Skip to main content

Inflammation from the Standpoint of Leukocytes

  • Chapter
  • First Online:
Inflammation and Metastasis

Abstract

Leukocytes – Leukocytes are white blood cells of both myeloid and lymphoid origin. Polymorphonuclear (PMN) cells are differentiated myeloid cells consisting of neutrophils that are predominant, eosinophils, and basophils.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fukuyama S, Kawaoka Y. The pathogenesis of influenza virus infections: the contributions of virus and host factors. Curr Opin Immunol. 2011;23:481–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lee N, Wong CK, Chan PK, et al. Cytokine response patterns in severe pandemic 2009 H1N1 and seasonal influenza among hospitalized adults. PLoS ONE. 2011;6:e26050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Watanabe K, Shimizu T, Noda S, et al. Nuclear export of the influenza virus ribonucleoprotein complex: interaction of Hsc70 with viral proteins M1 and NS2. FEBS Open Biol. 2014;4:683–8.

    Article  CAS  Google Scholar 

  4. Ronca R, Di Salle E, Giacomini A, et al. Long pentraxin-3 inhibits epithelial–mesenchymal transition in melanoma cells. Mol Cancer Ther. 2013;12:2760–71.

    Article  CAS  PubMed  Google Scholar 

  5. Teupser D, Weber O, Rao TN, et al. No reduction of atherosclerosis in C-reactive protein (CRP)-deficient mice. J Biol Chem. 2011;286:6272–9.

    Article  CAS  PubMed  Google Scholar 

  6. Hillian AD, McMullen MR, Sebastian BM, et al. Mice lacking C1q are protected from high fat diet-induced hepatic insulin resistance and impaired glucose homeostasis. J Biol Chem. 2013;288:22565–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Di Gaetano N, Cittera E, Nota R, et al. Complement activation determines the therapeutic activity of rituximab in vivo. J Immunol. 2003;171:1581–7.

    Article  PubMed  Google Scholar 

  8. Kim S, Takahashi H, Lin WW, et al. Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature. 2009;457:102–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Laudisi F, Spreafico R, Evrard M, et al. Cutting edge: the NLRP3 inflammasome links complement-mediated inflammation and IL-1β release. J Immunol. 2013;191:1006–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chow MT, Sceneay J, Paget C, et al. NLRP3 suppresses NK cell–mediated responses to carcinogen-induced tumors and metastases. Cancer Res. 2012;72:5721–32.

    Article  CAS  PubMed  Google Scholar 

  11. Behler F, Steinwede K, Balboa L, et al. Role of mincle in alveolar macrophage-dependent innate immunity against mycobacterial infections in mice. J Immunol. 2012;189:3121–9.

    Article  CAS  PubMed  Google Scholar 

  12. Cichocki F, Miller JS, Anderson SK, et al. Epigenetic regulation of NK cell differentiation and effector functions. Front Immunol. 2013;4:55.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Spits H, Artis D, Colonna M, et al. Innate lymphoid cells – a proposal for uniform nomenclature. Nat Rev Immunol. 2013;13:145–9.

    Article  CAS  PubMed  Google Scholar 

  14. Robinette ML, Fuchs A, Cortez VS, et al. Transcriptional programs define molecular characteristics of innate lymphoid cell classes and subsets. Nat Immunol. 2015;16:306–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fuchs A, Vermi W, Lee Jacob S, et al. Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12- and IL-15-responsive IFN-γ-producing cells. Immunity. 2013;38:769–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mildner A, Jung S. Development and function of dendritic cell subsets. Immunity. 2014;40:642–56.

    Article  CAS  PubMed  Google Scholar 

  17. Schlitzer A, Ginhoux F. Organization of the mouse and human DC network. Curr Opin Immunol. 2014;26:90–9.

    Article  CAS  PubMed  Google Scholar 

  18. Job ER, Bottazzi B, Gilbertson B, et al. Serum amyloid P is a sialylated glycoprotein inhibitor of influenza A viruses. PLoS ONE. 2013;8:e59623.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Heer AK, Harris NL, Kopf M, et al. CD4+ and CD8+ T cells exhibit differential requirements for CCR7-mediated antigen transport during influenza infection. J Immunol. 2008;181:6984–94.

    Article  CAS  PubMed  Google Scholar 

  20. Corthay A. A three-cell model for activation of Naïve T helper cells. Scand J Immunol. 2006;64:93–6.

    Article  CAS  PubMed  Google Scholar 

  21. Shaw MH, Kamada N, Kim YG, et al. Microbiota-induced IL-1β, but not IL-6, is critical for the development of steady-state TH17 cells in the intestine. J Exp Med. 2012;209:251–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nakae S, Komiyama Y, Yokoyama H, et al. IL-1 is required for allergen-specific Th2 cell activation and the development of airway hypersensitivity response. Int Immunol. 2003;15:483–90.

    Article  CAS  PubMed  Google Scholar 

  23. Torchinsky MB, Garaude J, Martin AP, et al. Innate immune recognition of infected apoptotic cells directs TH17 cell differentiation. Nature. 2009;458:78–82.

    Article  CAS  PubMed  Google Scholar 

  24. Ghoreschi K, Laurence A, Yang X-P, et al. Generation of pathogenic TH17 cells in the absence of TGF-β signalling. Nature. 2010;467:967–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chaudhry A, Rudensky AY. Control of inflammation by integration of environmental cues by regulatory T cells. J Clin Invest. 2013;123:939–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972;26:239–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Golstein P, Kroemer G. Cell death by necrosis: towards a molecular definition. Trends Biochem Sci. 2007;32:37–43.

    Article  CAS  PubMed  Google Scholar 

  28. Linkermann A, Green DR. Necroptosis. N Engl J Med. 2014;370:455–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sperandio S, de Belle I, Bredesen DE. An alternative, nonapoptotic form of programmed cell death. Proc Natl Acad Sci U S A. 2000;97:14376–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Segawa K, Kurata S, Yanagihashi Y, et al. Caspase-mediated cleavage of phospholipid flippase for apoptotic phosphatidylserine exposure. Science. 2014;344:1164–8.

    Article  CAS  PubMed  Google Scholar 

  31. Bergsbaken T, Fink SL, Cookson BT. Pyroptosis: host cell death and inflammation. Nat Rev Microbiol. 2009;7:99–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Remijsen Q, Kuijpers TW, Wirawan E, et al. Dying for a cause: NETosis, mechanisms behind an antimicrobial cell death modality. Cell Death Differ. 2011;18:581–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149:1060–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Overholtzer M, Mailleux AA, Mouneimne G, et al. A nonapoptotic cell death process, entosis, that occurs by cell-in-cell invasion. Cell. 2007;131:966–79.

    Article  CAS  PubMed  Google Scholar 

  35. Ricklin D, Hajishengallis G, Yang K, et al. Complement: a key system for immune surveillance and homeostasis. Nat Immunol. 2010;11:785–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas. J Clin Invest. 2012;122:787–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Baltimore D. NF-[kappa]B is 25. Nat Immunol. 2011;12:683–5.

    Article  CAS  PubMed  Google Scholar 

  38. Hajishengallis G, Lambris JD. Crosstalk pathways between toll-like receptors and the complement system. Trends Immunol. 2010;31:154–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gagnon E, Duclos S, Rondeau C, et al. Endoplasmic reticulum-mediated phagocytosis is a mechanism of entry into macrophages. Cell. 2002;110:119–31.

    Article  CAS  PubMed  Google Scholar 

  40. Lu J, Marnell LL, Marjon KD, et al. Structural recognition and functional activation of FcγR by innate pentraxins. Nature. 2008;456:989–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yamasaki S, Ishikawa E, Sakuma M, et al. Mincle is an ITAM-coupled activating receptor that senses damaged cells. Nat Immunol. 2008;9:1179–88.

    Article  CAS  PubMed  Google Scholar 

  42. Jiang F, Zhang Y, Dusting GJ. NADPH oxidase-mediated redox signaling: roles in cellular stress response, stress tolerance, and tissue repair. Pharmacol Rev. 2011;63:218–42.

    Article  CAS  PubMed  Google Scholar 

  43. Maru Y, Nishino T, Kakinuma K. Expression of Nox genes in rat organs, mouse oocytes, and sea urchin eggs. DNA Seq. 2005;16:83–8.

    Article  CAS  PubMed  Google Scholar 

  44. Kim YS, Morgan MJ, Choksi S, et al. TNF-induced activation of the Nox1 NADPH oxidase and its role in the induction of necrotic cell death. Mol Cell. 2007;26:675–87.

    Article  CAS  PubMed  Google Scholar 

  45. Segal BH, Han W, Bushey JJ, et al. NADPH oxidase limits innate immune responses in the lungs in mice. PLoS ONE. 2010;5:e9631.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Tauzin S, Starnes TW, Becker FB, et al. Redox and Src family kinase signaling control leukocyte wound attraction and neutrophil reverse migration. J Cell Biol. 2014;207:589–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lerman YV, Lim K, Hyun YM, et al. Sepsis lethality via exacerbated tissue infiltration and TLR-induced cytokine production by neutrophils is integrin alpha3beta1-dependent. Blood. 2014;124:3515–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Clark SR, Ma AC, Tavener SA, et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med. 2007;13:463–9.

    Article  CAS  PubMed  Google Scholar 

  49. Daigo K, Hamakubo T. Host-protective effect of circulating pentraxin 3 (PTX3) and complex formation with neutrophil extracellular traps. Front Immunol. 2012;3:378.

    Article  PubMed  PubMed Central  Google Scholar 

  50. West AP, Brodsky IE, Rahner C, et al. TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature. 2011;472:476–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Maru, Y. (2016). Inflammation from the Standpoint of Leukocytes. In: Inflammation and Metastasis. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56024-1_2

Download citation

Publish with us

Policies and ethics