Advertisement

Whole-Body Matter

  • Yoshiro Maru
Chapter

Abstract

In 1786, John Hunter observed pulmonary lesions as a metastatic manifestation from a tumorous disease in the femoral bone, which turned out to be a rare disease: osteosarcoma (see Table  9.1 in Chap.  9). This raised the curtain on metastatic diseases. The disease spreads from the leg to the chest as a whole-body matter. Here I will discuss cancer from the standpoint of inflammation, which is basically a whole-body matter with inevitable immunological reactions.

Keywords

Mast Cell Lung Metastasis White Adipose Tissue Circulate Tumor Cell Lewis Lung Carcinoma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Stoppacciaro A, Melani C, Parenza M, et al. Regression of an established tumor genetically modified to release granulocyte colony-stimulating factor requires granulocyte-T cell cooperation and T cell-produced interferon gamma. J Exp Med. 1993;178:151–61.PubMedCrossRefGoogle Scholar
  2. 2.
    Xu H, Exner BG, Chilton PM, et al. CD45 congenic bone marrow transplantation: evidence for T cell-mediated immunity. Stem Cells. 2004;22:1039–48.PubMedCrossRefGoogle Scholar
  3. 3.
    Miller FR, Miller BE, Heppner GH. Characterization of metastatic heterogeneity among subpopulations of a single mouse mammary tumor: heterogeneity in phenotypic stability. Invasion Metastasis. 1983;3:22–31.PubMedGoogle Scholar
  4. 4.
    Nanni P, de Giovanni C, Lollini PL, et al. TS/A: a new metastasizing cell line from a BALB/c spontaneous mammary adenocarcinoma. Clin Exp Metastasis. 1983;1:373–80.PubMedCrossRefGoogle Scholar
  5. 5.
    Vargo-Gogola T, Rosen JM. Modelling breast cancer: one size does not fit all. Nat Rev Cancer. 2007;7:659–72.PubMedCrossRefGoogle Scholar
  6. 6.
    Arbeit JM, Munger K, Howley PM, et al. Progressive squamous epithelial neoplasia in K14-human papillomavirus type 16 transgenic mice. J Virol. 1994;68:4358–68.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Sibilia M, Fleischmann A, Behrens A, et al. The EGF receptor provides an essential survival signal for SOS-dependent skin tumor development. Cell. 2000;102:211–20.PubMedCrossRefGoogle Scholar
  8. 8.
    Hingorani SR, Wang L, Multani AS, et al. Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell. 2005;7:469–83.PubMedCrossRefGoogle Scholar
  9. 9.
    Hanahan D. Heritable formation of pancreatic beta-cell tumours in transgenic mice expressing recombinant insulin/simian virus 40 oncogenes. Nature. 1985;315:115–22.PubMedCrossRefGoogle Scholar
  10. 10.
    Phelps WC, Howley PM. Transcriptional trans-activation by the human papillomavirus type 16 E2 gene product. J Virol. 1987;61:1630–8.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Wang S, Gao J, Lei Q, et al. Prostate-specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer. Cancer Cell. 2003;4:209–21.PubMedCrossRefGoogle Scholar
  12. 12.
    Whittle JR, Lewis MT, Lindeman GJ, et al. Patient-derived xenograft models of breast cancer and their predictive power. Breast Cancer Res. 2015;17:17.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Aparicio S, Hidalgo M, Kung AL. Examining the utility of patient-derived xenograft mouse models. Nat Rev Cancer. 2015;15:311–6.PubMedCrossRefGoogle Scholar
  14. 14.
    Jackson EL, Willis N, Mercer K, et al. Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes Dev. 2001;15:3243–8.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Niederkorn JY, Streilein JW. Intracamerally induced concomitant immunity: mice harboring progressively growing intraocular tumors are immune to spontaneous metastases and secondary tumor challenge. J Immunol. 1983;131:2587–94.PubMedGoogle Scholar
  16. 16.
    McKenna KC, Kapp JA. Accumulation of immunosuppressive CD11b+ myeloid cells correlates with the failure to prevent tumor growth in the anterior chamber of the eye. J Immunol. 2006;177:1599–608.PubMedCrossRefGoogle Scholar
  17. 17.
    Andreu P, Johansson M, Affara NI, et al. FcRγ activation regulates inflammation-associated squamous carcinogenesis. Cancer Cell. 2010;17:121–34.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Houghton J, Stoicov C, Nomura S, et al. Gastric cancer originating from bone marrow-derived cells. Science. 2004;306:1568–71.PubMedCrossRefGoogle Scholar
  19. 19.
    Hayakawa Y, Fox JG, Gonda T, et al. Mouse models of gastric cancer. Cancers (Basel). 2013;5:92–130.PubMedCentralCrossRefGoogle Scholar
  20. 20.
    Tisdale MJ. Mechanisms of cancer cachexia. Physiol Rev. 2009;89:381–410.PubMedCrossRefGoogle Scholar
  21. 21.
    Young NF, Abels JC, Homburger F, et al. Studies on carbohydrate metabolism in patients with gastric cancer. Defective hepatic glycogenesis; effects of adreno-cortical extract. J Clin Invest. 1948;27:760–5.PubMedCentralCrossRefGoogle Scholar
  22. 22.
    Hirai K, Ishiko O, Tisdale M. Mechanism of depletion of liver glycogen in cancer cachexia. Biochem Biophys Res Commun. 1997;241:49–52.PubMedCrossRefGoogle Scholar
  23. 23.
    Turowski P, Martinelli R, Crawford R, et al. Phosphorylation of vascular endothelial cadherin controls lymphocyte emigration. J Cell Sci. 2008;121:29–37.PubMedCrossRefGoogle Scholar
  24. 24.
    Capo-chichi CD, Cai KQ, Simpkins F, et al. Nuclear envelope structural defects cause chromosomal numerical instability and aneuploidy in ovarian cancer. BMC Med. 2011;9:28.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Lu H, Ladd J, Feng Z, et al. Evaluation of known oncoantibodies, HER2, p53, and cyclin B1, in prediagnostic breast cancer sera. Cancer Prev Res (Phila). 2012;5:1036–43.CrossRefGoogle Scholar
  26. 26.
    Grunebach F, Mirakaj V, Mirakaj V, et al. BCR-ABL is not an immunodominant antigen in chronic myelogenous leukemia. Cancer Res. 2006;66:5892–900.PubMedCrossRefGoogle Scholar
  27. 27.
    Kanehira M, Harada Y, Takata R, et al. Involvement of upregulation of DEPDC1 (DEP domain containing 1) in bladder carcinogenesis. Oncogene. 2007;26:6448–55.PubMedCrossRefGoogle Scholar
  28. 28.
    Kanehira M, Katagiri T, Shimo A, et al. Oncogenic role of MPHOSPH1, a cancer-testis antigen specific to human bladder cancer. Cancer Res. 2007;67:3276–85.PubMedCrossRefGoogle Scholar
  29. 29.
    Salmon H, Franciszkiewicz K, Damotte D, et al. Matrix architecture defines the preferential localization and migration of T cells into the stroma of human lung tumors. J Clin Invest. 2012;122:899–910.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Wolf K, Muller R, Borgmann S, et al. Amoeboid shape change and contact guidance: T-lymphocyte crawling through fibrillar collagen is independent of matrix remodeling by MMPs and other proteases. Blood. 2003;102:3262–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Sukumar M, Liu J, Ji Y, et al. Inhibiting glycolytic metabolism enhances CD8+ T cell memory and antitumor function. J Clin Invest. 2013;123:4479–88.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Ibe S, Qin Z, Schuler T, et al. Tumor rejection by disturbing tumor stroma cell interactions. J Exp Med. 2001;194:1549–59.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Qin Z, Schwartzkopff J, Pradera F, et al. A critical requirement of interferon γ-mediated angiostasis for tumor rejection by CD8+ T cells. Cancer Res. 2003;63:4095–100.PubMedGoogle Scholar
  34. 34.
    Feldman ED, Weinreich DM, Carroll NM, et al. Interferon γ-inducible protein 10 selectively inhibits proliferation and induces apoptosis in endothelial cells. Ann Surg Oncol. 2006;13:125–33.PubMedCrossRefGoogle Scholar
  35. 35.
    Evans R. Macrophages and the tumour bearing host. Br J Cancer Suppl. 1973;1:19–25.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Evans R. Preparation of pure cultures of tumor macrophages. J Natl Cancer Inst. 1973;50:271–3.PubMedGoogle Scholar
  37. 37.
    Geissmann F, Jung S, Littman DR. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity. 2003;19:71–82.PubMedCrossRefGoogle Scholar
  38. 38.
    Nahrendorf M, Swirski FK, Aikawa E, et al. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med. 2007;204:3037–47.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Ploplis VA, French EL, Carmeliet P, et al. Plasminogen deficiency differentially affects recruitment of inflammatory cell populations in mice. Blood. 1998;91:2005–9.PubMedGoogle Scholar
  40. 40.
    Gong Y, Hart E, Shchurin A, et al. Inflammatory macrophage migration requires MMP-9 activation by plasminogen in mice. J Clin Invest. 2008;118:3012–24.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Qian BZ, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell. 2010;141:39–51.PubMedCrossRefGoogle Scholar
  42. 42.
    Galdiero MR, Garlanda C, Jaillon S, et al. Tumor associated macrophages and neutrophils in tumor progression. J Cell Physiol. 2013;228:1404–12.PubMedCrossRefGoogle Scholar
  43. 43.
    Zheng J, Yang M, Shao J, et al. Chemokine receptor CX3CR1 contributes to macrophage survival in tumor metastasis. Mol Cancer. 2013;12:141.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Jamieson-Gladney WL, Zhang Y, Fong AM, et al. The chemokine receptor CX(3)CR1 is directly involved in the arrest of breast cancer cells to the skeleton. Breast Cancer Res. 2011;13:R91.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Xu YH, Jia L, Quinn B, et al. Global gene expression profile progression in Gaucher disease mouse models. BMC Genomics. 2011;12:20.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Jenkins SJ, Ruckerl D, Cook PC, et al. Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation. Science. 2011;332:1284–8.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    DeNardo DG, Barreto JB, Andreu P, et al. CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell. 2009;16:91–102.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Qian BZ, Zhang H, Li J, et al. FLT1 signaling in metastasis-associated macrophages activates an inflammatory signature that promotes breast cancer metastasis. J Exp Med. 2015;212:1433–48.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Görgün GT, Whitehill G, Anderson JL, et al. Tumor-promoting immune-suppressive myeloid-derived suppressor cells in the multiple myeloma microenvironment in humans. Blood. 2013;121:2975–87.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Christiansson L, Soderlund S, Svensson E, et al. Increased level of myeloid-derived suppressor cells, programmed death receptor ligand 1/programmed death receptor 1, and soluble CD25 in Sokal high risk chronic myeloid leukemia. PLoS ONE. 2013;8:e55818.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Zhang B, Wang Z, Wu L, et al. Circulating and tumor-infiltrating myeloid-derived suppressor cells in patients with colorectal carcinoma. PLoS ONE. 2013;8:e57114.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Young MR, Newby M, Wepsic HT. Hematopoiesis and suppressor bone marrow cells in mice bearing large metastatic Lewis lung carcinoma tumors. Cancer Res. 1987;47:100–5.PubMedGoogle Scholar
  53. 53.
    Gabrilovich DI, Ostrand-Rosenberg S, Bronte V. Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol. 2012;12:253–68.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Rodriguez PC, Hernandez CP, Quiceno D, et al. Arginase I in myeloid suppressor cells is induced by COX-2 in lung carcinoma. J Exp Med. 2005;202:931–9.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Serafini P, Carbley R, Noonan KA, et al. High-dose granulocyte-macrophage colony-stimulating factor-producing vaccines impair the immune response through the recruitment of myeloid suppressor cells. Cancer Res. 2004;64:6337–43.PubMedCrossRefGoogle Scholar
  56. 56.
    Cheng P, Corzo CA, Luetteke N, et al. Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein. J Exp Med. 2008;205:2235–49.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Liao J, Wang X, Bi Y, et al. Dexamethasone potentiates myeloid-derived suppressor cell function in prolonging allograft survival through nitric oxide. J Leukoc Biol. 2014;96:675–84.PubMedCrossRefGoogle Scholar
  58. 58.
    Sinha P, Okoro C, Foell D, et al. Proinflammatory S100 proteins regulate the accumulation of myeloid-derived suppressor cells. J Immunol. 2008;181:4666–75.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Wang L, Chang EW, Wong SC, et al. Increased myeloid-derived suppressor cells in gastric cancer correlate with cancer stage and plasma S100A8/A9 proinflammatory proteins. J Immunol. 2013;190:794–804.PubMedCrossRefGoogle Scholar
  60. 60.
    He D, Li H, Yusuf N, et al. IL-17 promotes tumor development through the induction of tumor promoting microenvironments at tumor sites and myeloid-derived suppressor cells. J Immunol. 2010;184:2281–8.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Carmi Y, Rinott G, Dotan S, et al. Microenvironment-derived IL-1 and IL-17 interact in the control of lung metastasis. J Immunol. 2011;186:3462–71.PubMedCrossRefGoogle Scholar
  62. 62.
    Lindau D, Gielen P, Kroesen M, et al. The immunosuppressive tumour network: myeloid-derived suppressor cells, regulatory T cells and natural killer T cells. Immunology. 2013;138:105–15.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Sadelain M, Brentjens R, Riviere I. The basic principles of chimeric antigen receptor design. Cancer Discov. 2013;3:388–98.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Porter DL, Levine BL, Kalos M, et al. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med. 2011;365:725–33.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Grupp SA, Kalos M, Barrett D, et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med. 2013;368:1509–18.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Wilderman MJ, Kim S, Gillespie CT, et al. Blockade of TNF-alpha decreases both inflammation and efficacy of intrapulmonary Ad.IFNbeta immunotherapy in an orthotopic model of bronchogenic lung cancer. Mol Ther. 2006;13:910–7.PubMedCrossRefGoogle Scholar
  67. 67.
    Zhuang J, Zhang J, Lwin ST, et al. Osteoclasts in multiple myeloma are derived from Gr-1+CD11b+myeloid-derived suppressor cells. PLoS ONE. 2012;7:e48871.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Danilin S, Merkel AR, Johnson JR, et al. Myeloid-derived suppressor cells expand during breast cancer progression and promote tumor-induced bone destruction. Oncoimmunology. 2012;1:1484–94.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Yang L, DeBusk LM, Fukuda K, et al. Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell. 2004;6:409–21.PubMedCrossRefGoogle Scholar
  70. 70.
    Yoder MC. Human endothelial progenitor cells. Cold Spring Harb Perspect Med. 2012;2:a006692.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Caruso RA, Bellocco R, Pagano M, et al. Prognostic value of intratumoral neutrophils in advanced gastric carcinoma in a high-risk area in northern Italy. Mod Pathol. 2002;15:831–7.PubMedCrossRefGoogle Scholar
  72. 72.
    Reid MD, Basturk O, Thirabanjasak D, et al. Tumor-infiltrating neutrophils in pancreatic neoplasia. Mod Pathol. 2011;24:1612–9.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Fridlender ZG, Sun J, Kim S, et al. Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell. 2009;16:183–94.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Jablonska J, Leschner S, Westphal K, et al. Neutrophils responsive to endogenous IFN-beta regulate tumor angiogenesis and growth in a mouse tumor model. J Clin Invest. 2010;120:1151–64.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Engelhardt JJ, Boldajipour B, Beemiller P, et al. Marginating dendritic cells of the tumor microenvironment cross-present tumor antigens and stably engage tumor-specific T cells. Cancer Cell. 2012;21:402–17.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Mishra A, Liu S, Sams GH, et al. Aberrant overexpression of IL-15 initiates large granular lymphocyte leukemia through chromosomal instability and DNA hypermethylation. Cancer Cell. 2012;22:645–55.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Berres ML, Lim KP, Peters T, et al. BRAF-V600E expression in precursor versus differentiated dendritic cells defines clinically distinct LCH risk groups. J Exp Med. 2014;211:669–83.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    McKenna KC, Previte DM. Influence of CD8+ T regulatory cells on intraocular tumor development. Front Immunol. 2012;3:303.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Tan W, Zhang W, Strasner A, et al. Tumour-infiltrating regulatory T cells stimulate mammary cancer metastasis through RANKL-RANK signalling. Nature. 2011;470:548–53.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Amini RM, Aaltonen K, Nevanlinna H, et al. Mast cells and eosinophils in invasive breast carcinoma. BMC Cancer. 2007;7:165.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Oldford SA, Marshall JS. Mast cells as targets for immunotherapy of solid tumors. Mol Immunol. 2014;63:113–24.PubMedCrossRefGoogle Scholar
  82. 82.
    Coussens LM, Raymond WW, Bergers G, et al. Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. Genes Dev. 1999;13:1382–97.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Chan CY, St John AL, Abraham SN. Mast cell interleukin-10 drives localized tolerance in chronic bladder infection. Immunity. 2013;38:349–59.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Grimbaldeston MA, Nakae S, Kalesnikoff J, et al. Mast cell-derived interleukin 10 limits skin pathology in contact dermatitis and chronic irradiation with ultraviolet B. Nat Immunol. 2007;8:1095–104.PubMedCrossRefGoogle Scholar
  85. 85.
    Silver RB, Reid AC, Mackins CJ, et al. Mast cells: a unique source of renin. Proc Natl Acad Sci U S A. 2004;101:13607–12.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Simson L, Ellyard JI, Dent LA, et al. Regulation of carcinogenesis by IL-5 and CCL11: a potential role for eosinophils in tumor immune surveillance. J Immunol. 2007;178:4222–9.PubMedCrossRefGoogle Scholar
  87. 87.
    Cormier SA, Taranova AG, Bedient C, et al. Pivotal Advance: eosinophil infiltration of solid tumors is an early and persistent inflammatory host response. J Leukoc Biol. 2006;79:1131–9.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Wolf K, Wu YI, Liu Y, et al. Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion. Nat Cell Biol. 2007;9:893–904.PubMedCrossRefGoogle Scholar
  89. 89.
    Goetz Jacky G, Minguet S, Navarro-Lérida I, et al. Biomechanical remodeling of the microenvironment by stromal caveolin-1 favors tumor invasion and metastasis. Cell. 2011;146:148–63.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Giridharan V, Yun Y, Hajdu P, et al. Microfluidic platforms for evaluation of nanobiomaterials: a review. J Nanomater. 2012;2012:1–14.CrossRefGoogle Scholar
  91. 91.
    Shiozawa Y, Pedersen EA, Havens AM, et al. Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow. J Clin Invest. 2011;121:1298–312.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Zhang Y, Daquinag A, Traktuev DO, et al. White adipose tissue cells are recruited by experimental tumors and promote cancer progression in mouse models. Cancer Res. 2009;69:5259–66.PubMedCrossRefGoogle Scholar
  93. 93.
    Thaker PH, Han LY, Kamat AA, et al. Chronic stress promotes tumor growth and angiogenesis in a mouse model of ovarian carcinoma. Nat Med. 2006;12:939–44.PubMedCrossRefGoogle Scholar
  94. 94.
    Sloan EK, Priceman SJ, Cox BF, et al. The sympathetic nervous system induces a metastatic switch in primary breast cancer. Cancer Res. 2010;70:7042–52.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Cao L, Liu X, Lin E-JD, et al. Environmental and genetic activation of a brain-adipocyte BDNF/leptin axis causes cancer remission and inhibition. Cell. 2010;142:52–64.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Kim M-Y, Oskarsson T, Acharyya S, et al. Tumor self-seeding by circulating cancer cells. Cell. 2009;139:1315–26.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Laakkonen P, Waltari M, Holopainen T, et al. Vascular endothelial growth factor receptor 3 is involved in tumor angiogenesis and growth. Cancer Res. 2007;67:593–9.PubMedCrossRefGoogle Scholar
  98. 98.
    Lin J, Lalani AS, Harding TC, et al. Inhibition of lymphogenous metastasis using adeno-associated virus-mediated gene Transfer of a soluble VEGFR-3 decoy receptor. Cancer Res. 2005;65:6901–9.PubMedCrossRefGoogle Scholar
  99. 99.
    Caunt M, Mak J, Liang WC, et al. Blocking neuropilin-2 function inhibits tumor cell metastasis. Cancer Cell. 2008;13:331–42.PubMedCrossRefGoogle Scholar
  100. 100.
    O’Meara RAQ, Jackson RD. Cytological observations on carcinoma. Ir J Med Sci. 1958;33:327–8.CrossRefGoogle Scholar
  101. 101.
    Chew EC, Wallace AC. Demonstration of fibrin in early stages of experimental metastases. Cancer Res. 1976;36:1904–9.PubMedGoogle Scholar
  102. 102.
    Verheul HM, van Erp K, Homs MY, et al. The relationship of vascular endothelial growth factor and coagulation factor (fibrin and fibrinogen) expression in clear cell renal cell carcinoma. Urology. 2010;75:608–14.PubMedCrossRefGoogle Scholar
  103. 103.
    Kato Y, Fujita N, Yano H, et al. Suppression of experimental lung colonization of mouse colon adenocarcinoma 26 in vivo by an anti-idiotype monoclonal antibody recognizing a platelet surface molecule. Cancer Res. 1997;57:3040–5.PubMedGoogle Scholar
  104. 104.
    Braun A, Varga-Szabo D, Kleinschnitz C, et al. Orai1 (CRACM1) is the platelet SOC channel and essential for pathological thrombus formation. Blood. 2009;113:2056–63.PubMedCrossRefGoogle Scholar
  105. 105.
    Sun J, Lu F, He H, et al. STIM1- and Orai1-mediated Ca(2+) oscillation orchestrates invadopodium formation and melanoma invasion. J Cell Biol. 2014;207:535–48.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Tsuruo T, Kawabata H, Iida H, et al. Tumor-induced platelet aggregation and growth promoting factors as determinants for successful tumor metastasis. Clin Exp Metastasis. 1986;4:25–33.PubMedCrossRefGoogle Scholar
  107. 107.
    Tsuruo T, Fujita N. Platelet aggregation in the formation of tumor metastasis. Proc Jpn Acad Ser B Phys Biol Sci. 2008;84:189–98.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Astarita JL, Acton SE, Turley SJ. Podoplanin: emerging functions in development, the immune system, and cancer. Front Immunol. 2012;3:283.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Palumbo JS, Talmage KE, Massari JV, et al. Platelets and fibrin(ogen) increase metastatic potential by impeding natural killer cell-mediated elimination of tumor cells. Blood. 2005;105:178–85.PubMedCrossRefGoogle Scholar
  110. 110.
    Saltz LB, Clarke S, Diaz-Rubio E, et al. Bevacizumab in combination with oxaliplatin-based chemotherapy as first-line therapy in metastatic colorectal cancer: a randomized phase III study. J Clin Oncol. 2008;26:2013–9.PubMedCrossRefGoogle Scholar
  111. 111.
    di Tomaso E, Snuderl M, Kamoun WS, et al. Glioblastoma recurrence after cediranib therapy in patients: lack of “rebound” revascularization as mode of escape. Cancer Res. 2011;71:19–28.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Ebos JM, Lee CR, Cruz-Munoz W, et al. Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell. 2009;15:232–9.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Gore ME, Szczylik C, Porta C, et al. Final results from the large sunitinib global expanded-access trial in metastatic renal cell carcinoma. Br J Cancer. 2015;113:12–9.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Pasquier E, Ciccolini J, Carre M, et al. Propranolol potentiates the anti-angiogenic effects and anti-tumor efficacy of chemotherapy agents: implication in breast cancer treatment. Oncotarget. 2011;2:797–809.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Casanovas O, Hicklin DJ, Bergers G, et al. Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell. 2005;8:299–309.PubMedCrossRefGoogle Scholar
  116. 116.
    Deshane J, Chen S, Caballero S, et al. Stromal cell-derived factor 1 promotes angiogenesis via a heme oxygenase 1-dependent mechanism. J Exp Med. 2007;204:605–18.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Seaman S, Stevens J, Yang MY, et al. Genes that distinguish physiological and pathological angiogenesis. Cancer Cell. 2007;11:539–54.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Snuderl M, Batista A, Kirkpatrick Nathaniel D, et al. Targeting placental growth factor/neuropilin 1 pathway inhibits growth and spread of medulloblastoma. Cell. 2013;152:1065–76.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Shojaei F, Wu X, Zhong C, et al. Bv8 regulates myeloid-cell-dependent tumour angiogenesis. Nature. 2007;450:825–31.PubMedCrossRefGoogle Scholar
  120. 120.
    Shojaei F, Wu X, Qu X, et al. G-CSF-initiated myeloid cell mobilization and angiogenesis mediate tumor refractoriness to anti-VEGF therapy in mouse models. Proc Natl Acad Sci U S A. 2009;106:6742–7.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Phan VT, Wu X, Cheng JH, et al. Oncogenic RAS pathway activation promotes resistance to anti-VEGF therapy through G-CSF-induced neutrophil recruitment. Proc Natl Acad Sci U S A. 2013;110:6079–84.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Chung AS, Wu X, Zhuang G, et al. An interleukin-17-mediated paracrine network promotes tumor resistance to anti-angiogenic therapy. Nat Med. 2013;19:1114–23.PubMedCrossRefGoogle Scholar
  123. 123.
    Hiratsuka S, Ishibashi S, Tomita T, et al. Primary tumours modulate innate immune signalling to create pre-metastatic vascular hyperpermeability foci. Nat Commun. 2013;4:1853.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Casar B, He Y, Iconomou M, et al. Blocking of CDCP1 cleavage in vivo prevents Akt-dependent survival and inhibits metastatic colonization through PARP1-mediated apoptosis of cancer cells. Oncogene. 2012;31:3924–38.PubMedCrossRefGoogle Scholar
  125. 125.
    Maillard CM, Bouquet C, Petitjean MM, et al. Reduction of brain metastases in plasminogen activator inhibitor-1-deficient mice with transgenic ocular tumors. Carcinogenesis. 2008;29:2236–42.PubMedCrossRefGoogle Scholar
  126. 126.
    Almholt K, Nielsen BS, Frandsen TL, et al. Metastasis of transgenic breast cancer in plasminogen activator inhibitor-1 gene-deficient mice. Oncogene. 2003;22:4389–97.PubMedCrossRefGoogle Scholar
  127. 127.
    Valiente M, Obenauf AC, Jin X, et al. Serpins promote cancer cell survival and vascular co-option in brain metastasis. Cell. 2014;156:1002–16.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  • Yoshiro Maru
    • 1
  1. 1.Department of PharmacologyTokyo Women’s Medical UniversityTokyoJapan

Personalised recommendations