Vessels and Coagulation

  • Yoshiro Maru


One of the fundamental features of inflammation is increased vascular permeability. Vessels are anatomically grouped into artery, arteriole, capillary, post-capillary venule, and vein with different structures.


Tight Junction Vascular Permeability Coagulation Factor Disseminate Intravascular Coagulation Adherens Junction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Franke W, Rickelt S, Barth M, et al. The junctions that don’t fit the scheme: special symmetrical cell-cell junctions of their own kind. Cell Tissue Res. 2009;338:1–17.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    McDonald DM, Thurston G, Baluk P. Endothelial gaps as sites for plasma leakage in inflammation. Microcirculation. 1999;6:7–22.CrossRefPubMedGoogle Scholar
  3. 3.
    Feng D, Nagy JA, Brekken RA, et al. Ultrastructural localization of the vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) receptor-2 (FLK-1, KDR) in normal mouse kidney and in the hyperpermeable vessels induced by VPF/VEGF-expressing tumors and adenoviral vectors. J Histochem Cytochem. 2000;48:545–56.CrossRefPubMedGoogle Scholar
  4. 4.
    Stefanini MO, Wu FT, Mac Gabhann F, et al. The presence of VEGF receptors on the luminal surface of endothelial cells affects VEGF distribution and VEGF signaling. PLoS Comput Biol. 2009;5:e1000622.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Lee S, Chen TT, Barber CL, et al. Autocrine VEGF signaling is required for vascular homeostasis. Cell. 2007;130:691–703.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Srikiatkhachorn A, Ajariyakhajorn C, Endy TP, et al. Virus-induced decline in soluble vascular endothelial growth receptor 2 is associated with plasma leakage in dengue hemorrhagic fever. J Virol. 2007;81:1592–600.CrossRefPubMedGoogle Scholar
  7. 7.
    Hoeppner LH, Phoenix KN, Clark KJ, et al. Revealing the role of phospholipase Cβ3 in the regulation of VEGF-induced vascular permeability. Blood. 2012;120:2167–73.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Sun Z, Li X, Massena S, et al. VEGFR2 induces c-Src signaling and vascular permeability in vivo via the adaptor protein TSAd. J Exp Med. 2012;209:1363–77.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Gavard J, Gutkind JS. VEGF controls endothelial-cell permeability by promoting the [beta]-arrestin-dependent endocytosis of VE-cadherin. Nat Cell Biol. 2006;8:1223–34.CrossRefPubMedGoogle Scholar
  10. 10.
    Chen XL, Nam JO, Jean C, et al. VEGF-induced vascular permeability is mediated by FAK. Dev Cell. 2012;22:146–57.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    van Nieuw Amerongen GP, Musters RJ, Eringa EC, et al. Thrombin-induced endothelial barrier disruption in intact microvessels: role of RhoA/Rho kinase-myosin phosphatase axis. Am J Physiol Cell Physiol. 2008;294:C1234–41.CrossRefPubMedGoogle Scholar
  12. 12.
    McCormack J, Welsh NJ, Braga VMM. Cycling around cell–cell adhesion with Rho GTPase regulators. J Cell Sci. 2013;126:379–91.CrossRefPubMedGoogle Scholar
  13. 13.
    Bamberg CE, Mackay CR, Lee H, et al. The C5a receptor (C5aR) C5L2 is a modulator of C5aR-mediated signal transduction. J Biol Chem. 2010;285:7633–44.CrossRefPubMedGoogle Scholar
  14. 14.
    Rittirsch D, Flierl MA, Nadeau BA, et al. Functional roles for C5a receptors in sepsis. Nat Med. 2008;14:551–7.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Tauseef M, Kini V, Knezevic N, et al. Activation of sphingosine kinase-1 reverses the increase in lung vascular permeability through sphingosine-1-phosphate receptor signaling in endothelial cells. Circ Res. 2008;103:1164–72.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Birukova AA, Alekseeva E, Mikaelyan A, et al. HGF attenuates thrombin-induced endothelial permeability by Tiam1-mediated activation of the Rac pathway and by Tiam1/Rac-dependent inhibition of the Rho pathway. FASEB J. 2007;21:2776–86.CrossRefPubMedGoogle Scholar
  17. 17.
    Ngok SP, Geyer R, Liu M, et al. VEGF and Angiopoietin-1 exert opposing effects on cell junctions by regulating the Rho GEF Syx. J Cell Biol. 2012;199:1103–15.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Benest AV, Kruse K, Savant S, et al. Angiopoietin-2 is critical for cytokine-induced vascular leakage. PLoS One. 2013;8:e70459.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Huang X, Jan LY. Targeting potassium channels in cancer. J Cell Biol. 2014;206:151–62.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Saadoun S, Papadopoulos MC, Hara-Chikuma M, et al. Impairment of angiogenesis and cell migration by targeted aquaporin-1 gene disruption. Nature. 2005;434:786–92.CrossRefPubMedGoogle Scholar
  21. 21.
    D’Alessandro G, Catalano M, Sciaccaluga M, et al. KCa3.1 channels are involved in the infiltrative behavior of glioblastoma in vivo. Cell Death Dis. 2013;4:e773.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Zhang G, Han J, Welch EJ, et al. Lipopolysaccharide stimulates platelet secretion and potentiates platelet aggregation via TLR4/MyD88 and the cGMP-dependent protein kinase pathway. J Immunol. 2009;182:7997–8004.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Bauer EM, Chanthaphavong RS, Sodhi CP, et al. Genetic deletion of toll-like receptor 4 on platelets attenuates experimental pulmonary hypertension. Circ Res. 2014;114:1596–600.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Grozovsky R, Giannini S, Falet H, et al. Regulating billions of blood platelets: glycans and beyond. Blood. 2015;126:1877–84.CrossRefPubMedGoogle Scholar
  25. 25.
    Jedlitschky G, Greinacher A, Kroemer HK. Transporters in human platelets: physiologic function and impact for pharmacotherapy. Blood. 2012;119:3394–402.CrossRefPubMedGoogle Scholar
  26. 26.
    Muller F, Mutch NJ, Schenk WA, et al. Platelet polyphosphates are proinflammatory and procoagulant mediators in vivo. Cell. 2009;139:1143–56.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Kobayashi N, Nishi T, Hirata T, et al. Sphingosine 1-phosphate is released from the cytosol of rat platelets in a carrier-mediated manner. J Lipid Res. 2006;47:614–21.CrossRefPubMedGoogle Scholar
  28. 28.
    de Fouw NJ, de Jong YF, Haverkate F, et al. Activated protein C increases fibrin clot lysis by neutralization of plasminogen activator inhibitor – no evidence for a cofactor role of protein S. Thromb Haemost. 1988;60:328–33.PubMedGoogle Scholar
  29. 29.
    Senger DR, Galli SJ, Dvorak AM, et al. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science. 1983;219:983–5.CrossRefPubMedGoogle Scholar
  30. 30.
    Dvorak H, Senger D, Dvorak A. Fibrin as a component of the tumor stroma: origins and biological significance. Cancer Metastasis Rev. 1983;2:41–73.CrossRefPubMedGoogle Scholar
  31. 31.
    Lee CG, Link H, Baluk P, et al. Vascular endothelial growth factor (VEGF) induces remodeling and enhances TH2-mediated sensitization and inflammation in the lung. Nat Med. 2004;10:1095–103.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Feng W, Madajka M, Kerr BA, et al. A novel role for platelet secretion in angiogenesis: mediating bone marrow–derived cell mobilization and homing. Blood. 2011;117:3893–902.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Mullins ES, Kombrinck KW, Talmage KE, et al. Genetic elimination of prothrombin in adult mice is not compatible with survival and results in spontaneous hemorrhagic events in both heart and brain. Blood. 2009;113:696–704.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Niessen F, Schaffner F, Furlan-Freguia C, et al. Dendritic cell PAR1-S1P3 signalling couples coagulation and inflammation. Nature. 2008;452:654–8.CrossRefPubMedGoogle Scholar
  35. 35.
    Puneet P, Yap CT, Wong L, et al. SphK1 regulates proinflammatory responses associated with endotoxin and polymicrobial sepsis. Science. 2010;328:1290–4.CrossRefPubMedGoogle Scholar
  36. 36.
    Miles LA, Parmer RJ. Plasminogen receptors: the first quarter century. Semin Thromb Hemost. 2013;39:329–37.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Das R, Ganapathy S, Settle M, et al. Plasminogen promotes macrophage phagocytosis in mice. Blood. 2014;124:679–88.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Prasad JM, Gorkun OV, Raghu H, et al. Mice expressing a mutant form of fibrinogen that cannot support fibrin formation exhibit compromised antimicrobial host defense. Blood. 2015;126:2047–58.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Kim K, Li J, Tseng A, et al. NOX2 is critical for heterotypic neutrophil-platelet interactions during vascular inflammation. Blood. 2015;126:1952–64.CrossRefPubMedGoogle Scholar
  40. 40.
    Doni A, Musso T, Morone D, et al. An acidic microenvironment sets the humoral pattern recognition molecule PTX3 in a tissue repair mode. J Exp Med. 2015;212:905–25.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Bonavita E, Gentile S, Rubino M, et al. PTX3 is an extrinsic oncosuppressor regulating complement-dependent inflammation in cancer. Cell. 2015;160:700–14.CrossRefPubMedGoogle Scholar
  42. 42.
    Tiruppathi C, Malik AB, Del Vecchio PJ, et al. Electrical method for detection of endothelial cell shape change in real time: assessment of endothelial barrier function. Proc Natl Acad Sci U S A. 1992;89:7919–23.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Green TP, Johnson DE, Marchessault RP, et al. Transvascular flux and tissue accrual of Evans blue: effects of endotoxin and histamine. J Lab Clin Med. 1988;111:173–83.PubMedGoogle Scholar
  44. 44.
    Mechtcheriakova D, Wlachos A, Holzmuller H, et al. Vascular endothelial cell growth factor-induced tissue factor expression in endothelial cells is mediated by EGR-1. Blood. 1999;93:3811–23.PubMedGoogle Scholar
  45. 45.
    Ollivier V, Bentolila S, Chabbat J, et al. Tissue factor-dependent vascular endothelial growth factor production by human fibroblasts in response to activated factor VII. Blood. 1998;91:2698–703.PubMedGoogle Scholar
  46. 46.
    Maru Y. Inflammation in tumor progression. Folia Pharmacol Jpn. 2011;138:155–60.CrossRefGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  • Yoshiro Maru
    • 1
  1. 1.Department of PharmacologyTokyo Women’s Medical UniversityTokyoJapan

Personalised recommendations