lung. Am J Physiol. 1998;275:L818–26.PubMedGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  • Yoshiro Maru
    • 1
  1. 1.Department of PharmacologyTokyo Women’s Medical UniversityTokyoJapan

Personalised recommendations