Premetastatic Microenvironment

  • Yoshiro Maru


I believe that the inflammation within the primary tumor that intrinsically progresses over time and can be augmented by any procedures, physical or chemical, aggravates the metastatic progression of the primary tumor unless the procedures can impair the tumor cell survival at least partly. For example, skilled surgeons can remove a tumor with minimal tissue damage as represented by little blood loss during operation. Earlier removal of the primary tumor is better for cure, because it might be before the regrowth of the metastasizing tumor cells. Once they begin regrowth, the situation is similar to that in the primary tumor.


Sentinel Lymph Node Disseminate Tumor Cell Lymphatic Endothelial Cell Metastasize Tumor Cell Club Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Nguyen DX, Bos PD, Massague J. Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer. 2009;9:274–84.CrossRefPubMedGoogle Scholar
  2. 2.
    Paget S. The distribution of secondary growths in cancer of the breast. Cancer Metastasis Rev. 1989;8:98–101.PubMedGoogle Scholar
  3. 3.
    Alberti C. Carcinoma of unknown primary (CUP); some considerations about pathogenesis and diagnostic strategy, particularly focusing on CUPS pertaining to the Urology. G Chir. 2012;33:41–6.PubMedGoogle Scholar
  4. 4.
    Altman E, Cadman E. An analysis of 1539 patients with cancer of unknown primary site. Cancer. 1986;57:120–4.CrossRefPubMedGoogle Scholar
  5. 5.
    Pavlidis N, Briasoulis E, Hainsworth J, et al. Diagnostic and therapeutic management of cancer of an unknown primary. Eur J Cancer. 2003;39:1990–2005.CrossRefPubMedGoogle Scholar
  6. 6.
    Kamposioras K, Pentheroudakis G, Pavlidis N. Exploring the biology of cancer of unknown primary: breakthroughs and drawbacks. Eur J Clin Invest. 2013;43:491–500.CrossRefPubMedGoogle Scholar
  7. 7.
    Meng S, Tripathy D, Frenkel EP, et al. Circulating tumor cells in patients with breast cancer dormancy. Clin Cancer Res. 2004;10:8152–62.CrossRefPubMedGoogle Scholar
  8. 8.
    Ferretti S, Fornia S, Ampollini L, et al. Lung metastasectomy in patients with renal cell cancer (RCC). A 17-year experience in Parma Hospital. Acta Biomed. 2007;78:41–5.PubMedGoogle Scholar
  9. 9.
    Tyzzer EE. Factors in the production and growth of tumor metastases. J Med Res. 1913;28:309–32.301.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Ketcham AS, Kinsey DL, Wexler H, et al. The development of spontaneous metastases after the removal of a “primary” tumor. II. Standardization protocol of 5 animal tumors. Cancer. 1961;14:875–82.CrossRefPubMedGoogle Scholar
  11. 11.
    Dong Z, Kumar R, Yang X, et al. Macrophage-derived metalloelastase is responsible for the generation of angiostatin in Lewis lung carcinoma. Cell. 1997;88:801–10.CrossRefPubMedGoogle Scholar
  12. 12.
    Ruggiero RA, Bruzzo J, Chiarella P, et al. Concomitant tumor resistance: the role of tyrosine isomers in the mechanisms of metastases control. Cancer Res. 2012;72:1043–50.CrossRefPubMedGoogle Scholar
  13. 13.
    Gunduz N, Fisher B, Saffer EA. Effect of surgical removal on the growth and kinetics of residual tumor. Cancer Res. 1979;39:3861–5.PubMedGoogle Scholar
  14. 14.
    Ruggiero RA, Bruzzo J, Chiarella P, et al. Tyrosine isomers mediate the classical phenomenon of concomitant tumor resistance. Cancer Res. 2011;71:7113–24.CrossRefPubMedGoogle Scholar
  15. 15.
    Volpert OV, Lawler J, Bouck NP. A human fibrosarcoma inhibits systemic angiogenesis and the growth of experimental metastases via thrombospondin-1. PNAS. 1998;95:6343–8.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Eppler SM, Combs DL, Henry TD, et al. A target-mediated model to describe the pharmacokinetics and hemodynamic effects of recombinant human vascular endothelial growth factor in humans. Clin Pharmacol Ther. 2002;72:20–32.CrossRefPubMedGoogle Scholar
  17. 17.
    Naumov GN, Bender E, Zurakowski D, et al. A model of human tumor dormancy: an angiogenic switch from the nonangiogenic phenotype. J Natl Cancer Inst. 2006;98:316–25.CrossRefPubMedGoogle Scholar
  18. 18.
    Rasheed S, Nelson-Rees WA, Toth EM, et al. Characterization of a newly derived human sarcoma cell line (HT-1080). Cancer. 1974;33:1027–33.CrossRefPubMedGoogle Scholar
  19. 19.
    Gonzalez FJ, Rueda A, Sevilla I, et al. Shift in the balance between circulating thrombospondin-1 and vascular endothelial growth factor in cancer patients: relationship to platelet alpha-granule content and primary activation. Int J Biol Markers. 2004;19:221–8.PubMedGoogle Scholar
  20. 20.
    Wiesner T, Bugl S, Mayer F, et al. Differential changes in platelet VEGF, Tsp, CXCL12, and CXCL4 in patients with metastatic cancer. Clin Exp Metastasis. 2010;27:141–9.CrossRefPubMedGoogle Scholar
  21. 21.
    Backman V, Roy HK. Advances in biophotonics detection of field carcinogenesis for colon cancer risk stratification. J Cancer. 2013;4:251–61.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Daniel CR, Bostick RM, Flanders WD, et al. TGF-alpha expression as a potential biomarker of risk within the normal-appearing colorectal mucosa of patients with and without incident sporadic adenoma. Cancer Epidemiol Biomarkers Prev. 2009;18:65–73.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Cui H, Cruz-Correa M, Giardiello FM, et al. Loss of IGF2 imprinting: a potential marker of colorectal cancer risk. Science. 2003;299:1753–5.CrossRefPubMedGoogle Scholar
  24. 24.
    Gecse KB, Bemelman W, Kamm MA, et al. A global consensus on the classification, diagnosis and multidisciplinary treatment of perianal fistulising Crohn’s disease. Gut. 2014;63:1381–92.CrossRefPubMedGoogle Scholar
  25. 25.
    Shum DT, Guenther L. Metastatic Crohn’s disease. Case report and review of the literature. Arch Dermatol. 1990;126:645–8.CrossRefPubMedGoogle Scholar
  26. 26.
    Lichtenstein L. Histiocytosis X; integration of eosinophilic granuloma of bone, Letterer-Siwe disease, and Schuller-Christian disease as related manifestations of a single nosologic entity. AMA Arch Pathol. 1953;56:84–102.PubMedGoogle Scholar
  27. 27.
    Berres ML, Lim KP, Peters T, et al. BRAF-V600E expression in precursor versus differentiated dendritic cells defines clinically distinct LCH risk groups. J Exp Med. 2014;211:669–83.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Fidler IJ. Metastasis: quantitative analysis of distribution and fate of tumor embolilabeled with 125 I-5-iodo-2′-deoxyuridine. J Natl Cancer Inst. 1970;45:773–82.PubMedGoogle Scholar
  29. 29.
    Luzzi KJ, Macdonald IC, Schmidt EE, et al. Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. Am J Pathol. 1998;153:865–73.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Kaplan RN, Riba RD, Zacharoulis S, et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature. 2005;438:820–7.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Dawson MR, Duda DG, Fukumura D, et al. VEGFR1-activity-independent metastasis formation. Nature. 2009;461:E4; discussion E5.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Hiratsuka S, Ishibashi S, Tomita T, et al. Primary tumours modulate innate immune signalling to create pre-metastatic vascular hyperpermeability foci. Nat Commun. 2013;4:1853.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Hiratsuka S, Watanabe A, Aburatani H, et al. Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nat Cell Biol. 2006;8:1369–75.CrossRefPubMedGoogle Scholar
  34. 34.
    Hiratsuka S, Goel S, Kamoun WS, et al. Endothelial focal adhesion kinase mediates cancer cell homing to discrete regions of the lungs via E-selectin up-regulation. PNAS. 2011;108:3725–30.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Kitamura T, Qian B-Z, Soong D, et al. CCL2-induced chemokine cascade promotes breast cancer metastasis by enhancing retention of metastasis-associated macrophages. J Exp Med. 2015;212:1043–59.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Qian B-Z, Zhang H, Li J, et al. FLT1 signaling in metastasis-associated macrophages activates an inflammatory signature that promotes breast cancer metastasis. J Exp Med. 2015;212:1433–48.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Duda DG, Duyverman AM, Kohno M, et al. Malignant cells facilitate lung metastasis by bringing their own soil. PNAS. 2010;107:21677–82.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Jung Y, Kim JK, Shiozawa Y, et al. Recruitment of mesenchymal stem cells into prostate tumours promotes metastasis. Nat Commun. 2013;4:1795.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Ghajar CM, Peinado H, Mori H, et al. The perivascular niche regulates breast tumour dormancy. Nat Cell Biol. 2013;15:807–17.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Franses JW, Baker AB, Chitalia VC, et al. Stromal endothelial cells directly influence cancer progression. Sci Transl Med. 2011;3:66ra65.CrossRefGoogle Scholar
  41. 41.
    Lu X, Mu E, Wei Y, et al. VCAM-1 promotes osteolytic expansion of indolent bone micrometastasis of breast cancer by engaging alpha4beta1-positive osteoclast progenitors. Cancer Cell. 2011;20:701–14.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Granot Z, Henke E, Comen EA, et al. Tumor entrained neutrophils inhibit seeding in the premetastatic lung. Cancer Cell. 2011;20:300–14.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Gao H, Chakraborty G, Lee-Lim AP, et al. The BMP inhibitor Coco reactivates breast cancer cells at lung metastatic sites. Cell. 2012;150:764–79.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Erler JT, Bennewith KL, Cox TR, et al. Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell. 2009;15:35–44.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Kagan HM, Soucy DM, Zoski CG, et al. Multiple modes of catalysis-dependent inhibition and inactivation of aortic lysyl oxidase. Arch Biochem Biophys. 1983;221:158–67.CrossRefPubMedGoogle Scholar
  46. 46.
    Maki JM, Rasanen J, Tikkanen H, et al. Inactivation of the lysyl oxidase gene Lox leads to aortic aneurysms, cardiovascular dysfunction, and perinatal death in mice. Circulation. 2002;106:2503–9.CrossRefPubMedGoogle Scholar
  47. 47.
    Fogelgren B, Polgar N, Szauter KM, et al. Cellular fibronectin binds to lysyl oxidase with high affinity and is critical for its proteolytic activation. J Biol Chem. 2005;280:24690–7.CrossRefPubMedGoogle Scholar
  48. 48.
    Bondareva A, Downey CM, Ayres F, et al. The lysyl oxidase inhibitor, beta-aminopropionitrile, diminishes the metastatic colonization potential of circulating breast cancer cells. PLoS One. 2009;4:e5620.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Podsypanina K, Du YC, Jechlinger M, et al. Seeding and propagation of untransformed mouse mammary cells in the lung. Science. 2008;321:1841–4.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Shiozawa Y, Pedersen EA, Havens AM, et al. Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow. J Clin Invest. 2011;121:1298–312.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Nicolson G, Nakajima M, Irimura T. Invasion of vascular endothelium and organ tissue in vitro by B16 melanoma variants. In: Honn K, Powers W, Sloane B, editors. Mechanisms of cancer metastasis. Developments in oncology, vol. 40. New York: Springer; 1986. p. 275–97.CrossRefGoogle Scholar
  52. 52.
    Kaplan RN, Rafii S, Lyden D. Preparing the “soil”: the premetastatic niche. Cancer Res. 2006;66:11089–93.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Ruiz EJ, Oeztuerk-Winder F, Ventura JJ. A paracrine network regulates the cross-talk between human lung stem cells and the stroma. Nat Commun. 2014;5:3175.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Somasekharan SP, El-Naggar A, Leprivier G, et al. YB-1 regulates stress granule formation and tumor progression by translationally activating G3BP1. J Cell Biol. 2015;208:913–29.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Malanchi I, Santamaria-Martinez A, Susanto E, et al. Interactions between cancer stem cells and their niche govern metastatic colonization. Nature. 2012;481:85–9.CrossRefGoogle Scholar
  56. 56.
    Badgwell DB, Lu Z, Le K, et al. The tumor-suppressor gene ARHI (DIRAS3) suppresses ovarian cancer cell migration through inhibition of the Stat3 and FAK/Rho signaling pathways. Oncogene. 2012;31:68–79.CrossRefPubMedGoogle Scholar
  57. 57.
    Lu Z, Yang H, Sutton MN, et al. ARHI (DIRAS3) induces autophagy in ovarian cancer cells by downregulating the epidermal growth factor receptor, inhibiting PI3K and Ras/MAP signaling and activating the FOXo3a-mediated induction of Rab7. Cell Death Differ. 2014;21:1275–89.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Lu Z, Luo RZ, Lu Y, et al. The tumor suppressor gene ARHI regulates autophagy and tumor dormancy in human ovarian cancer cells. J Clin Invest. 2008;118:3917–29.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Lee E, Fertig EJ, Jin K, et al. Breast cancer cells condition lymphatic endothelial cells within pre-metastatic niches to promote metastasis. Nat Commun. 2014;5:4715.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Hood JL, San RS, Wickline SA. Exosomes released by melanoma cells prepare sentinel lymph nodes for tumor metastasis. Cancer Res. 2011;71:3792–801.CrossRefPubMedGoogle Scholar
  61. 61.
    Garmy-Susini B, Avraamides CJ, Desgrosellier JS, et al. PI3Kα activates integrin α4β1 to establish a metastatic niche in lymph nodes. Proc. Natl. Acad. Sci. USA. 2013;110:9042–7.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Song L, Asgharzadeh S, Salo J, et al. Vα24-invariant NKT cells mediate antitumor activity via killing of tumor-associated macrophages. J Clin Invest. 2009;119:1524–36.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Sceneay J, Smyth MJ, Moller A. The pre-metastatic niche: finding common ground. Cancer Metastasis Rev. 2013;32:449–64.CrossRefPubMedGoogle Scholar
  64. 64.
    Huang Y, Song N, Ding Y, et al. Pulmonary vascular destabilization in the premetastatic phase facilitates lung metastasis. Cancer Res. 2009;69:7529–37.CrossRefPubMedGoogle Scholar
  65. 65.
    Hiratsuka S, Watanabe A, Sakurai Y, et al. The S100A8-serum amyloid A3-TLR4 paracrine cascade establishes a pre-metastatic phase. Nat Cell Biol. 2008;10:1349–55.CrossRefPubMedGoogle Scholar
  66. 66.
    Peinado H, Aleckovic M, Lavotshkin S, et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med. 2012;18:883–91.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Sidhu SS, Mengistab AT, Tauscher AN, et al. The microvesicle as a vehicle for EMMPRIN in tumor-stromal interactions. Oncogene. 2004;23:956–63.CrossRefPubMedGoogle Scholar
  68. 68.
    Hoshino A, Costa-Silva B, Shen T-L, et al. Tumour exosome integrins determine organotropic metastasis. Nature. 2015;527:329–35.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Gao D, Joshi N, Choi H, et al. Myeloid progenitor cells in the premetastatic lung promote metastases by inducing mesenchymal to epithelial transition. Cancer Res. 2012;72:1384–94.CrossRefPubMedGoogle Scholar
  70. 70.
    Kim S, Takahashi H, Lin WW, et al. Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature. 2009;457:102–6.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Liu Y, Xiang X, Zhuang X, et al. Contribution of MyD88 to the tumor exosome-mediated induction of myeloid derived suppressor cells. Am J Pathol. 2010;176:2490–9.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Costa-Silva B, Aiello NM, Ocean AJ, et al. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat Cell Biol. 2015;17:816–26.CrossRefPubMedGoogle Scholar
  73. 73.
    Semenza GL. Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene. 2010;29:625–34.CrossRefPubMedGoogle Scholar
  74. 74.
    Sceneay J, Chow MT, Chen A, et al. Primary tumor hypoxia recruits CD11b+/Ly6Cmed/Ly6G+ immune suppressor cells and compromises NK cell cytotoxicity in the premetastatic niche. Cancer Res. 2012;72:3906–11.CrossRefPubMedGoogle Scholar
  75. 75.
    Chow MT, Sceneay J, Paget C, et al. NLRP3 suppresses NK cell–mediated responses to carcinogen-induced tumors and metastases. Cancer Res. 2012;72:5721–32.CrossRefPubMedGoogle Scholar
  76. 76.
    Cao Y, Eble JM, Moon E, et al. Tumor cells upregulate normoxic HIF-1alpha in response to doxorubicin. Cancer Res. 2013;73:6230–42.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Berchner-Pfannschmidt U, Yamac H, Trinidad B, et al. Nitric oxide modulates oxygen sensing by hypoxia-inducible factor 1-dependent induction of prolyl hydroxylase 2. J Biol Chem. 2007;282:1788–96.CrossRefPubMedGoogle Scholar
  78. 78.
    O’Neill L a J, Hardie DG. Metabolism of inflammation limited by AMPK and pseudo-starvation. Nature. 2013;493:346–55.CrossRefPubMedGoogle Scholar
  79. 79.
    Norden AD, Wen PY, Kesari S. Brain metastases. Curr Opin Neurol. 2005;18:654–61.PubMedGoogle Scholar
  80. 80.
    Schinkel AH. P-glycoprotein, a gatekeeper in the blood-brain barrier. Adv Drug Deliv Rev. 1999;36:179–94.CrossRefPubMedGoogle Scholar
  81. 81.
    Lee J, Borboa AK, Chun HB, et al. Conditional deletion of the focal adhesion kinase FAK alters remodeling of the blood-brain barrier in glioma. Cancer Res. 2010;70:10131–40.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    On NH, Mitchell R, Savant SD, et al. Examination of blood-brain barrier (BBB) integrity in a mouse brain tumor model. J Neurooncol. 2013;111:133–43.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  • Yoshiro Maru
    • 1
  1. 1.Department of PharmacologyTokyo Women’s Medical UniversityTokyoJapan

Personalised recommendations