Skip to main content

Issue of Self and Non-self

  • Chapter
  • First Online:
Inflammation and Metastasis
  • 743 Accesses

Abstract

The interactions between human and other species have been well documented in anthropology, because human beings are omnivorous. Cooking by boiling can fend off encounters with microbial toxins derived from their growth in foods. For human beings as a self, the most obvious non-self is other species, such as botany and reptiles. (king cobra) can kill humans by its neurotoxin acting on nicotinic acetylcholine receptor (nAchR) in humans [1]. In addition to biting, the ancient ways of transferring molecules to the circulation include inhalation of opium and the arrow poison used by South American Indians to hunt animals, such as curare containing d-tubocurarine that can block nAchR. However, it is needless to say that the most primitive route is per oral administration. Ingested and subsequently absorbed hazardous non-self substances are sensed by the chemoreceptor trigger zone in the midbrain and vomiting reaction takes place to expel the non-self from the self. The principle is that molecules from the non-self can be life-threatening for the self and the biological manifestation includes elimination of non-self or damage of self. The molecular basis is the interaction and subsequent events between a non-self-derived or exogenous molecule and a self-derived or endogenous receptor(s). The responsible sensors are expressed in immune cells, epithelial cells, and neuronal cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rajagopalan N, Pung YF, Zhu YZ, et al. Beta-cardiotoxin: a new three-finger toxin from Ophiophagus hannah (king cobra) venom with beta-blocker activity. FASEB J. 2007;21:3685–95.

    Article  CAS  PubMed  Google Scholar 

  2. Takaoka A, Wang Z, Choi MK, et al. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature. 2007;448:501–5.

    Article  CAS  PubMed  Google Scholar 

  3. Burckstummer T, Baumann C, Bluml S, et al. An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome. Nat Immunol. 2009;10:266–72.

    Article  PubMed  Google Scholar 

  4. Yanai H, Ban T, Wang Z, et al. HMGB proteins function as universal sentinels for nucleic-acid-mediated innate immune responses. Nature. 2009;462:99–103.

    Article  CAS  PubMed  Google Scholar 

  5. Wurfel MM, Monks BG, Ingalls RR, et al. Targeted deletion of the lipopolysaccharide (LPS)-binding protein gene leads to profound suppression of LPS responses ex vivo, whereas in vivo responses remain intact. J Exp Med. 1997;186:2051–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tobias PS, Soldau K, Gegner JA, et al. Lipopolysaccharide binding protein-mediated complexation of lipopolysaccharide with soluble CD14. J Biol Chem. 1995;270:10482–8.

    Article  CAS  PubMed  Google Scholar 

  7. Pugin J, Schurer-Maly CC, Leturcq D, et al. Lipopolysaccharide activation of human endothelial and epithelial cells is mediated by lipopolysaccharide-binding protein and soluble CD14. Proc Natl Acad Sci U S A. 1993;90:2744–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Akashi S, Saitoh S, Wakabayashi Y, et al. Lipopolysaccharide interaction with cell surface Toll-like receptor 4-MD-2: higher affinity than that with MD-2 or CD14. J Exp Med. 2003;198:1035–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wurfel MM, Hailman E, Wright SD. Soluble CD14 acts as a shuttle in the neutralization of lipopolysaccharide (LPS) by LPS-binding protein and reconstituted high density lipoprotein. J Exp Med. 1995;181:1743–54.

    Article  CAS  PubMed  Google Scholar 

  10. Brandenburg K, Seydel U. Conformation and supramolecular structure of lipid A. Adv Exp Med Biol. 2010;667:25–38.

    Article  PubMed  Google Scholar 

  11. Viriyakosol S, Tobias PS, Kitchens RL, et al. MD-2 binds to bacterial lipopolysaccharide. J Biol Chem. 2001;276:38044–51.

    CAS  PubMed  Google Scholar 

  12. Fu H, Li J, Meng W, et al. Study of binding constant of toll-like receptor 4 and lipopolysaccharide using capillary zone electrophoresis. Electrophoresis. 2011;32:749–51.

    Article  CAS  PubMed  Google Scholar 

  13. Zanoni I, Ostuni R, Marek LR, et al. CD14 controls the LPS-induced endocytosis of Toll-like receptor 4. Cell. 2011;147:868–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang H, Bloom O, Zhang M, et al. HMG-1 as a late mediator of endotoxin lethality in mice. Science. 1999;285:248–51.

    Article  CAS  PubMed  Google Scholar 

  15. Poltorak A, Defective LPS. Signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science. 1998;282:2085–8.

    Article  CAS  PubMed  Google Scholar 

  16. Mockenhaupt FP, Cramer JP, Hamann L, et al. Toll-like receptor (TLR) polymorphisms in African children: common TLR-4 variants predispose to severe malaria. Proc Natl Acad Sci U S A. 2006;103:177–82.

    Article  CAS  PubMed  Google Scholar 

  17. Smirnova I, Mann N, Dols A, et al. Assay of locus-specific genetic load implicates rare Toll-like receptor 4 mutations in meningococcal susceptibility. Proc Natl Acad Sci U S A. 2003;100:6075–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gazzano-Santoro H, Parent JB, Grinna L, et al. High-affinity binding of the bactericidal/permeability-increasing protein and a recombinant amino-terminal fragment to the lipid A region of lipopolysaccharide. Infect Immun. 1992;60:4754–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Canny G, Levy O. Bactericidal/permeability-increasing protein (BPI) and BPI homologs at mucosal sites. Trends Immunol. 2008;29:541–7.

    Article  CAS  PubMed  Google Scholar 

  20. Lemaitre B, Nicolas E, Michaut L, et al. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell. 1996;86:973–83.

    Article  CAS  PubMed  Google Scholar 

  21. Medzhitov R, Preston-Hurlburt P, Janeway Jr CA. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature. 1997;388:394–7.

    Article  CAS  PubMed  Google Scholar 

  22. Jin MS, Lee JO. Structures of the toll-like receptor family and its ligand complexes. Immunity. 2008;29:182–91.

    Article  CAS  PubMed  Google Scholar 

  23. Park BS, Song DH, Kim HM, et al. The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature. 2009;458:1191–5.

    Article  CAS  PubMed  Google Scholar 

  24. Kim HM, Park BS, Kim JI, et al. Crystal structure of the TLR4-MD-2 complex with bound endotoxin antagonist Eritoran. Cell. 2007;130:906–17.

    Article  CAS  PubMed  Google Scholar 

  25. Kayagaki N, Wong MT, Stowe IB, et al. Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science. 2013;341:1246–9.

    Article  CAS  PubMed  Google Scholar 

  26. Fritz G. RAGE: a single receptor fits multiple ligands. Trends Biochem Sci. 2011;36:625–32.

    Article  CAS  PubMed  Google Scholar 

  27. Augusto LA, Decottignies P, Synguelakis M, et al. Histones: a novel class of lipopolysaccharide-binding molecules. Biochemistry. 2003;42:3929–38.

    Article  CAS  PubMed  Google Scholar 

  28. Xu J, Zhang X, Pelayo R, et al. Extracellular histones are major mediators of death in sepsis. Nat Med. 2009;15:1318–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Iwanaga S, Kawabata S, Muta T. New types of clotting factors and defense molecules found in horseshoe crab hemolymph: their structures and functions. J Biochem. 1998;123:1–15.

    Article  CAS  PubMed  Google Scholar 

  30. Koshiba T, Hashii T, Kawabata S. A structural perspective on the interaction between lipopolysaccharide and factor C, a receptor involved in recognition of Gram-negative bacteria. J Biol Chem. 2007;282:3962–7.

    Article  CAS  PubMed  Google Scholar 

  31. Hoffmann JA, Reichhart JM. Drosophila innate immunity: an evolutionary perspective. Nat Immunol. 2002;3:121–6.

    Article  CAS  PubMed  Google Scholar 

  32. Kurata S. Peptidoglycan recognition proteins in Drosophila immunity. Dev Comp Immunol. 2014;42:36–41.

    Article  CAS  PubMed  Google Scholar 

  33. Tomita T, Ieguchi K, Coin F, et al. ZFC3H1, a zinc finger protein, modulates IL-8 transcription by binding with celastramycin A, a potential immune suppressor. PLoS One. 2014;9:e108957.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Engelmann I, Pujol N. Innate immunity in C. elegans. Adv Exp Med Biol. 2010;708:105–21.

    Article  CAS  PubMed  Google Scholar 

  35. Zugasti O, Ewbank JJ. Neuroimmune regulation of antimicrobial peptide expression by a noncanonical TGF-β signaling pathway in Caenorhabditis elegans epidermis. Nat Immunol. 2009;10:249–56.

    Article  CAS  PubMed  Google Scholar 

  36. Gherasim C, Lofgren M, Banerjee R. Navigating the B(12) road: assimilation, delivery, and disorders of cobalamin. J Biol Chem. 2013;288:13186–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lu Y, Chen J, Xiao M, et al. An overview of tubulin inhibitors that interact with the colchicine binding site. Pharm Res. 2012;29:2943–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zimmer SM, Liu J, Clayton JL, et al. Paclitaxel binding to human and murine MD-2. J Biol Chem. 2008;283:27916–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang X, Loram LC, Ramos K, et al. Morphine activates neuroinflammation in a manner parallel to endotoxin. Proc Natl Acad Sci U S A. 2012;109:6325–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Vriens J, Appendino G, Nilius B. Pharmacology of vanilloid transient receptor potential cation channels. Mol Pharmacol. 2009;75:1262–79.

    Article  CAS  PubMed  Google Scholar 

  41. Caterina MJ, Leffler A, Malmberg AB, et al. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science. 2000;288:306–13.

    Article  CAS  PubMed  Google Scholar 

  42. Caterina MJ, Schumacher MA, Tominaga M, et al. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature. 1997;389:816–24.

    Article  CAS  PubMed  Google Scholar 

  43. Van Steenwinckel J, Reaux-Le Goazigo A, Pommier B, et al. CCL2 released from neuronal synaptic vesicles in the spinal cord is a major mediator of local inflammation and pain after peripheral nerve injury. J Neurosci. 2011;31:5865–75.

    Article  PubMed  Google Scholar 

  44. Asokananthan N, Graham PT, Stewart DJ, et al. House dust mite allergens induce proinflammatory cytokines from respiratory epithelial cells: the cysteine protease allergen, Der p 1, activates protease-activated receptor (PAR)-2 and inactivates PAR-1. J Immunol. 2002;169:4572–8.

    Article  CAS  PubMed  Google Scholar 

  45. Nhu QM, Shirey K, Teijaro JR, et al. Novel signaling interactions between proteinase-activated receptor 2 and Toll-like receptors in vitro and in vivo. Mucosal Immunol. 2010;3:29–39.

    Article  CAS  PubMed  Google Scholar 

  46. Yamamoto F, Clausen H, White T, et al. Molecular genetic basis of the histo-blood group ABO system. Nature. 1990;345:229–33.

    Article  CAS  PubMed  Google Scholar 

  47. Springer GF, Horton RE. Blood group isoantibody stimulation in man by feeding blood group-active bacteria. J Clin Invest. 1969;48:1280–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Petersdorf EW. The major histocompatibility complex: a model for understanding graft-versus-host disease. Blood. 2013;122:1863–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dausset J. Iso-leuco-anticorps. Acta Haematol. 1958;20:156–66.

    Article  CAS  PubMed  Google Scholar 

  50. Wiebe C, Gibson IW, Blydt-Hansen TD, et al. Evolution and clinical pathologic correlations of de novo donor-specific HLA antibody post kidney transplant. Am J Transplant. 2012;12:1157–67.

    Article  CAS  PubMed  Google Scholar 

  51. Hechinger A-K, Smith BA, Flynn R, et al. Therapeutic activity of multiple common γ-chain cytokine inhibition in acute and chronic GVHD. Blood. 2015;125:570–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pilat N, Sayegh MH, Wekerle T. Costimulatory pathways in transplantation. Semin Immunol. 2011;23:293–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Or R, Shapira MY, Resnick I, et al. Nonmyeloablative allogeneic stem cell transplantation for the treatment of chronic myeloid leukemia in first chronic phase. Blood. 2003;101:441–5.

    Article  CAS  PubMed  Google Scholar 

  54. Verneuil L, Varna M, Ratajczak P, et al. Human skin carcinoma arising from kidney transplant-derived tumor cells. J Clin Invest. 2013;123:3797–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Maru, Y. (2016). Issue of Self and Non-self. In: Inflammation and Metastasis. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56024-1_5

Download citation

Publish with us

Policies and ethics