What Is Homeostasis?

  • Yoshiro Maru


I believe that the idea homeostasis originates from what was described as <milieu intérieur, internal milieu> by Claude Bernard in 1865 [1] (see Table  9.1 in Chap.  9).


Cystic Fibrosis Xanthine Oxidase Dextran Sodium Sulfate Serum Response Factor Sinusoidal Endothelial Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Claude B. Introduction à l’étude de la médecine expérimentale. Paris: JB Baillière et Fils; 1865.Google Scholar
  2. 2.
    Abel ED, Ahima RS, Boers ME, et al. Critical role for thyroid hormone receptor beta2 in the regulation of paraventricular thyrotropin-releasing hormone neurons. J Clin Invest. 2001;107:1017–23.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Eisenberg MC, Santini F, Marsili A, et al. TSH regulation dynamics in central and extreme primary hypothyroidism. Thyroid. 2010;20:1215–28.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Casanova-Acebes M, Pitaval C, Weiss LA, et al. Rhythmic modulation of the hematopoietic niche through neutrophil clearance. Cell. 2013;153:1025–35.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Dzhagalov I, St John A, He YW. The antiapoptotic protein Mcl-1 is essential for the survival of neutrophils but not macrophages. Blood. 2007;109:1620–6.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Maly P, Thall A, Petryniak B, et al. The α(1,3)fucosyltransferase Fuc-TVII controls leukocyte trafficking through an essential role in L-, E-, and P-selectin ligand biosynthesis. Cell. 1996;86:643–53.CrossRefPubMedGoogle Scholar
  7. 7.
    Bugl S, Wirths S, Radsak MP, et al. Steady-state neutrophil homeostasis is dependent on TLR4/TRIF signaling. Blood. 2013;121:723–33.CrossRefPubMedGoogle Scholar
  8. 8.
    Christopher MJ, Rao M, Liu F, et al. Expression of the G-CSF receptor in monocytic cells is sufficient to mediate hematopoietic progenitor mobilization by G-CSF in mice. J Exp Med. 2011;208:251–60.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Boettcher S, Ziegler P, Schmid MA, et al. Cutting edge: LPS-induced emergency myelopoiesis depends on TLR4-expressing nonhematopoietic cells. J Immunol. 2012;188:5824–8.CrossRefPubMedGoogle Scholar
  10. 10.
    Manabe I, Shindo T, Nagai R. Gene expression in fibroblasts and fibrosis: involvement in cardiac hypertrophy. Circ Res. 2002;91:1103–13.CrossRefPubMedGoogle Scholar
  11. 11.
    Takeda N, Manabe I, Uchino Y, et al. Cardiac fibroblasts are essential for the adaptive response of the murine heart to pressure overload. J Clin Invest. 2010;120:254–65.CrossRefPubMedGoogle Scholar
  12. 12.
    Cinti S, Mitchell G, Barbatelli G, et al. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J Lipid Res. 2005;46:2347–55.CrossRefPubMedGoogle Scholar
  13. 13.
    Adams Jr JD. Parkinson’s disease—apoptosis and dopamine oxidation. Open J Apoptosis. 2012;1:1–8.CrossRefGoogle Scholar
  14. 14.
    Sorkin A, Duex JE. Quantitative analysis of endocytosis and turnover of epidermal growth factor (EGF) and EGF receptor. Curr Protocols Cell Biol. 2010;46:15.14:15.14.1–15.14.20.Google Scholar
  15. 15.
    Carter RE, Sorkin A. Endocytosis of functional epidermal growth factor receptor-green fluorescent protein chimera. J Biol Chem. 1998;273:35000–7.CrossRefPubMedGoogle Scholar
  16. 16.
    Madshus IH, Stang E. Internalization and intracellular sorting of the EGF receptor: a model for understanding the mechanisms of receptor trafficking. J Cell Sci. 2009;122:3433–9.CrossRefPubMedGoogle Scholar
  17. 17.
    Grandal MV, Zandi R, Pedersen MW, et al. EGFRvIII escapes down-regulation due to impaired internalization and sorting to lysosomes. Carcinogenesis. 2007;28:1408–17.CrossRefPubMedGoogle Scholar
  18. 18.
    Fan J, Malik AB. Toll-like receptor-4 (TLR4) signaling augments chemokine-induced neutrophil migration by modulating cell surface expression of chemokine receptors. Nat Med. 2003;9:315–21.CrossRefPubMedGoogle Scholar
  19. 19.
    Fujioka S, Niu J, Schmidt C, et al. NF-kappaB and AP-1 connection: mechanism of NF-kappaB-dependent regulation of AP-1 activity. Mol Cell Biol. 2004;24:7806–19.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Sha WC, Liou HC, Tuomanen EI, et al. Targeted disruption of the p50 subunit of NF-kappa B leads to multifocal defects in immune responses. Cell. 1995;80:321–30.CrossRefPubMedGoogle Scholar
  21. 21.
    Vereecke L, Beyaert R, Van Loo G. The ubiquitin-editing enzyme A20 (TNFAIP3) is a central regulator of immunopathology. Trends Immunol. 2009;30:383–91.CrossRefPubMedGoogle Scholar
  22. 22.
    Shembade N, Ma A, Harhaj EW. Inhibition of NF-kappaB signaling by A20 through disruption of ubiquitin enzyme complexes. Science. 2010;327:1135–9.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Lee EG. Failure to regulate TNF-induced NF-kappa B and cell death responses in A20-deficient mice. Science. 2000;289:2350–4.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Matmati M, Jacques P, Maelfait J, et al. A20 (TNFAIP3) deficiency in myeloid cells triggers erosive polyarthritis resembling rheumatoid arthritis. Nat Genet. 2011;43:908–12.CrossRefPubMedGoogle Scholar
  25. 25.
    Nakagawa MM, Thummar K, Mandelbaum J, et al. Lack of the ubiquitin-editing enzyme A20 results in loss of hematopoietic stem cell quiescence. J Exp Med. 2015;212:203–16.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Boldin MP, Taganov KD, Rao DS, et al. miR-146a is a significant brake on autoimmunity, myeloproliferation, and cancer in mice. J Exp Med. 2011;208:1189–201.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Taganov KD, Boldin MP, Chang KJ, et al. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci U S A. 2006;103:12481–6.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Zhao JL, Rao DS, O’connell RM, et al. MicroRNA-146a acts as a guardian of the quality and longevity of hematopoietic stem cells in mice. Elife. 2013;2:e00537.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Bruce AN. Über die systolische und diastolische herzwirkung des gstrophanthus. Arch Exp Pathol Pharmakol. 1910;63:424–33.CrossRefGoogle Scholar
  30. 30.
    Medzhitov R. Origin and physiological roles of inflammation. Nature. 2008;454:428–35.CrossRefPubMedGoogle Scholar
  31. 31.
    Pribluda A, Elyada E, Wiener Z, et al. A senescence-inflammatory switch from cancer-inhibitory to cancer-promoting mechanism. Cancer Cell. 2013;24:242–56.CrossRefPubMedGoogle Scholar
  32. 32.
    Tomita T, Sakurai Y, Ishibashi S, et al. Imbalance of Clara cell-mediated homeostatic inflammation is involved in lung metastasis. Oncogene. 2011;30:3429–39.CrossRefPubMedGoogle Scholar
  33. 33.
    Maru Y. A concept of homeostatic inflammation provided by endogenous TLR4 agonists that function before and after danger signal for metastasis. Anti-inflammatory Antiallergy Agents Med Chem. 2009;8:337–47.CrossRefGoogle Scholar
  34. 34.
    Miyake K, Kaisho T. Curr Opin Immunol. 2014;30:85–90.CrossRefPubMedGoogle Scholar
  35. 35.
    Schittek B, Sinnberg T. Biological functions of casein kinase 1 isoforms and putative roles in tumorigenesis. Mol Cancer. 2014;13:231.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Lasry A, Ben-Neriah Y. Senescence-associated inflammatory responses: aging and cancer perspectives. Trends Immunol. 2015;36:217–28.CrossRefPubMedGoogle Scholar
  37. 37.
    Elyada E, Pribluda A, Goldstein RE, et al. CKI[agr] ablation highlights a critical role for p53 in invasiveness control. Nature. 2011;470:409–13.CrossRefPubMedGoogle Scholar
  38. 38.
    Acosta JC, O’loghlen A, Banito A, et al. Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell. 2008;133:1006–18.CrossRefPubMedGoogle Scholar
  39. 39.
    Kuilman T, Michaloglou C, Vredeveld LC, et al. Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell. 2008;133:1019–31.CrossRefPubMedGoogle Scholar
  40. 40.
    Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, et al. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell. 2004;118:229–41.CrossRefPubMedGoogle Scholar
  41. 41.
    Stolk J, Rudolphus A, Davies P, et al. Induction of emphysema and bronchial mucus cell hyperplasia by intratracheal instillation of lipopolysaccharide in the hamster. J Pathol. 1992;167:349–56.CrossRefPubMedGoogle Scholar
  42. 42.
    Maus UA, Wellmann S, Hampl C, et al. CCR2-positive monocytes recruited to inflamed lungs downregulate local CCL2 chemokine levels. Am J Physiol Lung Cell Mol Physiol. 2005;288:L350–8.CrossRefPubMedGoogle Scholar
  43. 43.
    Irwin RS, Augustyn N, French CT, et al. Spread the word about the journal in 2013: from citation manipulation to invalidation of patient-reported outcomes measures to renaming the Clara cell to new journal features. Chest. 2013;143:1–4.CrossRefPubMedGoogle Scholar
  44. 44.
    Wong AP, Keating A, Lu WY, et al. Identification of a bone marrow-derived epithelial-like population capable of repopulating injured mouse airway epithelium. J Clin Invest. 2009;119:336–48.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Gilpin SE, Lung K, De Couto GT, et al. Bone marrow-derived progenitor cells in end-stage lung disease patients. BMC Pulm Med. 2013;13:48.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Thomas GR, Costelloe EA, Lunn DP, et al. G551D cystic fibrosis mice exhibit abnormal regulation of inflammation in lungs and macrophages. J Immunol. 2000;164:3870–7.CrossRefPubMedGoogle Scholar
  47. 47.
    Luciani A, Villella VR, Esposito S, et al. Defective CFTR induces aggresome formation and lung inflammation in cystic fibrosis through ROS-mediated autophagy inhibition. Nat Cell Biol. 2010;12:863–75.CrossRefPubMedGoogle Scholar
  48. 48.
    Zhang X, Shan P, Jiang G, et al. Toll-like receptor 4 deficiency causes pulmonary emphysema. J Clin Invest. 2006;116:3050–9.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Mueller-Anneling L, Avol E, Peters JM, et al. Ambient endotoxin concentrations in PM10 from Southern California. Environ Health Perspect. 2004;112:583–8.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Ceballos-Picot I, Mockel L, Potier MC, et al. Hypoxanthine-guanine phosphoribosyl transferase regulates early developmental programming of dopamine neurons: implications for Lesch-Nyhan disease pathogenesis. Hum Mol Genet. 2009;18:2317–27.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Vorbach C, Scriven A, Capecchi MR. The housekeeping gene xanthine oxidoreductase is necessary for milk fat droplet enveloping and secretion: gene sharing in the lactating mammary gland. Genes Dev. 2002;16:3223–35.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Murakami N, Ohtsubo T, Kansui Y, et al. Mice heterozygous for the xanthine oxidoreductase gene facilitate lipid accumulation in adipocytes. Arterioscler Thromb Vasc Biol. 2014;34:44–51.CrossRefPubMedGoogle Scholar
  53. 53.
    Shi H, Kokoeva MV, Inouye K, et al. TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest. 2006;116:3015–25.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Kopp A, Gross P, Falk W, et al. Fatty acids as metabolic mediators in innate immunity. Eur J Clin Invest. 2009;39:924–33.CrossRefPubMedGoogle Scholar
  55. 55.
    Castrillo A, Joseph SB, Vaidya SA, et al. Crosstalk between LXR and toll-like receptor signaling mediates bacterial and viral antagonism of cholesterol metabolism. Mol Cell. 2003;12:805–16.CrossRefPubMedGoogle Scholar
  56. 56.
    Feuerer M, Herrero L, Cipolletta D, et al. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat Med. 2009;15:930–9.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Tracey KJ. The inflammatory reflex. Nature. 2002;420:853–9.CrossRefPubMedGoogle Scholar
  58. 58.
    Rosas-Ballina M, Ochani M, Parrish WR, et al. Splenic nerve is required for cholinergic antiinflammatory pathway control of TNF in endotoxemia. Proc Natl Acad Sci U S A. 2008;105:11008–13.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Wang H, Yu M, Ochani M, et al. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature. 2003;421:384–8.CrossRefPubMedGoogle Scholar
  60. 60.
    Schaaf CP. Nicotinic acetylcholine receptors in human genetic disease. Genet Med. 2014;16:649–56.CrossRefPubMedGoogle Scholar
  61. 61.
    Oshikawa J, Toya Y, Fujita T, et al. Nicotinic acetylcholine receptor alpha 7 regulates cAMP signal within lipid rafts. Am J Physiol Cell Physiol. 2003;285:C567–74.CrossRefPubMedGoogle Scholar
  62. 62.
    Iliopoulos D, Hirsch HA, Struhl K. An epigenetic switch involving NF-kappaB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell. 2009;139:693–706.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Lyttle DJ, Fraser KM, Fleming SB, et al. Homologs of vascular endothelial growth factor are encoded by the poxvirus orf virus. J Virol. 1994;68:84–92.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Meyrick B, Brigham KL. Acute effects of Escherichia coli endotoxin on the pulmonary microcirculation of anesthetized sheep structure:function relationships. Lab Invest. 1983;48:458–70.PubMedGoogle Scholar
  65. 65.
    Endoh Y, Chung YM, Clark IA, et al. IL-10-dependent S100A8 gene induction in monocytes/macrophages by double-stranded RNA. J Immunol. 2009;182:2258–68.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  • Yoshiro Maru
    • 1
  1. 1.Department of PharmacologyTokyo Women’s Medical UniversityTokyoJapan

Personalised recommendations