Advertisement

Evidence for Existence of Endogenous TLR4 Ligands

  • Yoshiro Maru
Chapter

Abstract

Before focusing on the discussion of the endogenous ligands of TLR4—accurately speaking the TLR4/MD-2 complex—we are absolutely in need of the knowledge of its authentic ligand, LPS. In human-circulating LPS in serum is detected in physiological conditions in the range of 150–350 pg/ml.

Keywords

TLR4 Ligand Limulus Amebocyte Lysate Exogenous Ligand Endogenous Origin Bacillus Polymyxa 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Niemann HH, Jager V, Butler PJ, et al. Structure of the human receptor tyrosine kinase met in complex with the Listeria invasion protein InlB. Cell. 2007;130:235–46.CrossRefPubMedGoogle Scholar
  2. 2.
    Li N, Hill KS, Elferink LA. Analysis of receptor tyrosine kinase internalization using flow cytometry. Methods Mol Biol. 2008;457:305–17.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Velkov T, Thompson PE, Nation RL, et al. Structure – activity relationships of polymyxin antibiotics. J Med Chem. 2010;53:1898–916.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Kaconis Y, Kowalski I, Howe J, et al. Biophysical mechanisms of endotoxin neutralization by cationic amphiphilic peptides. Biophys J. 2011;100:2652–61.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Gutsmann T, Howe J, Zahringer U, et al. Structural prerequisites for endotoxic activity in the Limulus test as compared to cytokine production in mononuclear cells. Innate Immunol. 2010;16:39–47.CrossRefGoogle Scholar
  6. 6.
    Tynan GA, McNaughton A, Jarnicki A, et al. Polymyxin B inadequately quenches the effects of contaminating lipopolysaccharide on murine dendritic cells. PLoS ONE. 2012;7:e37261.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Moreth K, Iozzo RV, Schaefer L. Small leucine-rich proteoglycans orchestrate receptor crosstalk during inflammation. Cell Cycle (Georgetown Tex). 2012;11:2084–91.CrossRefGoogle Scholar
  8. 8.
    Merline R, Moreth K, Beckmann J, et al. Signaling by the matrix proteoglycan decorin controls inflammation and cancer through PDCD4 and MicroRNA-21. Sci Signal. 2011;4:ra75.CrossRefPubMedGoogle Scholar
  9. 9.
    Babelova A, Moreth K, Tsalastra-Greul W, et al. Biglycan, a danger signal that activates the NLRP3 inflammasome via toll-like and P2X receptors. J Biol Chem. 2009;284:24035–48.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Moreth K, Brodbeck R, Babelova A, et al. The proteoglycan biglycan regulates expression of the B cell chemoattractant CXCL13 and aggravates murine lupus nephritis. J Clin Invest. 2010;120:4251–72.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Yang H, Wang H, Ju Z, et al. MD-2 is required for disulfide HMGB1–dependent TLR4 signaling. J Exp Med. 2015;212:5–14.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Yang H, Hreggvidsdottir HS, Palmblad K, et al. A critical cysteine is required for HMGB1 binding to toll-like receptor 4 and activation of macrophage cytokine release. Proc Natl Acad Sci. 2010;107:11942–7.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Park JS, Svetkauskaite D, He Q, et al. Involvement of toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. J Biol Chem. 2004;279:7370–7.CrossRefPubMedGoogle Scholar
  14. 14.
    Kopp A, Bala M, Buechler C, et al. C1q/TNF-related protein-3 represents a novel and endogenous lipopolysaccharide antagonist of the adipose tissue. Endocrinology. 2010;151:5267–78.CrossRefPubMedGoogle Scholar
  15. 15.
    Kondo Y, Ikeda K, Tokuda N, et al. TLR4-MD-2 complex is negatively regulated by an endogenous ligand, globotetraosylceramide. Proc Natl Acad Sci U S A. 2013;110:4714–9.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Shirey KA, Lai W, Scott AJ, et al. The TLR4 antagonist Eritoran protects mice from lethal influenza infection. Nature. 2013;497:498–502.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Imai Y, Kuba K, Neely GG, et al. Identification of oxidative stress and toll-like receptor 4 signaling as a key pathway of acute lung injury. Cell. 2008;133:235–49.CrossRefPubMedGoogle Scholar
  18. 18.
    Millien VO, Lu W, Shaw J, et al. Cleavage of fibrinogen by proteinases elicits allergic responses through toll-like receptor 4. Science. 2013;341:792–6.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Warger T, Hilf N, Rechtsteiner G, et al. Interaction of TLR2 and TLR4 ligands with the N-terminal domain of Gp96 amplifies innate and adaptive immune responses. J Biol Chem. 2006;281:22545–53.CrossRefPubMedGoogle Scholar
  20. 20.
    Vogl T, Tenbrock K, Ludwig S, et al. Mrp8 and Mrp14 are endogenous activators of toll-like receptor 4, promoting lethal, endotoxin-induced shock. Nat Med. 2007;13:1042–9.CrossRefPubMedGoogle Scholar
  21. 21.
    Hiratsuka S, Watanabe A, Sakurai Y, et al. The S100A8-serum amyloid A3-TLR4 paracrine cascade establishes a pre-metastatic phase. Nat Cell Biol. 2008;10:1349–55.CrossRefPubMedGoogle Scholar
  22. 22.
    Schaefer L, Babelova A, Kiss E, et al. The matrix component biglycan is proinflammatory and signals through toll-like receptors 4 and 2 in macrophages. J Clin Invest. 2005;115:2223–33.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Chiron D, Bekeredjian-Ding I, Pellat-Deceunynck C, et al. Toll-like receptors: lessons to learn from normal and malignant human B cells. Blood. 2008;112:2205–13.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Roelofs MF, Boelens WC, Joosten LA, et al. Identification of small heat shock protein B8 (HSP22) as a novel TLR4 ligand and potential involvement in the pathogenesis of rheumatoid arthritis. J Immunol. 2006;176:7021–7.CrossRefPubMedGoogle Scholar
  25. 25.
    Biragyn A, Ruffini PA, Leifer CA, et al. Toll-like receptor 4-dependent activation of dendritic cells by β-defensin 2. Science. 2002;298:1025–9.CrossRefPubMedGoogle Scholar
  26. 26.
    Vabulas RM, Braedel S, Hilf N, et al. The endoplasmic reticulum-resident heat shock protein Gp96 activates dendritic cells via the toll-like receptor 2/4 pathway. J Biol Chem. 2002;277:20847–53.CrossRefPubMedGoogle Scholar
  27. 27.
    Pal D, Dasgupta S, Kundu R, et al. Fetuin-A acts as an endogenous ligand of TLR4 to promote lipid-induced insulin resistance. Nat Med. 2012;18:1279–85.CrossRefPubMedGoogle Scholar
  28. 28.
    Smiley ST, King JA, Hancock WW. Fibrinogen stimulates macrophage chemokine secretion through toll-like receptor 4. J Immunol. 2001;167:2887–94.CrossRefPubMedGoogle Scholar
  29. 29.
    Lasarte JJ, Casares N, Gorraiz M, et al. The extra domain A from fibronectin targets antigens to TLR4-expressing cells and induces cytotoxic T cell responses in vivo. J Immunol. 2007;178:748–56.CrossRefPubMedGoogle Scholar
  30. 30.
    Brennan TV, Lin L, Huang X, et al. Heparan sulfate, an endogenous TLR4 agonist, promotes acute GVHD after allogeneic stem cell transplantation. Blood. 2012;120:2899–908.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Ohashi K, Burkart V, Flohe S, et al. Cutting edge: heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex. J Immunol. 2000;164:558–61.CrossRefPubMedGoogle Scholar
  32. 32.
    Chen T, Guo J, Han C, et al. Heat shock protein 70, released from heat-stressed tumor cells, initiates antitumor immunity by inducing tumor cell chemokine production and activating dendritic cells via TLR4 pathway. J Immunol. 2009;182:1449–59.CrossRefPubMedGoogle Scholar
  33. 33.
    Wheeler DS, Chase MA, Senft AP, et al. Extracellular Hsp72, an endogenous DAMP, is released by virally infected airway epithelial cells and activates neutrophils via Toll-like receptor (TLR)-4. Respir Res. 2009;10:31.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Jiang D, Liang J, Fan J, et al. Regulation of lung injury and repair by toll-like receptors and hyaluronan. Nat Med. 2005;11:1173–9.CrossRefPubMedGoogle Scholar
  35. 35.
    Scott P, Ma H, Viriyakosol S, et al. Engagement of CD14 mediates the inflammatory potential of monosodium urate crystals. J Immunol. 2006;177:6370–8.CrossRefPubMedGoogle Scholar
  36. 36.
    Erridge C, Kennedy S, Spickett CM, et al. Oxidized phospholipid inhibition of toll-like receptor (TLR) signaling is restricted to TLR2 and TLR4: roles for CD14, LPS-binding protein, and MD2 as targets for specificity of inhibition. J Biol Chem. 2008;283:24748–59.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Park HD, Lee Y, Oh YK, et al. Pancreatic adenocarcinoma upregulated factor promotes metastasis by regulating TLR/CXCR4 activation. Oncogene. 2011;30:201–11.CrossRefPubMedGoogle Scholar
  38. 38.
    Riddell JR, Wang XY, Minderman H, et al. Peroxiredoxin 1 stimulates secretion of proinflammatory cytokines by binding to TLR4. J Immunol. 2010;184:1022–30.CrossRefPubMedGoogle Scholar
  39. 39.
    Tarkowski A, Bjersing J, Shestakov A, et al. Resistin competes with lipopolysaccharide for binding to toll-like receptor 4. J Cell Mol Med. 2010;14:1419–31.CrossRefPubMedGoogle Scholar
  40. 40.
    Guillot L, Balloy V, McCormack FX, et al. Cutting edge: the immunostimulatory activity of the lung surfactant protein-A involves toll-like receptor 4. J Immunol. 2002;168:5989–92.CrossRefPubMedGoogle Scholar
  41. 41.
    Midwood K, Sacre S, Piccinini AM, et al. Tenascin-C is an endogenous activator of toll-like receptor 4 that is essential for maintaining inflammation in arthritic joint disease. Nat Med. 2009;15:774–80.CrossRefPubMedGoogle Scholar
  42. 42.
    Lee JY, Sohn KH, Rhee SH, et al. Saturated fatty acids, but not unsaturated fatty acids, induce the expression of cyclooxygenase-2 mediated through toll-like receptor 4. J Biol Chem. 2001;276:16683–9.CrossRefPubMedGoogle Scholar
  43. 43.
    Tewary P, Yang D, de la Rosa G, et al. Granulysin activates antigen-presenting cells through TLR4 and acts as an immune alarmin. Blood. 2010;116:3465–74.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Figueiredo RT, Fernandez PL, Mourao-Sa DS, et al. Characterization of heme as activator of toll-like receptor 4. J Biol Chem. 2007;282:20221–9.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  • Yoshiro Maru
    • 1
  1. 1.Department of PharmacologyTokyo Women’s Medical UniversityTokyoJapan

Personalised recommendations