Therapeutic Potential

  • Yoshiro Maru


At the beginning, I need to mention that the drugs described in this chapter are either of practical use in current clinical settings or previously were designed in subclinical situations but I suppose still are valuable to shed light on the translational research in inflammation-associated disorders.


Melanoma Cell Chronic Myeloid Leukemia Lung Metastasis Chronic Myeloid Leukemia Patient JAK2 Inhibitor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ramakrishna N, Temin S, Chandarlapaty S, et al. Recommendations on disease management for patients with advanced human epidermal growth factor receptor 2-positive breast cancer and brain metastases: American society of clinical oncology clinical practice guideline. J Clin Oncol. 2014;32:2100–8.PubMedCrossRefGoogle Scholar
  2. 2.
    Nikolaou VA, Stratigos AJ, Flaherty KT, et al. Melanoma: new insights and new therapies. J Invest Dermatol. 2012;132:854–63.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Chapman PB, Hauschild A, Robert C, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011;364:2507–16.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Fritsche-Guenther R, Witzel F, Sieber A, et al. Strong negative feedback from Erk to Raf confers robustness to MAPK signalling. Mol Syst Biol. 2011;7:489.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Flaherty KT, Infante JR, Daud A, et al. Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N Engl J Med. 2012;367:1694–703.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Green AC, Williams GM, Logan V, et al. Reduced melanoma after regular sunscreen use: randomized trial follow-up. J Clin Oncol. 2011;29:257–63.PubMedCrossRefGoogle Scholar
  7. 7.
    Sumimoto H, Imabayashi F, Iwata T, et al. The BRAF-MAPK signaling pathway is essential for cancer-immune evasion in human melanoma cells. J Exp Med. 2006;203:1651–6.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Beatty GL, Chiorean EG, Fishman MP, et al. CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science. 2011;331:1612–6.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Nirschl CJ, Drake CG. Molecular pathways: coexpression of immune checkpoint molecules: signaling pathways and implications for cancer immunotherapy. Clin Cancer Res. 2013;19:4917–24.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Voron T, Colussi O, Marcheteau E, et al. VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors. J Exp Med. 2015;212:139–48.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Iwai Y, Terawaki S, Honjo T. PD-1 blockade inhibits hematogenous spread of poorly immunogenic tumor cells by enhanced recruitment of effector T cells. Int Immunol. 2005;17:133–44.PubMedCrossRefGoogle Scholar
  12. 12.
    Topalian SL, Sznol M, McDermott DF, et al. Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. J Clin Oncol. 2014;32:1020–30.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Hodi FS, O’Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363:711–23.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Wolchok JD, Kluger H, Callahan MK, et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med. 2013;369:122–33.PubMedCrossRefGoogle Scholar
  15. 15.
    Christiansson L, Soderlund S, Svensson E, et al. Increased level of myeloid-derived suppressor cells, programmed death receptor ligand 1/programmed death receptor 1, and soluble CD25 in Sokal high risk chronic myeloid leukemia. PLoS One. 2013;8:e55818.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Odorizzi PM, Pauken KE, Paley MA, et al. Genetic absence of PD-1 promotes accumulation of terminally differentiated exhausted CD8+ T cells. J Exp Med. 2015;212:1125–37.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Motzer RJ, Nosov D, Eisen T, et al. Tivozanib versus sorafenib as initial targeted therapy for patients with metastatic renal cell carcinoma: results from a phase III trial. J Clin Oncol. 2013;31:3791–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Hochhaus A, O’Brien SG, Guilhot F, et al. Six-year follow-up of patients receiving imatinib for the first-line treatment of chronic myeloid leukemia. Leukemia. 2009;23:1054–61.PubMedCrossRefGoogle Scholar
  19. 19.
    Somasekharan SP, El-Naggar A, Leprivier G, et al. YB-1 regulates stress granule formation and tumor progression by translationally activating G3BP1. J Cell Biol. 2015;208:913–29.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Guan JL, Simon AK, Prescott M, et al. Autophagy in stem cells. Autophagy. 2013;9:830–49.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Peng YF, Shi YH, Shen YH, et al. Promoting colonization in metastatic HCC cells by modulation of autophagy. PLoS One. 2013;8:e74407.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Peng YF, Shi YH, Ding ZB, et al. Autophagy inhibition suppresses pulmonary metastasis of HCC in mice via impairing anoikis resistance and colonization of HCC cells. Autophagy. 2013;9:2056–68.PubMedCrossRefGoogle Scholar
  23. 23.
    Malanchi I, Santamaria-Martinez A, Susanto E, et al. Interactions between cancer stem cells and their niche govern metastatic colonization. Nature. 2012;481:85–9.CrossRefGoogle Scholar
  24. 24.
    Jachetti E, Caputo S, Mazzoleni S, et al. Tenascin-C protects cancer stem-like cells from immune surveillance by arresting T-cell activation. Cancer Res. 2015;75:2095–108.PubMedCrossRefGoogle Scholar
  25. 25.
    Okajima T, Fukumoto S, Ito H, et al. Molecular cloning of brain-specific GD1 α Synthase (ST6GalNAc V) containing CAG/glutamine repeats. J Biol Chem. 1999;274:30557–62.PubMedCrossRefGoogle Scholar
  26. 26.
    Zhang H, Wong CC, Wei H, et al. HIF-1-dependent expression of angiopoietin-like 4 and L1CAM mediates vascular metastasis of hypoxic breast cancer cells to the lungs. Oncogene. 2012;31:1757–70.PubMedCrossRefGoogle Scholar
  27. 27.
    Bos PD, Zhang XH, Nadal C, et al. Genes that mediate breast cancer metastasis to the brain. Nature. 2009;459:1005–9.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Tafani M, Pucci B, Russo A, et al. Modulators of HIF1α and NFκB in cancer treatment: is it a rational approach for controlling malignant progression? Front Pharmacol. 2013;4:13. doi:  10.3389/fphar.2013.00013.
  29. 29.
    Zhang XH, Wang Q, Gerald W, et al. Latent bone metastasis in breast cancer tied to Src-dependent survival signals. Cancer Cell. 2009;16:67–78.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Chen Q, Zhang XH, Massague J. Macrophage binding to receptor VCAM-1 transmits survival signals in breast cancer cells that invade the lungs. Cancer Cell. 2011;20:538–49.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Warren RS, Yuan H, Matli MR, et al. Regulation by vascular endothelial growth factor of human colon cancer tumorigenesis in a mouse model of experimental liver metastasis. J Clin Invest. 1995;95:1789–97.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Bais C, Wu X, Yao J, et al. PlGF blockade does not inhibit angiogenesis during primary tumor growth. Cell. 2010;141:166–77.PubMedCrossRefGoogle Scholar
  33. 33.
    Dawson MR, Duda DG, Fukumura D, et al. VEGFR1-activity-independent metastasis formation. Nature. 2009;461:E4; discussion E5.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Paez-Ribes M, Allen E, Hudock J, et al. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell. 2009;15:220–31.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Malik G, Knowles LM, Dhir R, et al. Plasma fibronectin promotes lung metastasis by contributions to fibrin clots and tumor cell invasion. Cancer Res. 2010;70:4327–34.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Caunt M, Mak J, Liang WC, et al. Blocking neuropilin-2 function inhibits tumor cell metastasis. Cancer Cell. 2008;13:331–42.PubMedCrossRefGoogle Scholar
  37. 37.
    Ieguchi K, Tomita T, Omori T, et al. ADAM12-cleaved ephrin-A1 contributes to lung metastasis. Oncogene. 2014;33:2179–90.PubMedCrossRefGoogle Scholar
  38. 38.
    Keskin D, Kim J, Cooke VG, et al. Targeting vascular pericytes in hypoxic tumors increases lung metastasis via angiopoietin-2. Cell reports. 2015;10:1066–81.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Martin MD, Carter KJ, Jean-Philippe SR, et al. Effect of ablation or inhibition of stromal matrix metalloproteinase-9 on lung metastasis in a breast cancer model is dependent on genetic background. Cancer Res. 2008;68:6251–9.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Zigrino P, Kuhn I, Bauerle T, et al. Stromal expression of MMP-13 is required for melanoma invasion and metastasis. J Invest Dermatol. 2009;129:2686–93.PubMedCrossRefGoogle Scholar
  41. 41.
    Romagnoli M, Mineva ND, Polmear M, et al. ADAM8 expression in invasive breast cancer promotes tumor dissemination and metastasis. EMBO Mol Med. 2014;6:278–94.PubMedGoogle Scholar
  42. 42.
    Saupe F, Schwenzer A, Jia Y, et al. Tenascin-C downregulates wnt inhibitor dickkopf-1, promoting tumorigenesis in a neuroendocrine tumor model. Cell Rep. 2013;5:482–92.PubMedCrossRefGoogle Scholar
  43. 43.
    Garmy-Susini B, Avraamides CJ, Desgrosellier JS, et al. PI3Kalpha activates integrin alpha4beta1 to establish a metastatic niche in lymph nodes. Proc Natl Acad Sci U S A. 2;2013;110:9042–7.Google Scholar
  44. 44.
    Magnon C, Hall SJ, Lin J, et al. Autonomic nerve development contributes to prostate cancer progression. Science. 2013;341:1236361.PubMedCrossRefGoogle Scholar
  45. 45.
    Ferjancic S, Gil-Bernabe AM, Hill SA, et al. VCAM-1 and VAP-1 recruit myeloid cells that promote pulmonary metastasis in mice. Blood. 2013;121:3289–97.PubMedCrossRefGoogle Scholar
  46. 46.
    Palumbo JS, Talmage KE, Massari JV, et al. Tumor cell-associated tissue factor and circulating hemostatic factors cooperate to increase metastatic potential through natural killer cell-dependent and-independent mechanisms. Blood. 2007;110:133–41.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Mueller BM, Ruf W. Requirement for binding of catalytically active factor VIIa in tissue factor-dependent experimental metastasis. J Clin Invest. 1998;101:1372–8.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Palumbo JS, Kombrinck KW, Drew AF, et al. Fibrinogen is an important determinant of the metastatic potential of circulating tumor cells. Blood. 2000;96:3302–9.PubMedGoogle Scholar
  49. 49.
    Palumbo JS, Barney KA, Blevins EA, et al. Factor XIII transglutaminase supports hematogenous tumor cell metastasis through a mechanism dependent on natural killer cell function. J Thromb Haemost. 2008;6:812–9.PubMedCrossRefGoogle Scholar
  50. 50.
    Banke IJ, Arlt MJ, Mueller MM, et al. Effective inhibition of experimental metastasis and prolongation of survival in mice by a potent factor Xa-specific synthetic serine protease inhibitor with weak anticoagulant activity. Thromb Haemost. 2005;94:1084–93.PubMedGoogle Scholar
  51. 51.
    Esumi N, Fan D, Fidler IJ. Inhibition of murine melanoma experimental metastasis by recombinant desulfatohirudin, a highly specific thrombin inhibitor. Cancer Res. 1991;51:4549–56.PubMedGoogle Scholar
  52. 52.
    Palumbo JS, Potter JM, Kaplan LS, et al. Spontaneous hematogenous and lymphatic metastasis, but not primary tumor growth or angiogenesis, is diminished in fibrinogen-deficient mice. Cancer Res. 2002;62:6966–72.PubMedGoogle Scholar
  53. 53.
    Eitzman DT, Krauss JC, Shen T, et al. Lack of plasminogen activator inhibitor-1 effect in a transgenic mouse model of metastatic melanoma. Blood. 1996;87:4718–22.PubMedGoogle Scholar
  54. 54.
    Camerer E, Qazi AA, Duong DN, et al. Platelets, protease-activated receptors, and fibrinogen in hematogenous metastasis. Blood. 2004;104:397–401.PubMedCrossRefGoogle Scholar
  55. 55.
    Jain S, Zuka M, Liu J, et al. Platelet glycoprotein Ib alpha supports experimental lung metastasis. Proc Natl Acad Sci U S A. 2007;104:9024–8.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Amirkhosravi A, Mousa SA, Amaya M, et al. Inhibition of tumor cell-induced platelet aggregation and lung metastasis by the oral GpIIb/IIIa antagonist XV454. Thromb Haemost. 2003;90:549–54.PubMedGoogle Scholar
  57. 57.
    Palumbo JS, Talmage KE, Massari JV, et al. Platelets and fibrin(ogen) increase metastatic potential by impeding natural killer cell-mediated elimination of tumor cells. Blood. 2005;105:178–85.PubMedCrossRefGoogle Scholar
  58. 58.
    Kato Y, Fujita N, Yano H, et al. Suppression of experimental lung colonization of mouse colon adenocarcinoma 26 in vivo by an anti-idiotype monoclonal antibody recognizing a platelet surface molecule. Cancer Res. 1997;57:3040–5.PubMedGoogle Scholar
  59. 59.
    Yang S, Zhang JJ, Huang XY. Orai1 and STIM1 are critical for breast tumor cell migration and metastasis. Cancer Cell. 2009;15:124–34.PubMedCrossRefGoogle Scholar
  60. 60.
    Borsig L, Wong R, Feramisco J, et al. Heparin and cancer revisited: mechanistic connections involving platelets, P-selectin, carcinoma mucins, and tumor metastasis. Proc Natl Acad Sci U S A. 2001;98:3352–7.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Hiratsuka S, Watanabe A, Sakurai Y, et al. The S100A8-serum amyloid A3-TLR4 paracrine cascade establishes a pre-metastatic phase. Nat Cell Biol. 2008;10:1349–55.PubMedCrossRefGoogle Scholar
  62. 62.
    Kim S, Takahashi H, Lin WW, et al. Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature. 2009;457:102–6.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Kundu N, Ma XR, Holt D, et al. Antagonism of the prostaglandin E receptor EP4 inhibits metastasis and enhances NK function. Breast Cancer Res Treat. 2009;117:235–42.PubMedCrossRefGoogle Scholar
  64. 64.
    Kishi Y, Kuba K, Nakamura T, et al. Systemic NK4 gene therapy inhibits tumor growth and metastasis of melanoma and lung carcinoma in syngeneic mouse tumor models. Cancer Sci. 2009;100:1351–8.PubMedCrossRefGoogle Scholar
  65. 65.
    Wen J, Matsumoto K, Taniura N, et al. Hepatic gene expression of NK4, an HGF-antagonist/angiogenesis inhibitor, suppresses liver metastasis and invasive growth of colon cancer in mice. Cancer Gene Ther. 2004;11:419–30.PubMedCrossRefGoogle Scholar
  66. 66.
    Liu J, Liao S, Diop-Frimpong B, et al. TGF-beta blockade improves the distribution and efficacy of therapeutics in breast carcinoma by normalizing the tumor stroma. Proc Natl Acad Sci U S A. 2012;109:16618–23.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Bandyopadhyay A, Agyin JK, Wang L, et al. Inhibition of pulmonary and skeletal metastasis by a transforming growth factor-beta type I receptor kinase inhibitor. Cancer Res. 2006;66:6714–21.PubMedCrossRefGoogle Scholar
  68. 68.
    Kowanetz M, Wu X, Lee J, et al. Granulocyte-colony stimulating factor promotes lung metastasis through mobilization of Ly6G+Ly6C+ granulocytes. Proc Natl Acad Sci U S A. 2010;107:21248–55.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Gutierrez-Fernandez A, Fueyo A, Folgueras AR, et al. Matrix metalloproteinase-8 functions as a metastasis suppressor through modulation of tumor cell adhesion and invasion. Cancer Res. 2008;68:2755–63.PubMedCrossRefGoogle Scholar
  70. 70.
    Perry SW, Schueckler JM, Burke K, et al. Stromal matrix metalloprotease-13 knockout alters Collagen I structure at the tumor-host interface and increases lung metastasis of C57BL/6 syngeneic E0771 mammary tumor cells. BMC Cancer. 2013;13:411.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Contador-Troca M, Alvarez-Barrientos A, Barrasa E, et al. The dioxin receptor has tumor suppressor activity in melanoma growth and metastasis. Carcinogenesis. 2013;34:2683–93.PubMedCrossRefGoogle Scholar
  72. 72.
    Gong J, Weng D, Eguchi T, et al. Targeting the hsp70 gene delays mammary tumor initiation and inhibits tumor cell metastasis. Oncogene. 2015;34:5460–71.Google Scholar
  73. 73.
    Ma X, Kundu N, Rifat S, et al. Prostaglandin E receptor EP4 antagonism inhibits breast cancer metastasis. Cancer Res. 2006;66:2923–7.PubMedCrossRefGoogle Scholar
  74. 74.
    Frohlich C, Nehammer C, Albrechtsen R, et al. ADAM12 produced by tumor cells rather than stromal cells accelerates breast tumor progression. Mol Cancer Res. 2011;9:1449–61.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Paolino M, Choidas A, Wallner S, et al. The E3 ligase Cbl-b and TAM receptors regulate cancer metastasis via natural killer cells. Nature. 2014;507:508–12.PubMedCrossRefGoogle Scholar
  76. 76.
    Fabbri M, Paone A, Calore F, et al. MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proc Natl Acad Sci U S A. 2012;109:E2110–6.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Hiratsuka S, Ishibashi S, Tomita T, et al. Primary tumours modulate innate immune signalling to create pre-metastatic vascular hyperpermeability foci. Nat Commun. 2013;4:1853.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Laubli H, Spanaus KS, Borsig L. Selectin-mediated activation of endothelial cells induces expression of CCL5 and promotes metastasis through recruitment of monocytes. Blood. 2009;114:4583–91.PubMedCrossRefGoogle Scholar
  79. 79.
    D’Alterio C, Barbieri A, Portella L, et al. Inhibition of stromal CXCR4 impairs development of lung metastases. Cancer Immunol Immunother. 2012;61:1713–20.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Najy AJ, Day KC, Day ML. ADAM15 supports prostate cancer metastasis by modulating tumor cell-endothelial cell interaction. Cancer Res. 2008;68:1092–9.PubMedCrossRefGoogle Scholar
  81. 81.
    Zhang D, LaFortune TA, Krishnamurthy S, et al. Epidermal growth factor receptor tyrosine kinase inhibitor reverses mesenchymal to epithelial phenotype and inhibits metastasis in inflammatory breast cancer. Clin Cancer Res. 2009;15:6639–48.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Goode GD, Ballard BR, Manning HC, et al. Knockdown of aberrantly upregulated aryl hydrocarbon receptor reduces tumor growth and metastasis of MDA-MB-231 human breast cancer cell line. Int J Cancer. 2013;133:2769–80.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Wang X, Song X, Zhuo W, et al. The regulatory mechanism of Hsp90alpha secretion and its function in tumor malignancy. Proc Natl Acad Sci U S A. 2009;106:21288–93.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Spaderna S, Schmalhofer O, Wahlbuhl M, et al. The transcriptional repressor ZEB1 promotes metastasis and loss of cell polarity in cancer. Cancer Res. 2008;68:537–44.PubMedCrossRefGoogle Scholar
  85. 85.
    Desmet CJ, Gallenne T, Prieur A, et al. Identification of a pharmacologically tractable Fra-1/ADORA2B axis promoting breast cancer metastasis. Proc Natl Acad Sci U S A. 2013;110:5139–44.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Liang Y, Wu H, Lei R, et al. Transcriptional network analysis identifies BACH1 as a master regulator of breast cancer bone metastasis. J Biol Chem. 2012;287:33533–44.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Sevenich L, Bowman RL, Mason SD, et al. Analysis of tumour- and stroma-supplied proteolytic networks reveals a brain-metastasis-promoting role for cathepsin S. Nat Cell Biol. 2014;16:876–88.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Chakrabarti R, Hwang J, Andres Blanco M, et al. Elf5 inhibits the epithelial-mesenchymal transition in mammary gland development and breast cancer metastasis by transcriptionally repressing Snail2. Nat Cell Biol. 2012;14:1212–22.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Gao H, Chakraborty G, Lee-Lim AP, et al. The BMP inhibitor Coco reactivates breast cancer cells at lung metastatic sites. Cell. 2012;150:764–79.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Balamurugan K, Wang JM, Tsai HH, et al. The tumour suppressor C/EBPdelta inhibits FBXW7 expression and promotes mammary tumour metastasis. EMBO J. 2010;29:4106–17.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Erler JT, Bennewith KL, Cox TR, et al. Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell. 2009;15:35–44.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Bandapalli OR, Ehrmann F, Ehemann V, et al. Down-regulation of CXCL1 inhibits tumor growth in colorectal liver metastasis. Cytokine. 2012;57:46–53.PubMedCrossRefGoogle Scholar
  93. 93.
    Almholt K, Nielsen BS, Frandsen TL, et al. Metastasis of transgenic breast cancer in plasminogen activator inhibitor-1 gene-deficient mice. Oncogene. 2003;22:4389–97.PubMedCrossRefGoogle Scholar
  94. 94.
    Bajou K, Maillard C, Jost M, et al. Host-derived plasminogen activator inhibitor-1 (PAI-1) concentration is critical for in vivo tumoral angiogenesis and growth. Oncogene. 2004;23:6986–90.PubMedCrossRefGoogle Scholar
  95. 95.
    Schatton T, Murphy GF, Frank NY, et al. Identification of cells initiating human melanomas. Nature. 2008;451:345–9.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Frank NY, Schatton T, Kim S, et al. VEGFR-1 expressed by malignant melanoma-initiating cells is required for tumor growth. Cancer Res. 2011;71:1474–85.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Hiratsuka S, Maru Y, Okada A, et al. Involvement of Flt-1 tyrosine kinase (vascular endothelial growth factor receptor-1) in pathological angiogenesis. Cancer Res. 2001;61:1207–13.PubMedGoogle Scholar
  98. 98.
    Fischer C, Jonckx B, Mazzone M, et al. Anti-PlGF inhibits growth of VEGF(R)-inhibitor-resistant tumors without affecting healthy vessels. Cell. 2007;131:463–75.PubMedCrossRefGoogle Scholar
  99. 99.
    Gao P, Zhang H, Dinavahi R, et al. HIF-dependent antitumorigenic effect of antioxidants in vivo. Cancer Cell. 2007;12:230–8.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Mazzone M, Dettori D, Leite de Oliveira R, et al. Heterozygous deficiency of PHD2 restores tumor oxygenation and inhibits metastasis via endothelial normalization. Cell. 2009;136:839–51.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Maione F, Molla F, Meda C, et al. Semaphorin 3A is an endogenous angiogenesis inhibitor that blocks tumor growth and normalizes tumor vasculature in transgenic mouse models. J Clin Invest. 2009;119:3356–72.PubMedPubMedCentralGoogle Scholar
  102. 102.
    Gasic GJ, Gasic TB, Stewart CC. Antimetastatic effects associated with platelet reduction. Proc Natl Acad Sci U S A. 1968;61:46–52.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Karpatkin S, Pearlstein E, Ambrogio C, et al. Role of adhesive proteins in platelet tumor interaction in vitro and metastasis formation in vivo. J Clin Invest. 1988;81:1012–9.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Nick JA, Coldren CD, Geraci MW, et al. Recombinant human activated protein C reduces human endotoxin-induced pulmonary inflammation via inhibition of neutrophil chemotaxis. Blood. 2004;104:3878–85.PubMedCrossRefGoogle Scholar
  105. 105.
    Ruf W. New players in the sepsis-protective activated protein C pathway. J Clin Invest. 2010;120:3084–7.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Mitka M. Drug for severe sepsis is withdrawn from market, fails to reduce mortality. JAMA. 2011;306:2439–40.PubMedGoogle Scholar
  107. 107.
    Abeyama K, Stern DM, Ito Y, et al. The N-terminal domain of thrombomodulin sequesters high-mobility group-B1 protein, a novel antiinflammatory mechanism. J Clin Invest. 2005;115:1267–74.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Smiley ST, King JA, Hancock WW. Fibrinogen stimulates macrophage chemokine secretion through toll-like receptor 4. J Immunol. 2001;167:2887–94.PubMedCrossRefGoogle Scholar
  109. 109.
    Hodgkinson CP, Patel K, Ye S. Functional Toll-like receptor 4 mutations modulate the response to fibrinogen. Thromb Haemost. 2008;100:301–7.PubMedGoogle Scholar
  110. 110.
    Millien VO, Lu W, Shaw J, et al. Cleavage of fibrinogen by proteinases elicits allergic responses through Toll-like receptor 4. Science. 2013;341:792–6.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Ahn HJ, Zamolodchikov D, Cortes-Canteli M, et al. Alzheimer’s disease peptide beta-amyloid interacts with fibrinogen and induces its oligomerization. Proc Natl Acad Sci U S A. 2010;107:21812–7.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Ahn HJ, Glickman JF, Poon KL, et al. A novel Aβ-fibrinogen interaction inhibitor rescues altered thrombosis and cognitive decline in Alzheimer’s disease mice. J Exp Med. 2014;211:1049–62.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Bajou K, Herkenne S, Thijssen VL, et al. PAI-1 mediates the antiangiogenic and profibrinolytic effects of 16K prolactin. Nat Med. 2014;20:741–7.PubMedCrossRefGoogle Scholar
  114. 114.
    Ryan JJ, Ketcham AS, Wexler H. Reduced incidence of spontaneous metastases with long-term Coumadin therapy. Ann Surg. 1968;168:163–8.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Hasanbasic I, Rajotte I, Blostein M. The role of gamma-carboxylation in the anti-apoptotic function of gas6. J Thromb Haemost. 2005;3:2790–7.PubMedCrossRefGoogle Scholar
  116. 116.
    Lemke G, Rothlin CV. Immunobiology of the TAM receptors. Nat Rev Immunol. 2008;8:327–36.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Han C, Jin J, Xu S, et al. Integrin CD11b negatively regulates TLR-triggered inflammatory responses by activating Syk and promoting degradation of MyD88 and TRIF via Cbl-b. Nat Immunol. 2010;11:734–42.PubMedCrossRefGoogle Scholar
  118. 118.
    Nakao S, Kuwano T, Tsutsumi-Miyahara C, et al. Infiltration of COX-2-expressing macrophages is a prerequisite for IL-1 beta-induced neovascularization and tumor growth. J Clin Invest. 2005;115:2979–91.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Ristimaki A, Sivula A, Lundin J, et al. Prognostic significance of elevated cyclooxygenase-2 expression in breast cancer. Cancer Res. 2002;62:632–5.PubMedGoogle Scholar
  120. 120.
    Smith MR, Saad F, Coleman R, et al. Denosumab and bone-metastasis-free survival in men with castration-resistant prostate cancer: results of a phase 3, randomised, placebo-controlled trial. Lancet. 2012;379:39–46.PubMedCrossRefGoogle Scholar
  121. 121.
    Takita M, Inada M, Maruyama T, et al. Prostaglandin E receptor EP4 antagonist suppresses osteolysis due to bone metastasis of mouse malignant melanoma cells. FEBS Lett. 2007;581:565–71.PubMedCrossRefGoogle Scholar
  122. 122.
    Yang L, Huang YH, Porta R, et al. Host and direct antitumor effects and profound reduction in tumor metastasis with selective EP4 receptor antagonism. Cancer Res. 2006;66:9665–72.PubMedCrossRefGoogle Scholar
  123. 123.
    Yokoyama U, Iwatsubo K, Umemura M, et al. The prostanoid EP4 receptor and its signaling pathway. Pharmacol Rev. 2013;65:1010–52.PubMedCrossRefGoogle Scholar
  124. 124.
    Shin VY, Jin H, Ng EK, et al. NF-kappaB targets miR-16 and miR-21 in gastric cancer: involvement of prostaglandin E receptors. Carcinogenesis. 2011;32:240–5.PubMedCrossRefGoogle Scholar
  125. 125.
    Aoki T, Nishimura M, Matsuoka T, et al. PGE(2) -EP(2) signalling in endothelium is activated by haemodynamic stress and induces cerebral aneurysm through an amplifying loop via NF-kappaB. Br J Pharmacol. 2011;163:1237–49.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Neuschafer-Rube F, Pathe-Neuschafer-Rube A, Hippenstiel S, et al. NF-κB-dependent IL-8 induction by prostaglandin E(2) receptors EP(1) and EP(4). Br J Pharmacol. 2013;168:704–17.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Gong J, Xie J, Bedolla R, et al. Combined targeting of STAT3/NF-κB/COX-2/EP4 for effective management of pancreatic cancer. Clin Cancer Res. 2014;20:1259–73.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Arita M, Ohira T, Sun YP, et al. Resolvin E1 selectively interacts with leukotriene B-4 receptor BLT1 and ChemR23 to regulate inflammation. J Immunol. 2007;178:3912–7.PubMedCrossRefGoogle Scholar
  129. 129.
    Fredman G, Van Dyke TE, Serhan CN. Resolvin E1 regulates adenosine diphosphate activation of human platelets. Arterioscler Thromb Vasc Biol. 2010;30:2005–13.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Norling LV, Dalli J, Flower RJ, et al. Resolvin D1 limits polymorphonuclear leukocyte recruitment to inflammatory loci receptor-dependent actions. Arterioscler Thromb Vasc Biol. 2012;32:1970–U555.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Mirakaj V, Dalli J, Granja T, et al. Vagus nerve controls resolution and pro-resolving mediators of inflammation. J Exp Med. 2014;211:1037–48.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Xu ZZ, Zhang L, Liu T, et al. Resolvins RvE1 and RvD1 attenuate inflammatory pain via central and peripheral actions. Nat Med. 2010;16:592–U129.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Spite M, Norling LV, Summers L, et al. Resolvin D2 is a potent regulator of leukocytes and controls microbial sepsis. Nature. 2009;461:1287–U125.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Chiang N, Dalli J, Colas RA, et al. Identification of resolvin D2 receptor mediating resolution of infections and organ protection. J Exp Med. 2015;212:1203–17.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Guiducci C, Gong M, Xu Z, et al. TLR recognition of self nucleic acids hampers glucocorticoid activity in lupus. Nature. 2010;465:937–41.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Richardson PG, Sonneveld P, Schuster MW, et al. Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N Engl J Med. 2005;352:2487–98.PubMedCrossRefGoogle Scholar
  137. 137.
    Rhim AD, Mirek ET, Aiello NM, et al. EMT and dissemination precede pancreatic tumor formation. Cell. 2012;148:349–61.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Egberts JH, Cloosters V, Noack A, et al. Anti-tumor necrosis factor therapy inhibits pancreatic tumor growth and metastasis. Cancer Res. 2008;68:1443–50.PubMedCrossRefGoogle Scholar
  139. 139.
    Chopra M, Lang I, Salzmann S, et al. Tumor necrosis factor induces tumor promoting and anti-tumoral effects on pancreatic cancer via TNFR1. PLoS One. 2013;8:e75737.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Herman JM, Wild AT, Wang H, et al. Randomized phase III multi-institutional study of TNFerade biologic with fluorouracil and radiotherapy for locally advanced pancreatic cancer: final results. J Clin Oncol. 2013;31:886–94.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Biancone L, Petruzziello C, Orlando A, et al. Cancer in Crohn’s disease patients treated with infliximab: a long-term multicenter matched pair study. Inflamm Bowel Dis. 2011;17:758–66.PubMedCrossRefGoogle Scholar
  142. 142.
    Croft M, Benedict CA, Ware CE. Clinical targeting of the TNF and TNFR superfamilies. Nat Rev Drug Discov. 2013;12:147–68.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Roccaro AM, Sacco A, Jimenez C, et al. C1013G/CXCR4 acts as a driver mutation of tumor progression and modulator of drug resistance in lymphoplasmacytic lymphoma. Blood. 2014;123:4120–31.PubMedCrossRefGoogle Scholar
  144. 144.
    D’Alterio C, Barbieri A, Portella L, et al. Inhibition of stromal CXCR4 impairs development of lung metastases. Cancer Immunol Immunother. 2012;61:1713–20.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Tanegashima K, Suzuki K, Nakayama Y, et al. CXCL14 is a natural inhibitor of the CXCL12-CXCR4 signaling axis. FEBS Lett. 2013;587:1731–5.PubMedCrossRefGoogle Scholar
  146. 146.
    Rees GJ, Ross CM. Abscopal regression following radiotherapy for adenocarcinoma. Br J Radiol. 1983;56:63–6.PubMedCrossRefGoogle Scholar
  147. 147.
    Shiraishi K, Ishiwata Y, Nakagawa K, et al. Enhancement of antitumor radiation efficacy and consistent induction of the abscopal effect in mice by ECI301, an active variant of macrophage inflammatory protein-1α. Clin Cancer Res. 2008;14:1159–66.PubMedCrossRefGoogle Scholar
  148. 148.
    De Santo C, Arscott R, Booth S, et al. Invariant NKT cells modulate the suppressive activity of IL-10-secreting neutrophils differentiated with serum amyloid A. Nat Immunol. 2010;11:1039–U92.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    McCloskey RV, Straube RC, Sanders C, et al. Treatment of septic shock with human monoclonal antibody HA-1A. A randomized, double-blind, placebo-controlled trial. CHESS Trial Study Group. Ann Intern Med. 1994;121:1–5.PubMedCrossRefGoogle Scholar
  150. 150.
    Angus DC. The search for effective therapy for sepsis back to the drawing board? JAMA-J Am Med Assoc. 2011;306:2614–5.CrossRefGoogle Scholar
  151. 151.
    Pili R, Häggman M, Stadler WM, et al. Phase II randomized, double-blind, placebo-controlled study of tasquinimod in men with minimally symptomatic metastatic castrate-resistant prostate cancer. J Clin Oncol. 2011;29:4022–8.PubMedCrossRefGoogle Scholar
  152. 152.
    Bjork P, Kallberg E, Wellmar U, et al. Common interactions between S100A4 and S100A9 defined by a novel chemical probe. PLoS One. 2013;8:e63012.PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Qin H, Lerman B, Sakamaki I, et al. Generation of a new therapeutic peptide that depletes myeloid-derived suppressor cells in tumor-bearing mice. Nat Med. 2014;20:676–81.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Huang B, Zhao J, Li HX, et al. Toll-like receptors on tumor cells facilitate evasion of immune surveillance. Cancer Res. 2005;65:5009–14.PubMedCrossRefGoogle Scholar
  155. 155.
    Wang EL, Qian ZR, Nakasono M, et al. High expression of toll-like receptor 4/myeloid differentiation factor 88 signals correlates with poor prognosis in colorectal cancer. Lab Invest. 2010;90:171A-A.Google Scholar
  156. 156.
    Shirey KA, Lai W, Scott AJ, et al. The TLR4 antagonist Eritoran protects mice from lethal influenza infection. Nature. 2013;497:498–502.PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Perrone LA, Szretter KJ, Katz JM, et al. Mice lacking both TNF and IL-1 receptors exhibit reduced lung inflammation and delay in onset of death following infection with a highly virulent H5N1 virus. J Infect Dis. 2010;202:1161–70.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Shinya K, Ito M, Makino A, et al. The TLR4-TRIF pathway protects against H5N1 influenza virus infection. J Virol. 2012;86:19–24.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Deguchi A, Tomita T, Ohto U, et al. Eritoran inhibits S100A8-mediated TLR4/MD-2 activation and tumor growth by changing the immune microenvironment. Oncogene. 2016;35:1445–56.Google Scholar
  160. 160.
    Cummins EP, Berra E, Comerford KM, et al. Prolyl hydroxylase-1 negatively regulates IkappaB kinase-beta, giving insight into hypoxia-induced NFkappaB activity. Proc Natl Acad Sci U S A. 2006;103:18154–9.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Rius J, Guma M, Schachtrup C, et al. NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha. Nature. 2008;453:807–11.PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Cao Y, Eble JM, Moon E, et al. Tumor cells upregulate normoxic HIF-1alpha in response to doxorubicin. Cancer Res. 2013;73:6230–42.PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Eckle T, Brodsky K, Bonney M, et al. HIF1A reduces acute lung injury by optimizing carbohydrate metabolism in the alveolar epithelium. PLoS Biol. 2013;11:e1001665.PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Berchner-Pfannschmidt U, Yamac H, Trinidad B, et al. Nitric oxide modulates oxygen sensing by hypoxia-inducible factor 1-dependent induction of prolyl hydroxylase 2. J Biol Chem. 2007;282:1788–96.PubMedCrossRefGoogle Scholar
  165. 165.
    Cramer T, Yamanishi Y, Clausen BE, et al. HIF-1alpha is essential for myeloid cell-mediated inflammation. Cell. 2003;112:645–57.PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Bald T, Quast T, Landsberg J, et al. Ultraviolet-radiation-induced inflammation promotes angiotropism and metastasis in melanoma. Nature. 2014;507:109–13.PubMedCrossRefGoogle Scholar
  167. 167.
    Mollica L, De Marchis F, Spitaleri A, et al. Glycyrrhizin binds to high-mobility group box 1 protein and inhibits its cytokine activities. Chem Biol. 2007;14:431–41.PubMedCrossRefGoogle Scholar
  168. 168.
    Ohnishi M, Katsuki H, Fukutomi C, et al. HMGB1 inhibitor glycyrrhizin attenuates intracerebral hemorrhage-induced injury in rats. Neuropharmacology. 2011;61:975–80.PubMedCrossRefGoogle Scholar
  169. 169.
    Liu K, Mori S, Takahashi HK, et al. Anti-high mobility group box 1 monoclonal antibody ameliorates brain infarction induced by transient ischemia in rats. FASEB J. 2007;21:3904–16.PubMedCrossRefGoogle Scholar
  170. 170.
    Okuma Y, Liu K, Wake H, et al. Anti-high mobility group box-1 antibody therapy for traumatic brain injury. Ann Neurol. 2012;72:373–84.PubMedCrossRefGoogle Scholar
  171. 171.
    Schiraldi M, Raucci A, Munoz LM, et al. HMGB1 promotes recruitment of inflammatory cells to damaged tissues by forming a complex with CXCL12 and signaling via CXCR4. J Exp Med. 2012;209:551–63.PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Sheedy FJ, Grebe A, Rayner KJ, et al. CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation. Nat Immunol. 2013;14:812–20.PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Stewart CR, Stuart LM, Wilkinson K, et al. CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat Immunol. 2010;11:155–U75.PubMedCrossRefGoogle Scholar
  174. 174.
    Kerkhoff C, Sorg C, Tandon NN, et al. Interaction of S100A8/S100A9-arachidonic acid complexes with the scavenger receptor CD36 may facilitate fatty acid uptake by endothelial cells. Biochemistry. 2001;40:241–8.PubMedCrossRefGoogle Scholar
  175. 175.
    Simard JC, Cesaro A, Chapeton-Montes J, et al. S100A8 and S100A9 induce cytokine expression and regulate the NLRP3 inflammasome via ROS-dependent activation of NF-kappaB(1.). PLoS One. 2013;8:e72138.PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Deane R, Singh I, Sagare AP, et al. A multimodal RAGE-specific inhibitor reduces amyloid β-mediated brain disorder in a mouse model of Alzheimer disease. J Clin Invest. 2012;122:1377–92.PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Schlegel J, Redzic JS, Porter CC, et al. Solution characterization of the extracellular region of CD147 and its interaction with its enzyme ligand cyclophilin A. J Mol Biol. 2009;391:518–35.PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Yurchenko V, Constant S, Eisenmesser E, et al. Cyclophilin-CD147 interactions: a new target for anti-inflammatory therapeutics. Clin Exp Immunol. 2010;160:305–17.PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Borsig L, Wolf MJ, Roblek M, et al. Inflammatory chemokines and metastasis-tracing the accessory. Oncogene. 2014;33:3217–24.PubMedCrossRefGoogle Scholar
  180. 180.
    Wolf Monika J, Hoos A, Bauer J, et al. Endothelial CCR2 signaling induced by colon carcinoma cells enables extravasation via the JAK2-Stat5 and p38MAPK pathway. Cancer Cell. 2012;22:91–105.PubMedCrossRefGoogle Scholar
  181. 181.
    Acharyya S, Oskarsson T, Vanharanta S, et al. A CXCL1 paracrine network links cancer chemoresistance and metastasis. Cell. 2012;150:165–78.PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Vacchelli E, Eggermont A, Sautes-Fridman C, et al. Trial watch: toll-like receptor agonists for cancer therapy. Oncoimmunology. 2013;2:e25238.PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Wells TJ, Whitters D, Sevastsyanovich YR, et al. Increased severity of respiratory infections associated with elevated anti-LPS IgG2 which inhibits serum bactericidal killing. J Exp Med. 2014;211:1893–1904.PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    Pyne NJ, Pyne S. Sphingosine 1-phosphate and cancer. Nat Rev Cancer. 2010;10:489–503.PubMedCrossRefGoogle Scholar
  185. 185.
    Xia P, Gamble JR, Wang L, et al. An oncogenic role of sphingosine kinase. Curr Biol. 2000;10:1527–30.PubMedCrossRefGoogle Scholar
  186. 186.
    Pitson SM, Xia P, Leclercq TM, et al. Phosphorylation-dependent translocation of sphingosine kinase to the plasma membrane drives its oncogenic signalling. J Exp Med. 2005;201:49–54.PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Nagahashi M, Ramachandran S, Kim EY, et al. Sphingosine-1-phosphate produced by sphingosine kinase 1 promotes breast cancer progression by stimulating angiogenesis and lymphangiogenesis. Cancer Res. 2012;72:726–35.PubMedPubMedCentralCrossRefGoogle Scholar
  188. 188.
    Kortylewski M, Kujawski M, Wang T, et al. Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity. Nat Med. 2005;11:1314–21.PubMedCrossRefGoogle Scholar
  189. 189.
    Deng J, Liu Y, Lee H, et al. S1PR1-STAT3 signaling is crucial for myeloid cell colonization at future metastatic sites. Cancer Cell. 2012;21:642–54.PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Lee H, Deng J, Kujawski M, et al. STAT3-induced S1PR1 expression is crucial for persistent STAT3 activation in tumors. Nat Med. 2010;16:1421–8.PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Endoh Y, Chung YM, Clark IA, et al. IL-10-dependent S100A8 gene induction in monocytes/macrophages by double-stranded RNA. J Immunol. 2009;182:2258–68.PubMedCrossRefGoogle Scholar
  192. 192.
    Pascual G, Fong AL, Ogawa S, et al. A SUMOylation-dependent pathway mediates transrepression of inflammatory response genes by PPAR-[gamma]. Nature. 2005;437:759–63.PubMedPubMedCentralCrossRefGoogle Scholar
  193. 193.
    Bensinger SJ, Tontonoz P. Integration of metabolism and inflammation by lipid-activated nuclear receptors. Nature. 2008;454:470–7.PubMedCrossRefGoogle Scholar
  194. 194.
    Shen B, Chu ES, Zhao G, et al. PPARγ inhibits hepatocellular carcinoma metastases in vitro and in mice. Br J Cancer. 2012;106:1486–94.PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    Graveel CR, Tolbert D, Vande Woude GF. MET: a critical player in tumorigenesis and therapeutic target. Cold Spring Harb Perspect Biol. 2013;5:a009209.Google Scholar
  196. 196.
    Smith DC, Smith MR, Sweeney C, et al. Cabozantinib in patients with advanced prostate cancer: results of a phase II randomized discontinuation trial. J Clin Oncol. 2013;31:412–9.PubMedCrossRefGoogle Scholar
  197. 197.
    Garber K. JAK2 inhibitors: not the next imatinib but researchers see other possibilities. J Natl Cancer Inst. 2009;101:980–2.PubMedCrossRefGoogle Scholar
  198. 198.
    Harrison C, Kiladjian JJ, Al-Ali HK, et al. JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. N Engl J Med. 2012;366:787–98.PubMedCrossRefGoogle Scholar
  199. 199.
    Verstovsek S, Mesa RA, Gotlib J, et al. A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. N Engl J Med. 2012;366:799–807.PubMedPubMedCentralCrossRefGoogle Scholar
  200. 200.
    Chen M, Gallipoli P, DeGeer D, et al. Targeting primitive chronic myeloid leukemia cells by effective inhibition of a new AHI-1-BCR-ABL-JAK2 complex. J Natl Cancer Inst. 2013;105:405–23.PubMedPubMedCentralCrossRefGoogle Scholar
  201. 201.
    Gu L, Talati P, Vogiatzi P, et al. Pharmacologic suppression of JAK1/2 by JAK1/2 inhibitor AZD1480 potently inhibits IL-6-induced experimental prostate cancer metastases formation. Mol Cancer Ther. 2014;13:1246–58.PubMedPubMedCentralCrossRefGoogle Scholar
  202. 202.
    Weinblatt ME, Kavanaugh A, Burgos-Vargas R, et al. Treatment of rheumatoid arthritis with a Syk kinase inhibitor a twelve-week, randomized. Placebo-controlled trial. Arthritis Rheum. 2008;58:3309–18.PubMedCrossRefGoogle Scholar
  203. 203.
    Paniagua RT, Sharpe O, Ho PP, et al. Selective tyrosine kinase inhibition by imatinib mesylate for the treatment of autoimmune arthritis. J Clin Invest. 2006;116:2633–42.PubMedPubMedCentralCrossRefGoogle Scholar
  204. 204.
    Chislock EM, Pendergast AM. Abl family kinases regulate endothelial barrier function in vitro and in mice. PLoS One. 2013;8:e85231.PubMedPubMedCentralCrossRefGoogle Scholar
  205. 205.
    Valent P, Hadzijusufovic E, Schernthaner GH, et al. Vascular safety issues in CML patients treated with BCR/ABL1 kinase inhibitors. Blood. 2015;125:901–6.PubMedCrossRefGoogle Scholar
  206. 206.
    Raimondi C, Fantin A, Lampropoulou A, et al. Imatinib inhibits VEGF-independent angiogenesis by targeting neuropilin 1-dependent ABL1 activation in endothelial cells. J Exp Med. 2014;211:1167–83.PubMedPubMedCentralCrossRefGoogle Scholar
  207. 207.
    Yaqoob U, Cao S, Shergill U, et al. Neuropilin-1 stimulates tumor growth by increasing fibronectin fibril assembly in the tumor microenvironment. Cancer Res. 2012;72:4047–59.PubMedPubMedCentralCrossRefGoogle Scholar
  208. 208.
    Gu JJ, Lavau CP, Pugacheva E, et al. Abl family kinases modulate T cell–mediated inflammation and chemokine-induced migration through the adaptor HEF1 and the GTPase Rap1. Sci Signal. 2012;5:ra51-ra.CrossRefGoogle Scholar
  209. 209.
    Harrison DE, Strong R, Sharp ZD, et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature. 2009;460:392–5.PubMedPubMedCentralGoogle Scholar
  210. 210.
    Wang C, Qin L, Manes TD, et al. Rapamycin antagonizes TNF induction of VCAM-1 on endothelial cells by inhibiting mTORC2. J Exp Med. 2014;211:395–404.PubMedPubMedCentralCrossRefGoogle Scholar
  211. 211.
    Finsterbusch M, Voisin MB, Beyrau M, et al. Neutrophils recruited by chemoattractants in vivo induce microvascular plasma protein leakage through secretion of TNF. J Exp Med. 2014;211:1307–14.PubMedPubMedCentralCrossRefGoogle Scholar
  212. 212.
    Hsieh AC, Liu Y, Edlind MP, et al. The translational landscape of mTOR signalling steers cancer initiation and metastasis. Nature. 2012;485:55–61.PubMedPubMedCentralCrossRefGoogle Scholar
  213. 213.
    Commisso C, Davidson SM, Soydaner-Azeloglu RG, et al. Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature. 2013;497:633–7.PubMedPubMedCentralCrossRefGoogle Scholar
  214. 214.
    Palm W, Park Y, Wright K, et al. The utilization of extracellular proteins as nutrients is suppressed by mTORC1. Cell. 2015;162:259–70.PubMedPubMedCentralCrossRefGoogle Scholar
  215. 215.
    Nakase I, Futaki S. Combined treatment with a pH-sensitive fusogenic peptide and cationic lipids achieves enhanced cytosolic delivery of exosomes. Sci Rep. 2015;5:10112.PubMedPubMedCentralCrossRefGoogle Scholar
  216. 216.
    Nakase I, Kobayashi NB, Takatani-Nakase T, et al. Active macropinocytosis induction by stimulation of epidermal growth factor receptor and oncogenic Ras expression potentiates cellular uptake efficacy of exosomes. Sci Rep. 2015;5:10300.PubMedPubMedCentralCrossRefGoogle Scholar
  217. 217.
    Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391:806–11.PubMedCrossRefGoogle Scholar
  218. 218.
    Zhang B, Chen H, Zhang L, et al. A dosage-dependent pleiotropic role of Dicer in prostate cancer growth and metastasis. Oncogene. 2013;33:3099–108.PubMedPubMedCentralCrossRefGoogle Scholar
  219. 219.
    Hurst DR, Edmonds MD, Welch DR. Metastamir: the field of metastasis-regulatory microRNA is spreading. Cancer Res. 2009;69:7495–8.PubMedPubMedCentralCrossRefGoogle Scholar
  220. 220.
    Wahlquist C, Jeong D, Rojas-Munoz A, et al. Inhibition of miR-25 improves cardiac contractility in the failing heart. Nature. 2014;508:531–5.PubMedPubMedCentralCrossRefGoogle Scholar
  221. 221.
    Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA 10b in breast cancer. Nature. 2007;449:682–U2.PubMedCrossRefGoogle Scholar
  222. 222.
    Tavazoie SF, Alarcon C, Oskarsson T, et al. Endogenous human microRNAs that suppress breast cancer metastasis. Nature. 2008;451:147–52.PubMedPubMedCentralCrossRefGoogle Scholar
  223. 223.
    Hurst DR, Edmonds MD, Scott GK, et al. Breast cancer metastasis suppressor 1 Up-regulates miR-146, which suppresses breast cancer metastasis. Cancer Res. 2009;69:1279–83.PubMedPubMedCentralCrossRefGoogle Scholar
  224. 224.
    Liu C, Kelnar K, Liu B, et al. The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med. 2011;17:211–5.PubMedPubMedCentralCrossRefGoogle Scholar
  225. 225.
    Krzeszinski JY, Wei W, Huynh H, et al. miR-34a blocks osteoporosis and bone metastasis by inhibiting osteoclastogenesis and Tgif2. Nature. 2014;512:431–5.Google Scholar
  226. 226.
    Ling H, Fabbri M, Calin GA. MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat Rev Drug Discov. 2013;12:847–65.PubMedPubMedCentralCrossRefGoogle Scholar
  227. 227.
    Pepys MB, Hirschfield GM, Tennent GA, et al. Targeting C-reactive protein for the treatment of cardiovascular disease. Nature. 2006;440:1217–21.PubMedCrossRefGoogle Scholar
  228. 228.
    Yang J, Wezeman M, Zhang X, et al. Human C-reactive protein binds activating Fc gamma receptors and protects myeloma tumor cells from apoptosis. Cancer Cell. 2007;12:252–65.PubMedCrossRefGoogle Scholar
  229. 229.
    Gottlicher M, Minucci S, Zhu P, et al. Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J. 2001;20:6969–78.PubMedPubMedCentralCrossRefGoogle Scholar
  230. 230.
    Jeon HW, Lee YM. Inhibition of histone deacetylase attenuates hypoxia-induced migration and invasion of cancer cells via the restoration of RECK expression. Mol Cancer Ther. 2010;9:1361–70.PubMedCrossRefGoogle Scholar
  231. 231.
    Lin KT, Wang YW, Chen CT, et al. HDAC inhibitors augmented cell migration and metastasis through induction of PKCs leading to identification of low toxicity modalities for combination cancer therapy. Clin Cancer Res. 2012;18:4691–701.PubMedCrossRefGoogle Scholar
  232. 232.
    Evankovich J, Cho SW, Zhang R, et al. High mobility group box 1 release from hepatocytes during ischemia and reperfusion injury is mediated by decreased histone deacetylase activity. J Biol Chem. 2010;285:39888–97.PubMedPubMedCentralCrossRefGoogle Scholar
  233. 233.
    Grebe KM, Takeda K, Hickman HD, et al. Cutting edge: sympathetic nervous system increases proinflammatory cytokines and exacerbates influenza A virus pathogenesis. J Immunol. 2010;184:540–4.PubMedCrossRefGoogle Scholar
  234. 234.
    Apte RN, Krelin Y, Song X, et al. Effects of micro-environment- and malignant cell-derived interleukin-1 in carcinogenesis, tumour invasiveness and tumour-host interactions. Eur J Cancer. 2006;42:751–9.PubMedCrossRefGoogle Scholar
  235. 235.
    Weckbach LT, Muramatsu T, Walzog B. Midkine in inflammation. Sci World J. 2011;11:2491–505.CrossRefGoogle Scholar
  236. 236.
    Sueyoshi T, Jono H, Shinriki S, et al. Therapeutic approaches targeting midkine suppress tumor growth and lung metastasis in osteosarcoma. Cancer Lett. 2012;316:23–30.PubMedCrossRefGoogle Scholar
  237. 237.
    Lancha A, Rodriguez A, Catalan V, et al. Osteopontin deletion prevents the development of obesity and hepatic steatosis via impaired adipose tissue matrix remodeling and reduced inflammation and fibrosis in adipose tissue and liver in mice. PLoS One. 2014;9:e98398.PubMedPubMedCentralCrossRefGoogle Scholar
  238. 238.
    Shojaei F, Scott N, Kang X, et al. Osteopontin induces growth of metastatic tumors in a preclinical model of non-small lung cancer. J Exp Clin Cancer Res. 2012;31:26.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  • Yoshiro Maru
    • 1
  1. 1.Department of PharmacologyTokyo Women’s Medical UniversityTokyoJapan

Personalised recommendations