Tumor Microenvironment

  • Yoshiro Maru


Here I discuss the assumption that tumor cells exist first in the context of host or stromal cells within the restricted tumor tissue.


Mesenchymal Stem Cell Hematopoietic Stem Cell Chronic Myeloid Leukemia Cancer Stem Cell Vascular Permeability 


  1. 1.
    Kelley LC, Lohmer LL, Hagedorn EJ, et al. Traversing the basement membrane in vivo: a diversity of strategies. J Cell Biol. 2014;204:291–302.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Voisin MB, Probstl D, Nourshargh S. Venular basement membranes ubiquitously express matrix protein low-expression regions: characterization in multiple tissues and remodeling during inflammation. Am J Pathol. 2010;176:482–95.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Pflicke H, Sixt M. Preformed portals facilitate dendritic cell entry into afferent lymphatic vessels. J Exp Med. 2009;206:2925–35.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Helmlinger G, Yuan F, Dellian M, et al. Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nat Med. 1997;3:177–82.PubMedCrossRefGoogle Scholar
  5. 5.
    Cardenas-Navia LI, Mace D, Richardson RA, et al. The pervasive presence of fluctuating oxygenation in tumors. Cancer Res. 2008;68:5812–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Gallagher FA, Kettunen MI, Day SE, et al. Magnetic resonance imaging of pH in vivo using hyperpolarized 13C-labelled bicarbonate. Nature. 2008;453:940–3.PubMedCrossRefGoogle Scholar
  7. 7.
    Sonveaux P, Vegran F, Schroeder T, et al. Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J Clin Invest. 2008;118:3930–42.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Yachie A, Niida Y, Wada T, et al. Oxidative stress causes enhanced endothelial cell injury in human heme oxygenase-1 deficiency. J Clin Invest. 1999;103:129–35.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Poss KD, Tonegawa S. Heme oxygenase 1 is required for mammalian iron reutilization. Proc Natl Acad Sci U S A. 1997;94:10919–24.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Figueiredo RT, Fernandez PL, Mourao-Sa DS, et al. Characterization of heme as activator of Toll-like receptor 4. J Biol Chem. 2007;282:20221–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Otterbein LE, Bach FH, Alam J, et al. Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nat Med. 2000;6:422–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Rocuts F, Ma Y, Zhang X, et al. Carbon monoxide suppresses membrane expression of TLR4 via myeloid differentiation factor-2 in βTC3 cells. J Immunol. 2010;185:2134–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Xue J, Habtezion A. Carbon monoxide-based therapy ameliorates acute pancreatitis via TLR4 inhibition. J Clin Invest. 2014;124:437–47.PubMedCrossRefGoogle Scholar
  14. 14.
    Chung HT, Choi BM, Kwon YG, et al. Interactive relations between nitric oxide (NO) and carbon monoxide (CO): heme oxygenase-1/CO pathway is a key modulator in NO-mediated antiapoptosis and anti-inflammation. Methods Enzymol. 2008;441:329–38.PubMedCrossRefGoogle Scholar
  15. 15.
    Nemzek JA, Fry C, Abatan O. Low-dose carbon monoxide treatment attenuates early pulmonary neutrophil recruitment after acid aspiration. Am J Physiol Lung Cell Mol Physiol. 2008;294:L644–53.PubMedCrossRefGoogle Scholar
  16. 16.
    Jais A, Einwallner E, Sharif O, et al. Heme oxygenase-1 drives metainflammation and insulin resistance in mouse and man. Cell. 2014;158:25–40.PubMedCrossRefGoogle Scholar
  17. 17.
    Song Y, Shi Y, Ao LH, et al. TLR4 mediates LPS-induced HO-1 expression in mouse liver: role of TNF-α and IL-1β. World J Gastroenterol. 2003;9:1799–803.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Szabo C, Coletta C, Chao C, et al. Tumor-derived hydrogen sulfide, produced by cystathionine-β-synthase, stimulates bioenergetics, cell proliferation, and angiogenesis in colon cancer. Proc Natl Acad Sci U S A. 2013;110:12474–9.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Yamamoto T, Takano N, Ishiwata K, et al. Reduced methylation of PFKFB3 in cancer cells shunts glucose towards the pentose phosphate pathway. Nat Commun. 2014;5:3480.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Friend C, Marovitz W, Henie G, et al. Observations on cell lines derived from a patient with Hodgkin’s disease. Cancer Res. 1978;38:2581–91.PubMedGoogle Scholar
  21. 21.
    Vazirabadi G. Epstein-Barr virus latent membrane protein-1 (LMP-1) and lytic LMP-1 localization in plasma membrane-derived extracellular vesicles and intracellular virions. J Gen Virol. 2003;84:1997–2008.PubMedCrossRefGoogle Scholar
  22. 22.
    D’Souza-Schorey C, Clancy JW. Tumor-derived microvesicles: shedding light on novel microenvironment modulators and prospective cancer biomarkers. Genes Dev. 2012;26:1287–99.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Al-Nedawi K, Meehan B, Kerbel RS, et al. Endothelial expression of autocrine VEGF upon the uptake of tumor-derived microvesicles containing oncogenic EGFR. Proc Natl Acad Sci U S A. 2009;106:3794–9.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Cocucci E, Meldolesi J. Ectosomes and exosomes: shedding the confusion between extracellular vesicles. Trends Cell Biol. 2015;25:364–72.PubMedCrossRefGoogle Scholar
  25. 25.
    Pasquier J, Guerrouahen BS, Al Thawadi H, et al. Preferential transfer of mitochondria from endothelial to cancer cells through tunneling nanotubes modulates chemoresistance. J Transl Med. 2013;11:94.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    McDonald DM, Choyke PL. Imaging of angiogenesis: from microscope to clinic. Nat Med. 2003;9:713–25.PubMedCrossRefGoogle Scholar
  27. 27.
    Hose D, Moreaux J, Meissner T, et al. Induction of angiogenesis by normal and malignant plasma cells. Blood. 2009;114:128–43.PubMedCrossRefGoogle Scholar
  28. 28.
    Karnezis T, Shayan R, Caesar C, et al. VEGF-D promotes tumor metastasis by regulating prostaglandins produced by the collecting lymphatic endothelium. Cancer Cell. 2012;21:181–95.PubMedCrossRefGoogle Scholar
  29. 29.
    Lichtenberger BM, Tan PK, Niederleithner H, et al. Autocrine VEGF signaling synergizes with EGFR in tumor cells to promote epithelial cancer development. Cell. 2010;140:268–79.PubMedCrossRefGoogle Scholar
  30. 30.
    Lee S, Jilani SM, Nikolova GV, et al. Processing of VEGF-A by matrix metalloproteinases regulates bioavailability and vascular patterning in tumors. J Cell Biol. 2005;169:681–91.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Chen TT, Luque A, Lee S, et al. Anchorage of VEGF to the extracellular matrix conveys differential signaling responses to endothelial cells. J Cell Biol. 2010;188:595–609.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Ishimoto T, Nagano O, Yae T, et al. CD44 variant regulates redox status in cancer cells by stabilizing the xCT subunit of system xc(-) and thereby promotes tumor growth. Cancer Cell. 2011;19:387–400.PubMedCrossRefGoogle Scholar
  33. 33.
    Cao G, Savani RC, Fehrenbach M, et al. Involvement of endothelial CD44 during in vivo angiogenesis. Am J Pathol. 2006;169:325–36.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Krause DS, Lazarides K, von Andrian UH, et al. Requirement for CD44 in homing and engraftment of BCR-ABL-expressing leukemic stem cells. Nat Med. 2006;12:1175–80.PubMedCrossRefGoogle Scholar
  35. 35.
    Tremmel M, Matzke A, Albrecht I, et al. A CD44v6 peptide reveals a role of CD44 in VEGFR-2 signaling and angiogenesis. Blood. 2009;114:5236–44.PubMedCrossRefGoogle Scholar
  36. 36.
    Jiang T, Zhuang J, Duan H, et al. CD146 is a coreceptor for VEGFR-2 in tumor angiogenesis. Blood. 2012;120:2330–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Sawamiphak S, Seidel S, Essmann CL, et al. Ephrin-B2 regulates VEGFR2 function in developmental and tumour angiogenesis. Nature. 2010;465:487–91.PubMedCrossRefGoogle Scholar
  38. 38.
    Nissen LJ, Cao R, Hedlund E-M, et al. Angiogenic factors FGF2 and PDGF-BB synergistically promote murine tumor neovascularization and metastasis. J Clin Invest. 2007;117:2766–77.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Oshima M, Oshima H, Taketo MM. TGF-β receptor type II deficiency results in defects of yolk sac hematopoiesis and vasculogenesis. Dev Biol. 1996;179:297–302.PubMedCrossRefGoogle Scholar
  40. 40.
    Oh SP, Seki T, Goss KA, et al. Activin receptor-like kinase 1 modulates transforming growth factor-β 1 signaling in the regulation of angiogenesis. Proc Natl Acad Sci U S A. 2000;97:2626–31.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Tammela T, Zarkada G, Nurmi H, et al. VEGFR-3 controls tip to stalk conversion at vessel fusion sites by reinforcing Notch signalling. Nat Cell Biol. 2011;13:1202–13.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Rivas V, Nica F, et al. Developmental and tumoral vascularization is regulated by G protein–coupled receptor kinase 2. J Clin Invest. 2013;123:4714–30.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Berardi R, Morgese F, Onofri A, et al. Role of maspin in cancer. Clin Transl Med. 2013;2:8.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Teoh SSY, Vieusseux J, Prakash M, et al. Maspin is not required for embryonic development or tumour suppression. Nat Commun. 2014;5:3164.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Zhang M, Volpert O, Shi YH, et al. Maspin is an angiogenesis inhibitor. Nat Med. 2000;6:196–9.PubMedCrossRefGoogle Scholar
  46. 46.
    Li Z, Shi HY, Zhang M. Targeted expression of maspin in tumor vasculatures induces endothelial cell apoptosis. Blood. 2005;24:2008–19.Google Scholar
  47. 47.
    Zhang J, Fukuhara S, Sako K, et al. Angiopoietin-1/Tie2 signal augments basal notch signal controlling vascular quiescence by inducing delta-like 4 expression through AKT-mediated activation of β-catenin. J Biol Chem. 2011;286:8055–66.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Watanabe K, Hasegawa Y, Yamashita H, et al. Vasohibin as an endothelium-derived negative feedback regulator of angiogenesis. J Clin Invest. 2004;114:898–907.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Gengrinovitch S, Greenberg SM, Cohen T, et al. Platelet factor-4 inhibits the mitogenic activity of VEGF121 and VEGF165 using several concurrent mechanisms. J Biol Chem. 1995;270:15059–65.PubMedCrossRefGoogle Scholar
  50. 50.
    Takahashi T, Yamaguchi S, Chida K, et al. A single autophosphorylation site on KDR/Flk‐1 is essential for VEGF‐A‐dependent activation of PLC‐γ and DNA synthesis in vascular endothelial cells. EMBO J. 2001;20:2768–78.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Woller G, Brandt E, Mittelstädt J, et al. Platelet factor 4/CXCL4-stimulated human monocytes induce apoptosis in endothelial cells by the release of oxygen radicals. J Leukoc Biol. 2008;83:936–45.PubMedCrossRefGoogle Scholar
  52. 52.
    Bodnar RJ, Yates CC, Rodgers ME, et al. IP-10 induces dissociation of newly formed blood vessels. J Cell Sci. 2009;122:2064–77.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Kuo JH, Chen YP, Liu JS, et al. Alternative C-terminal helix orientation alters chemokine function: structure of the anti-angiogenic chemokine, CXCL4L1. J Biol Chem. 2013;288:13522–33.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Watnick RS, Rodriguez RK, Wang S, et al. Thrombospondin-1 repression is mediated via distinct mechanisms in fibroblasts and epithelial cells. Oncogene. 2015;34:2823–35.PubMedCrossRefGoogle Scholar
  55. 55.
    Fernando NT, Koch M, Rothrock C, et al. Tumor escape from endogenous, extracellular matrix-associated angiogenesis inhibitors by up-regulation of multiple proangiogenic factors. Clin Cancer Res. 2008;14:1529–39.PubMedCrossRefGoogle Scholar
  56. 56.
    Rodriguez-Manzaneque JC, Lane TF, Ortega MA, et al. Thrombospondin-1 suppresses spontaneous tumor growth and inhibits activation of matrix metalloproteinase-9 and mobilization of vascular endothelial growth factor. Proc Natl Acad Sci U S A. 2001;98:12485–90.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Lawler J, Miao WM, Duquette M, et al. Thrombospondin-1 gene expression affects survival and tumor spectrum of p53-deficient mice. Am J Pathol. 2001;159:1949–56.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Fontana A, Filleur S, Guglielmi J, et al. Human breast tumors override the antiangiogenic effect of stromal thrombospondin-1 in vivo. Int J Cancer. 2005;116:686–91.PubMedCrossRefGoogle Scholar
  59. 59.
    Simonavicius N, Ashenden M, van Weverwijk A, et al. Pericytes promote selective vessel regression to regulate vascular patterning. Blood. 2012;120:1516–27.PubMedCrossRefGoogle Scholar
  60. 60.
    Nosaka M, Ishida Y, Kimura A, et al. Absence of IFN-γ accelerates thrombus resolution through enhanced MMP-9 and VEGF expression in mice. J Clin Invest. 2011;121:2911–20.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Acevedo LM, Barillas S, Weis SM, et al. Semaphorin 3A suppresses VEGF-mediated angiogenesis yet acts as a vascular permeability factor. Blood. 2008;111:2674–80.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Gratton J-P, Lin MI, Yu J, et al. Selective inhibition of tumor microvascular permeability by cavtratin blocks tumor progression in mice. Cancer Cell. 2003;4:31–9.PubMedCrossRefGoogle Scholar
  63. 63.
    Jean C, Chen XL, Nam JO, et al. Inhibition of endothelial FAK activity prevents tumor metastasis by enhancing barrier function. J Cell Biol. 2014;204:247–63.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Harney AS, Arwert EN, Entenberg D, et al. Real-time imaging reveals local, transient vascular permeability, and tumor cell intravasation stimulated by TIE2hi macrophage-derived VEGFA. Cancer Discov. 2015;5:932–43.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Detmar M, Brown LF, Schon MP, et al. Increased microvascular density and enhanced leukocyte rolling and adhesion in the skin of VEGF transgenic mice. J Invest Dermatol. 1998;111:1–6.PubMedCrossRefGoogle Scholar
  66. 66.
    Lee CG, Link H, Baluk P, et al. Vascular endothelial growth factor (VEGF) induces remodeling and enhances TH2-mediated sensitization and inflammation in the lung. Nat Med. 2004;10:1095–103.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Nozaki T, Masutani M, Watanabe M, et al. Syncytiotrophoblastic giant cells in teratocarcinoma-like tumors derived from Parp-disrupted mouse embryonic stem cells. Proc Natl Acad Sci U S A. 1999;96:13345–50.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Luo JC, Yamaguchi S, Shinkai A, et al. Significant expression of vascular endothelial growth factor/vascular permeability factor in mouse ascites tumors. Cancer Res. 1998;58:2652–60.PubMedGoogle Scholar
  69. 69.
    Tomizo Yoshida Basic research on Yoshida sarcoma and cancer chemotherapy Nara Shobo, 1964, Tokyo (吉田富三. 吉田肉腫-癌化学療法の基礎的研究-. 東京: 寧楽書房; 1964. 218 p.)Google Scholar
  70. 70.
    Noguchi H. Snake venoms; an investigation of venomous snakes with special reference to the phenomena of their venoms. Washington, DC: Carnegie Inst; 1909.CrossRefGoogle Scholar
  71. 71.
    Takahashi H, Hattori S, Iwamatsu A, et al. A novel snake venom vascular endothelial growth factor (VEGF) predominantly induces vascular permeability through preferential signaling via VEGF receptor-1. J Biol Chem. 2004;279:46304–14.PubMedCrossRefGoogle Scholar
  72. 72.
    Huang TF, Holt JC, Lukasiewicz H, et al. Trigramin. A low molecular weight peptide inhibiting fibrinogen interaction with platelet receptors expressed on glycoprotein IIb-IIIa complex. J Biol Chem. 1987;262:16157–63.PubMedGoogle Scholar
  73. 73.
    Musial J, Niewiarowski S, Rucinski B, et al. Inhibition of platelet adhesion to surfaces of extracorporeal circuits by disintegrins. RGD-containing peptides from viper venoms. Circulation. 1990;82:261–73.PubMedCrossRefGoogle Scholar
  74. 74.
    Wolfsberg TG, Straight PD, Gerena RL, et al. ADAM, a widely distributed and developmentally regulated gene family encoding membrane proteins with a disintegrin and Metalloprotease Domain. Dev Biol. 1995;169:378–83.PubMedCrossRefGoogle Scholar
  75. 75.
    Wolfsberg TG, Bazan JF, Blobel CP, et al. The precursor region of a protein active in sperm-egg fusion contains a metalloprotease and a disintegrin domain: structural, functional, and evolutionary implications. Proc Natl Acad Sci U S A. 1993;90:10783–7.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Romagnoli M, Mineva ND, Polmear M, et al. ADAM8 expression in invasive breast cancer promotes tumor dissemination and metastasis. EMBO Mol Med. 2014;6:278–94.PubMedGoogle Scholar
  77. 77.
    Abety AN, Fox JW, Schonefus A, et al. Stromal fibroblast-specific expression of ADAM-9 modulates proliferation and apoptosis in melanoma cells in vitro and in vivo. J Invest Dermatol. 2012;132:2451–8.PubMedCrossRefGoogle Scholar
  78. 78.
    Armanious H, Gelebart P, Anand M, et al. Constitutive activation of metalloproteinase ADAM10 in mantle cell lymphoma promotes cell growth and activates the TNFα/NFκB pathway2011 2011-06-09 00:00:00. 6237–46 p.Google Scholar
  79. 79.
    Fröhlich C, Nehammer C, Albrechtsen R, et al. ADAM12 produced by tumor cells rather than stromal cells accelerates breast tumor progression. Mol Cancer Res. 2011;9:1449–61.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Horiuchi K, Weskamp G, Lum L, et al. Potential role for ADAM15 in pathological neovascularization in mice. Mol Cell Biol. 2003;23:5614–24.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Weskamp G, Mendelson K, Swendeman S, et al. Pathological neovascularization is reduced by inactivation of ADAM17 in endothelial cells but not in pericytes. Circ Res. 2010;106:932–40.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Wildeboer D, Naus S, Sang Q-XA, et al. Metalloproteinase disintegrins ADAM8 and ADAM19 are highly regulated in human primary brain tumors and their expression levels and activities are associated with invasiveness. J Neuropathol Exp Neurol. 2006;65:516–27. doi: 10.1097/01.jnen.0000229240.51490.d3.PubMedCrossRefGoogle Scholar
  83. 83.
    Ohtsuka T, Shiomi T, Shimoda M, et al. ADAM28 is overexpressed in human non-small cell lung carcinomas and correlates with cell proliferation and lymph node metastasis. Int J Cancer. 2006;118:263–73.PubMedCrossRefGoogle Scholar
  84. 84.
    Zou J, Zhu F, Liu J, et al. Catalytic activity of human ADAM33. J Biol Chem. 2004;279:9818–30.PubMedCrossRefGoogle Scholar
  85. 85.
    Esselens C, Malapeira J, Colomé N, et al. The cleavage of semaphorin 3C induced by ADAMTS1 promotes cell migration. J Biol Chem. 2010;285:2463–73.PubMedCrossRefGoogle Scholar
  86. 86.
    Colige A, Vandenberghe I, Thiry M, et al. Cloning and characterization of ADAMTS-14, a novel ADAMTS displaying high homology with ADAMTS-2 and ADAMTS-3. J Biol Chem. 2002;277:5756–66.PubMedCrossRefGoogle Scholar
  87. 87.
    Fernandes RJ, Hirohata S, Engle JM, et al. Procollagen II amino propeptide processing by ADAMTS-3: insights on dermatosparaxis. J Biol Chem. 2001;276:31502–9.PubMedCrossRefGoogle Scholar
  88. 88.
    Rao N, Ke Z, Liu H, et al. ADAMTS4 and its proteolytic fragments differentially affect melanoma growth and angiogenesis in mice. Int J Cancer. 2013;133:294–306.PubMedCrossRefGoogle Scholar
  89. 89.
    Nissinen L, Kähäri V-M. ADAMTS5. Am J Pathol. 2012;181:743–5.PubMedCrossRefGoogle Scholar
  90. 90.
    Choi GCG, Li J, Wang Y, et al. The metalloprotease ADAMTS8 displays antitumor properties through antagonizing EGFR–MEK–ERK signaling and is silenced in carcinomas by CpG methylation. Mol Cancer Res. 2014;12:228–38.PubMedCrossRefGoogle Scholar
  91. 91.
    Du W, Wang S, Zhou Q, et al. ADAMTS9 is a functional tumor suppressor through inhibiting AKT/mTOR pathway and associated with poor survival in gastric cancer. Oncogene. 2013;32:3319–28.PubMedCrossRefGoogle Scholar
  92. 92.
    El Hour M, Moncada-Pazos A, Blacher S, et al. Higher sensitivity of Adamts12-deficient mice to tumor growth and angiogenesis. Oncogene. 2010;29:3025–32.PubMedCrossRefGoogle Scholar
  93. 93.
    Motto DG, Chauhan AK, Zhu G, et al. Shigatoxin triggers thrombotic thrombocytopenic purpura in genetically susceptible ADAMTS13-deficient mice. J Clin Invest. 2005;115:2752–61.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Al Nakouzi N, Bawa O, Le Pape A, et al. The IGR-CaP1 xenograft model recapitulates mixed osteolytic/blastic bone lesions observed in metastatic prostate cancer. Neoplasia (New York, NY). 2012;14:376.CrossRefGoogle Scholar
  95. 95.
    Viloria CG, Obaya AJ, Moncada-Pazos A, et al. Genetic inactivation of ADAMTS15 metalloprotease in human colorectal cancer. Cancer Res. 2009;69:4926–34.PubMedCrossRefGoogle Scholar
  96. 96.
    Murphy G, Reynolds JJ, Bretz U, et al. Partial purification of collagenase and gelatinase from human polymorphonuclear leucocytes. Analysis of their actions on soluble and insoluble collagens. Biochem J. 1982;203:209–21.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Nagase H, Woessner JF. Matrix metalloproteinases. J Biol Chem. 1999;274:21491–4.PubMedCrossRefGoogle Scholar
  98. 98.
    Fanjul-Fernandez M, Folgueras AR, Fueyo A, et al. Matrix metalloproteinase Mmp-1a is dispensable for normal growth and fertility in mice and promotes lung cancer progression by modulating inflammatory responses. J Biol Chem. 2013;288:14647–56.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Itoh T, Tanioka M, Yoshida H, et al. Reduced angiogenesis and tumor progression in gelatinase A-deficient mice. Cancer Res. 1998;58:1048–51.PubMedGoogle Scholar
  100. 100.
    Sternlicht MD, Lochter A, Sympson CJ, et al. The stromal proteinase MMP3/stromelysin-1 promotes mammary carcinogenesis. Cell. 1999;98:137–46.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Crawford HC, Scoggins CR, Washington MK, et al. Matrix metalloproteinase-7 is expressed by pancreatic cancer precursors and regulates acinar-to-ductal metaplasia in exocrine pancreas. J Clin Invest. 2002;109:1437–44.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Balbin M, Fueyo A, Tester AM, et al. Loss of collagenase-2 confers increased skin tumor susceptibility to male mice. Nat Genet. 2003;35:252–7.PubMedCrossRefGoogle Scholar
  103. 103.
    Itoh T, Tanioka M, Matsuda H, et al. Experimental metastasis is suppressed in MMP-9-deficient mice. Clin Exp Metastasis. 1999;17:177–81.PubMedCrossRefGoogle Scholar
  104. 104.
    Koller FL, Dozier EA, Nam KT, et al. Lack of MMP10 exacerbates experimental colitis and promotes development of inflammation-associated colonic dysplasia. Lab Invest. 2012;92:1749–59.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Masson R, Lefebvre O, Noel A, et al. In vivo evidence that the stromelysin-3 metalloproteinase contributes in a paracrine manner to epithelial cell malignancy. J Cell Biol. 1998;140:1535–41.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Houghton AM, Grisolano JL, Baumann ML, et al. Macrophage elastase (matrix metalloproteinase-12) suppresses growth of lung metastases. Cancer Res. 2006;66:6149–55.PubMedCrossRefGoogle Scholar
  107. 107.
    Zigrino P, Kuhn I, Bauerle T, et al. Stromal expression of MMP-13 is required for melanoma invasion and metastasis. J Invest Dermatol. 2009;129:2686–93.PubMedCrossRefGoogle Scholar
  108. 108.
    Zhou Z, Apte SS, Soininen R, et al. Impaired endochondral ossification and angiogenesis in mice deficient in membrane-type matrix metalloproteinase I. Proc Natl Acad Sci U S A. 2000;97:4052–7.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Szabova L, Son MY, Shi J, et al. Membrane-type MMPs are indispensable for placental labyrinth formation and development. Blood. 2010;116:5752–61.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Tatti O, Arjama M, Ranki A, et al. Membrane-type-3 matrix metalloproteinase (MT3-MMP) functions as a matrix composition-dependent effector of melanoma cell invasion. PLoS One. 2011;6:e28325.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Rikimaru A, Komori K, Sakamoto T, et al. Establishment of an MT4-MMP-deficient mouse strain representing an efficient tracking system for MT4-MMP/MMP-17 expression in vivo using β-galactosidase. Genes Cells. 2007;12:1091–100.PubMedCrossRefGoogle Scholar
  112. 112.
    Pendas AM, Folgueras AR, Llano E, et al. Diet-induced obesity and reduced skin cancer susceptibility in matrix metalloproteinase 19-deficient mice. Mol Cell Biol. 2004;24:5304–13.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Caterina JJ, Skobe Z, Shi J, et al. Enamelysin (matrix metalloproteinase 20)-deficient mice display an amelogenesis imperfecta phenotype. J Biol Chem. 2002;277:49598–604.PubMedCrossRefGoogle Scholar
  114. 114.
    Wu T, Li Y, Lu J, et al. Increased MMP-21 expression is associated with poor overall survival of patients with gastric cancer. Med Oncol. 2013;30:323.PubMedCrossRefGoogle Scholar
  115. 115.
    Krogsgaard M, Ma M, Friedman E, et al., editors. An analysis of altered melanoma matrix metalloproteinase-23 (MMP-23) expression and response to immune biologic therapy. J Clin Oncol. 2011.Google Scholar
  116. 116.
    Folgueras AR, Valdes-Sanchez T, Llano E, et al. Metalloproteinase MT5-MMP is an essential modulator of neuro-immune interactions in thermal pain stimulation. Proc Natl Acad Sci U S A. 2009;106:16451–6.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Sun Q, Weber CR, Sohail A, et al. MMP25 (MT6-MMP) is highly expressed in human colon cancer, promotes tumor growth, and exhibits unique biochemical properties. J Biol Chem. 2007;282:21998–2010.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Bister V, Skoog T, Virolainen S, et al. Increased expression of matrix metalloproteinases-21 and -26 and TIMP-4 in pancreatic adenocarcinoma. Mod Pathol. 2007;20:1128–40.PubMedCrossRefGoogle Scholar
  119. 119.
    Palavalli LH, Prickett TD, Wunderlich JR, et al. Analysis of the matrix metalloproteinase family reveals that MMP8 is often mutated in melanoma. Nat Genet. 2009;41:518–20.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Manicone AM, Birkland TP, Lin M, et al. Epilysin (MMP-28) restrains early macrophage recruitment in Pseudomonas aeruginosa pneumonia. J Immunol. 2009;182:3866–76.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Houghton AM, Hartzell WO, Robbins CS, et al. Macrophage elastase kills bacteria within murine macrophages. Nature. 2009;460:637–41.PubMedPubMedCentralGoogle Scholar
  122. 122.
    Marchant DJ, Bellac CL, Moraes TJ, et al. A new transcriptional role for matrix metalloproteinase-12 in antiviral immunity. Nat Med. 2014;20:493–502.PubMedCrossRefGoogle Scholar
  123. 123.
    Senior RM, Griffin GL, Mecham RP. Chemotactic activity of elastin-derived peptides. J Clin Invest. 1980;66:859–62.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Hunninghake GW, Davidson JM, Rennard S, et al. Elastin fragments attract macrophage precursors to diseased sites in pulmonary emphysema. Science. 1981;212:925–7.PubMedCrossRefGoogle Scholar
  125. 125.
    Khokha R, Murthy A, Weiss A. Metalloproteinases and their natural inhibitors in inflammation and immunity. Nat Rev Immunol. 2013;13:649–65.PubMedCrossRefGoogle Scholar
  126. 126.
    Iimuro Y, Nishio T, Morimoto T, et al. Delivery of matrix metalloproteinase-1 attenuates established liver fibrosis in the rat. Gastroenterology. 2003;124:445–58.PubMedCrossRefGoogle Scholar
  127. 127.
    McQuibban GA, Butler GS, Gong JH, et al. Matrix metalloproteinase activity inactivates the CXC chemokine stromal cell-derived factor-1. J Biol Chem. 2001;276:43503–8.PubMedCrossRefGoogle Scholar
  128. 128.
    Ponte AL, Ribeiro-Fleury T, Chabot V, et al. Granulocyte-colony-stimulating factor stimulation of bone marrow mesenchymal stromal cells promotes CD34+ cell migration via a matrix metalloproteinase-2-dependent mechanism. Stem Cells Dev. 2012;21:3162–72.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Gonzalez-Arriaga P, Pascual T, Garcia-Alvarez A, et al. Genetic polymorphisms in MMP 2, 9 and 3 genes modify lung cancer risk and survival. BMC Cancer. 2012;12:121.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Moore C, Shen XD, Gao F, et al. Fibronectin-α4β1 integrin interactions regulate metalloproteinase-9 expression in steatotic liver ischemia and reperfusion injury. Am J Pathol. 2007;170:567–77.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Levesque JP, Hendy J, Takamatsu Y, et al. Mobilization by either cyclophosphamide or granulocyte colony-stimulating factor transforms the bone marrow into a highly proteolytic environment. Exp Hematol. 2002;30:440–9.PubMedCrossRefGoogle Scholar
  132. 132.
    Calabro SR, Maczurek AE, Morgan AJ, et al. Hepatocyte produced matrix metalloproteinases are regulated by CD147 in liver fibrogenesis. PLoS One. 2014;9:e90571.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Iredale JP, Thompson A, Henderson NC. Extracellular matrix degradation in liver fibrosis: biochemistry and regulation. Biochim Biophys Acta. 1832;2013:876–83.Google Scholar
  134. 134.
    Yang L, Kwon J, Popov Y, et al. Vascular endothelial growth factor promotes fibrosis resolution and repair in mice. Gastroenterology. 2014;146:1339-50.e1.PubMedGoogle Scholar
  135. 135.
    Nagano O, Murakami D, Hartmann D, et al. Cell-matrix interaction via CD44 is independently regulated by different metalloproteinases activated in response to extracellular Ca(2+) influx and PKC activation. J Cell Biol. 2004;165:893–902.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Gavert N, Sheffer M, Raveh S, et al. Expression of L1-CAM and ADAM10 in human colon cancer cells induces metastasis. Cancer Res. 2007;67:7703–12.PubMedCrossRefGoogle Scholar
  137. 137.
    Raucci A, Cugusi S, Antonelli A, et al. A soluble form of the receptor for advanced glycation endproducts (RAGE) is produced by proteolytic cleavage of the membrane-bound form by the sheddase a disintegrin and metalloprotease 10 (ADAM10). FASEB J. 2008;22:3716–27.PubMedCrossRefGoogle Scholar
  138. 138.
    Peduto L, Reuter VE, Sehara-Fujisawa A, et al. ADAM12 is highly expressed in carcinoma-associated stroma and is required for mouse prostate tumor progression. Oncogene. 2006;25:5462–6.PubMedCrossRefGoogle Scholar
  139. 139.
    Ieguchi K, Tomita T, Omori T, et al. ADAM12-cleaved ephrin-A1 contributes to lung metastasis. Oncogene. 2014;33:2179–90.PubMedCrossRefGoogle Scholar
  140. 140.
    Sun C, Beard Jr RS, McLean DL, et al. ADAM15 deficiency attenuates pulmonary hyperpermeability and acute lung injury in lipopolysaccharide-treated mice. Am J Physiol Lung Cell Mol Physiol. 2013;304:L135–42.PubMedCrossRefGoogle Scholar
  141. 141.
    Horiuchi K, Kimura T, Miyamoto T, et al. Cutting edge: TNF-α-converting enzyme (TACE/ADAM17) inactivation in mouse myeloid cells prevents lethality from endotoxin shock. J Immunol. 2007;179:2686–9.PubMedCrossRefGoogle Scholar
  142. 142.
    Kassiri Z, Oudit GY, Sanchez O, et al. Combination of tumor necrosis factor-α ablation and matrix metalloproteinase inhibition prevents heart failure after pressure overload in tissue inhibitor of metalloproteinase-3 knock-out mice. Circ Res. 2005;97:380–90.PubMedCrossRefGoogle Scholar
  143. 143.
    Lee NV, Sato M, Annis DS, et al. ADAMTS1 mediates the release of antiangiogenic polypeptides from TSP1 and 2. EMBO J. 2006;25:5270–83.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Luque A, Carpizo DR, Iruela-Arispe ML. ADAMTS1/METH1 inhibits endothelial cell proliferation by direct binding and sequestration of VEGF165. J Biol Chem. 2003;278:23656–65.PubMedCrossRefGoogle Scholar
  145. 145.
    Lee YJ, Koch M, Karl D, et al. Variable inhibition of thrombospondin 1 against liver and lung metastases through differential activation of metalloproteinase ADAMTS1. Cancer Res. 2010;70:948–56.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Ricciardelli C, Brooks JH, Suwiwat S, et al. Regulation of stromal versican expression by breast cancer cells and importance to relapse-free survival in patients with node-negative primary breast cancer. Clin Cancer Res. 2002;8:1054–60.PubMedGoogle Scholar
  147. 147.
    Ricciardelli C, Frewin KM, Tan Ide A, et al. The ADAMTS1 protease gene is required for mammary tumor growth and metastasis. Am J Pathol. 2011;179:3075–85.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Kim S, Takahashi H, Lin WW, et al. Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature. 2009;457:102–6.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Kesteloot F, Desmouliere A, Leclercq I, et al. ADAM metallopeptidase with thrombospondin type 1 motif 2 inactivation reduces the extent and stability of carbon tetrachloride-induced hepatic fibrosis in mice. Hepatology. 2007;46:1620–31.PubMedCrossRefGoogle Scholar
  150. 150.
    Dubail J, Kesteloot F, Deroanne C, et al. ADAMTS-2 functions as anti-angiogenic and anti-tumoral molecule independently of its catalytic activity. Cell Mol Life Sci. 2010;67:4213–32.PubMedCrossRefGoogle Scholar
  151. 151.
    Koo BH, Coe DM, Dixon LJ, et al. ADAMTS9 is a cell-autonomously acting, anti-angiogenic metalloprotease expressed by microvascular endothelial cells. Am J Pathol. 2010;176:1494–504.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Bestetti G, Stellari A, Lattuada A, et al. ADAMTS 13 genotype and vWF protease activity in an Italian family with TTP. Thromb Haemost. 2003;90:955–6.PubMedGoogle Scholar
  153. 153.
    Koo BH, Oh D, Chung SY, et al. Deficiency of von Willebrand factor-cleaving protease activity in the plasma of malignant patients. Thromb Res. 2002;105:471–6.PubMedCrossRefGoogle Scholar
  154. 154.
    Hotary K, Li XY, Allen E, et al. A cancer cell metalloprotease triad regulates the basement membrane transmigration program. Genes Dev. 2006;20:2673–86.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Piccard H, Van den Steen PE, Opdenakker G. Hemopexin domains as multifunctional liganding modules in matrix metalloproteinases and other proteins. J Leukoc Biol. 2007;81:870–92.PubMedCrossRefGoogle Scholar
  156. 156.
    Roten L, Nemoto S, Simsic J, et al. Effects of gene deletion of the tissue inhibitor of the matrix metalloproteinase-type 1 (TIMP-1) on left ventricular geometry and function in mice. J Mol Cell Cardiol. 2000;32:109–20.PubMedCrossRefGoogle Scholar
  157. 157.
    Wang Z, Juttermann R, Soloway PD. TIMP-2 is required for efficient activation of proMMP-2 in vivo. J Biol Chem. 2000;275:26411–5.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Shynlova O, Bortolini MA, Alarab M. Genes responsible for vaginal extracellular matrix metabolism are modulated by women’s reproductive cycle and menopause. Int Braz J Urol: Off J Braz Soc Urol. 2013;39:257–67.Google Scholar
  159. 159.
    Aplin AC, Zhu WH, Fogel E, et al. Vascular regression and survival are differentially regulated by MT1-MMP and TIMPs in the aortic ring model of angiogenesis. Am J Physiol Cell Physiol. 2009;297:C471–80.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Koziol A, Gonzalo P, Mota A, et al. The protease MT1-MMP drives a combinatorial proteolytic program in activated endothelial cells. FASEB J. 2012;26:4481–94.PubMedCrossRefGoogle Scholar
  161. 161.
    Oh J, Takahashi R, Kondo S, et al. The membrane-anchored MMP inhibitor RECK is a key regulator of extracellular matrix integrity and angiogenesis. Cell. 2001;107:789–800.PubMedCrossRefGoogle Scholar
  162. 162.
    Monteiro P, Rosse C, Castro-Castro A, et al. Endosomal WASH and exocyst complexes control exocytosis of MT1-MMP at invadopodia. J Cell Biol. 2013;203:1063–79.PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Becker DP, Barta TE, Bedell LJ, et al. Orally active MMP-1 sparing α-tetrahydropyranyl and α-piperidinyl sulfone matrix metalloproteinase (MMP) inhibitors with efficacy in cancer, arthritis, and cardiovascular disease. J Med Chem. 2010;53:6653–80.PubMedCrossRefGoogle Scholar
  164. 164.
    Engel CK, Pirard B, Schimanski S, et al. Structural basis for the highly selective inhibition of MMP-13. Chem Biol. 2005;12:181–9.PubMedCrossRefGoogle Scholar
  165. 165.
    Gooljarsingh LT, Lakdawala A, Coppo F, et al. Characterization of an exosite binding inhibitor of matrix metalloproteinase 13. Protein Sci. 2008;17:66–71.PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Lauer-Fields JL, Minond D, Chase PS, et al. High throughput screening of potentially selective MMP-13 exosite inhibitors utilizing a triple-helical FRET substrate. Bioorg Med Chem. 2009;17:990–1005.PubMedCrossRefGoogle Scholar
  167. 167.
    Tian L, Zhang Y, Chen Y, et al. EMMPRIN is an independent negative prognostic factor for patients with astrocytic glioma. PLoS One. 2013;8:e58069.PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Sameshima T, Nabeshima K, Toole BP, et al. Glioma cell extracellular matrix metalloproteinase inducer (EMMPRIN) (CD147) stimulates production of membrane-type matrix metalloproteinases and activated gelatinase A in co-cultures with brain-derived fibroblasts. Cancer Lett. 2000;157:177–84.PubMedCrossRefGoogle Scholar
  169. 169.
    Egawa N, Koshikawa N, Tomari T, et al. Membrane type 1 matrix metalloproteinase (MT1-MMP/MMP-14) cleaves and releases a 22-kDa extracellular matrix metalloproteinase inducer (EMMPRIN) fragment from tumor cells. J Biol Chem. 2006;281:37576–85.PubMedCrossRefGoogle Scholar
  170. 170.
    Liang Q, Xiong H, Gao G, et al. Inhibition of basigin expression in glioblastoma cell line via antisense RNA reduces tumor cell invasion and angiogenesis. Cancer Biol Ther. 2005;4:759–62.PubMedCrossRefGoogle Scholar
  171. 171.
    Klein CA, Seidl S, Petat-Dutter K, et al. Combined transcriptome and genome analysis of single micrometastatic cells. Nat Biotechnol. 2002;20:387–92.PubMedCrossRefGoogle Scholar
  172. 172.
    Hotary KB, Yana I, Sabeh F, et al. Matrix metalloproteinases (MMPs) regulate fibrin-invasive activity via MT1-MMP-dependent and -independent processes. J Exp Med. 2002;195:295–308.PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Rebustini IT, Myers C, Lassiter KS, et al. MT2-MMP-dependent release of collagen IV NC1 domains regulates submandibular gland branching morphogenesis. Dev Cell. 2009;17:482–93.PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    d’Ortho MP, Will H, Atkinson S, et al. Membrane-type matrix metalloproteinases 1 and 2 exhibit broad-spectrum proteolytic capacities comparable to many matrix metalloproteinases. Eur J Biochem. 1997;250:751–7.PubMedCrossRefGoogle Scholar
  175. 175.
    Butler GS, Will H, Atkinson SJ, et al. Membrane-type-2 matrix metalloproteinase can initiate the processing of progelatinase A and is regulated by the tissue inhibitors of metalloproteinases. Eur J Biochem. 1997;244:653–7.PubMedCrossRefGoogle Scholar
  176. 176.
    Chabottaux V, Ricaud S, Host L, et al. Membrane-type 4 matrix metalloproteinase (MT4-MMP) induces lung metastasis by alteration of primary breast tumour vascular architecture. J Cell Mol Med. 2009;13:4002–13.PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Host L, Paye A, Detry B, et al. The proteolytic activity of MT4-MMP is required for its pro-angiogenic and pro-metastatic promoting effects. Int J Cancer. 2012;131:1537–48.PubMedCrossRefGoogle Scholar
  178. 178.
    Velasco G, Cal S, Merlos-Suarez A, et al. Human MT6-matrix metalloproteinase: identification, progelatinase A activation, and expression in brain tumors. Cancer Res. 2000;60:877–82.PubMedGoogle Scholar
  179. 179.
    Shiryaev SA, Savinov AY, Cieplak P, et al. Matrix metalloproteinase proteolysis of the myelin basic protein isoforms is a source of immunogenic peptides in autoimmune multiple sclerosis. PLoS One. 2009;4:e4952.PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    English WR, Velasco G, Stracke JO, et al. Catalytic activities of membrane-type 6 matrix metalloproteinase (MMP25). FEBS Lett. 2001;491:137–42.PubMedCrossRefGoogle Scholar
  181. 181.
    Starr AE, Bellac CL, Dufour A, et al. Biochemical characterization and N-terminomics analysis of leukolysin, the membrane-type 6 matrix metalloprotease (MMP25): chemokine and vimentin cleavages enhance cell migration and macrophage phagocytic activities. J Biol Chem. 2012;287:13382–95.PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Maniotis AJ, Folberg R, Hess A, et al. Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am J Pathol. 1999;155:739–52.PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Francescone R, Scully S, Bentley B, et al. Glioblastoma-derived tumor cells induce vasculogenic mimicry through Flk-1 protein activation. J Biol Chem. 2012;287:24821–31.PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    Lugassy C, Eyden BP, Christensen L, et al. Angio-tumoral complex in human malignant melanoma characterised by free laminin: ultrastructural and immunohistochemical observations. J Submicrosc Cytol Pathol. 1997;29:19–28.PubMedGoogle Scholar
  185. 185.
    Cheng L, Huang Z, Zhou W, et al. Glioblastoma stem cells generate vascular pericytes to support vessel function and tumor growth. Cell. 2013;153:139–52.PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Day BW, Stringer BW, Al-Ejeh F, et al. EphA3 maintains tumorigenicity and is a therapeutic target in glioblastoma multiforme. Cancer Cell. 2013;23:238–48.PubMedCrossRefGoogle Scholar
  187. 187.
    Eyler CE, Wu Q, Yan K, et al. Glioma stem cell proliferation and tumor growth are promoted by nitric oxide synthase-2. Cell. 2011;146:53–66.PubMedPubMedCentralCrossRefGoogle Scholar
  188. 188.
    Liebig C, Ayala G, Wilks JA, et al. Perineural invasion in cancer: a review of the literature. Cancer. 2009;115:3379–91.PubMedCrossRefGoogle Scholar
  189. 189.
    Magnon C, Hall SJ, Lin J, et al. Autonomic nerve development contributes to prostate cancer progression. Science. 2013;341:1236361.PubMedCrossRefGoogle Scholar
  190. 190.
    Ellwood-Yen K, Graeber TG, Wongvipat J, et al. Myc-driven murine prostate cancer shares molecular features with human prostate tumors. Cancer Cell. 2003;4:223–38.PubMedCrossRefGoogle Scholar
  191. 191.
    Simon RH, Lovett 3rd EJ, Tomaszek D, et al. Electrical stimulation of the midbrain mediates metastatic tumor growth. Science. 1980;209:1132–3.PubMedCrossRefGoogle Scholar
  192. 192.
    Zhu Z, Friess H, diMola FF, et al. Nerve growth factor expression correlates with perineural invasion and pain in human pancreatic cancer. J Clin Oncol. 1999;17:2419–28.PubMedGoogle Scholar
  193. 193.
    Strutz F, Okada H, Lo CW, et al. Identification and characterization of a fibroblast marker: FSP1. J Cell Biol. 1995;130:393–405.PubMedCrossRefGoogle Scholar
  194. 194.
    Olumi AF, Grossfeld GD, Hayward SW, et al. Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res. 1999;59:5002–11.PubMedGoogle Scholar
  195. 195.
    Orimo A, Gupta PB, Sgroi DC, et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell. 2005;121:335–48.PubMedCrossRefGoogle Scholar
  196. 196.
    Hosein AN, Wu M, Arcand SL, et al. Breast carcinoma–associated fibroblasts rarely contain p53 mutations or chromosomal aberrations. Cancer Res. 2010;70:5770–7.PubMedCrossRefGoogle Scholar
  197. 197.
    Kondoh M, Ohga N, Akiyama K, et al. Hypoxia-induced reactive oxygen species cause chromosomal abnormalities in endothelial cells in the tumor microenvironment. PLoS One. 2013;8:e80349.PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Vegran F, Boidot R, Michiels C, et al. Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF-kappaB/IL-8 pathway that drives tumor angiogenesis. Cancer Res. 2011;71:2550–60.PubMedCrossRefGoogle Scholar
  199. 199.
    Plaks V, Kong N, Werb Z. The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells? Cell Stem Cell. 2015;16:225–38.PubMedPubMedCentralCrossRefGoogle Scholar
  200. 200.
    Schofield R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells. 1978;4:7–25.PubMedGoogle Scholar
  201. 201.
    Chitteti BR, Kobayashi M, Cheng Y, et al. CD166 regulates human and murine hematopoietic stem cells and the hematopoietic niche. Blood. 2014;124:519–29.PubMedPubMedCentralCrossRefGoogle Scholar
  202. 202.
    Chow A, Lucas D, Hidalgo A, et al. Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche. J Exp Med. 2011;208:261–71.PubMedPubMedCentralCrossRefGoogle Scholar
  203. 203.
    Arai F, Hirao A, Ohmura M, et al. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell. 2004;118:149–61.PubMedCrossRefGoogle Scholar
  204. 204.
    Yoshihara H, Arai F, Hosokawa K, et al. Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche. Cell Stem Cell. 2007;1:685–97.PubMedCrossRefGoogle Scholar
  205. 205.
    Zou P, Yoshihara H, Hosokawa K, et al. p57Kip2 and p27Kip1 cooperate to maintain hematopoietic stem cell quiescence through interactions with Hsc70. Cell Stem Cell. 2011;9:247–61.PubMedCrossRefGoogle Scholar
  206. 206.
    Kiel MJ, Yilmaz ÖH, Iwashita T, et al. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell. 2005;121:1109–21.PubMedCrossRefGoogle Scholar
  207. 207.
    Tsukahara F, Maru Y. Identification of novel nuclear export and nuclear localization-related signals in human heat shock cognate protein 70. J Biol Chem. 2004;279:8867–72.PubMedCrossRefGoogle Scholar
  208. 208.
    Reya T, Duncan AW, Ailles L, et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature. 2003;423:409–14.PubMedCrossRefGoogle Scholar
  209. 209.
    Nemeth MJ, Mak KK, Yang Y, et al. β-Catenin expression in the bone marrow microenvironment is required for long-term maintenance of primitive hematopoietic cells. Stem Cells. 2009;27:1109–19.PubMedPubMedCentralCrossRefGoogle Scholar
  210. 210.
    Sugimura R, He XC, Venkatraman A, et al. Noncanonical Wnt signaling maintains hematopoietic stem cells in the niche. Cell. 2012;150:351–65.PubMedPubMedCentralCrossRefGoogle Scholar
  211. 211.
    Sugiyama T, Kohara H, Noda M, et al. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity. 2006;25:977–88.PubMedCrossRefGoogle Scholar
  212. 212.
    Greenbaum A, Hsu YM, Day RB, et al. CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature. 2013;495:227–30.PubMedPubMedCentralCrossRefGoogle Scholar
  213. 213.
    Seandel M, Butler JM, Kobayashi H, et al. Generation of a functional and durable vascular niche by the adenoviral E4ORF1 gene. Proc Natl Acad Sci U S A. 2008;105:19288–93.PubMedPubMedCentralCrossRefGoogle Scholar
  214. 214.
    Butler JM, Nolan DJ, Vertes EL, et al. Endothelial cells are essential for the self-renewal and repopulation of notch-dependent hematopoietic stem cells. Cell Stem Cell. 2010;6:251–64.PubMedPubMedCentralCrossRefGoogle Scholar
  215. 215.
    Rangarajan A, Talora C, Okuyama R, et al. Notch signaling is a direct determinant of keratinocyte growth arrest and entry into differentiation. EMBO J. 2001;20:3427–36.PubMedPubMedCentralCrossRefGoogle Scholar
  216. 216.
    Hu J, Van Valckenborgh E, Menu E, et al. Understanding the hypoxic niche of multiple myeloma: therapeutic implications and contributions of mouse models. Dis Model Mech. 2012;5:763–71.PubMedPubMedCentralCrossRefGoogle Scholar
  217. 217.
    Harrison JS, Rameshwar P, Chang V, et al. Oxygen saturation in the bone marrow of healthy volunteers. Blood. 2002;99:394.PubMedCrossRefGoogle Scholar
  218. 218.
    Spencer JA, Ferraro F, Roussakis E, et al. Direct measurement of local oxygen concentration in the bone marrow of live animals. Nature. 2014;508:269–73.PubMedPubMedCentralCrossRefGoogle Scholar
  219. 219.
    Takubo K, Goda N, Yamada W, et al. Regulation of the HIF-1α level is essential for hematopoietic stem cells. Cell Stem Cell. 2010;7:391–402.PubMedCrossRefGoogle Scholar
  220. 220.
    Mantel CR, O’Leary HA, Chitteti BR, et al. Enhancing hematopoietic stem cell transplantation efficacy by mitigating oxygen shock. Cell. 2015;161:1553–65.PubMedPubMedCentralCrossRefGoogle Scholar
  221. 221.
    He Q, Zhang C, Wang L, et al. Inflammatory signaling regulates hematopoietic stem and progenitor cell emergence in vertebrates. Blood. 2015;125:1098–106.PubMedCrossRefGoogle Scholar
  222. 222.
    Dutta P, Hoyer FF, Grigoryeva LS, et al. Macrophages retain hematopoietic stem cells in the spleen via VCAM-1. J Exp Med. 2015;212:497–512.PubMedPubMedCentralCrossRefGoogle Scholar
  223. 223.
    Ehninger A, Trumpp A. The bone marrow stem cell niche grows up: mesenchymal stem cells and macrophages move in. J Exp Med. 2011;208:421–8.PubMedPubMedCentralCrossRefGoogle Scholar
  224. 224.
    Mendez-Ferrer S, Michurina TV, Ferraro F, et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature. 2010;466:829–34.PubMedPubMedCentralCrossRefGoogle Scholar
  225. 225.
    Pevsner-Fischer M, Morad V, Cohen-Sfady M, et al. Toll-like receptors and their ligands control mesenchymal stem cell functions. Blood. 2007;109:1422–32.PubMedCrossRefGoogle Scholar
  226. 226.
    Yamazaki K, Allen TD. Ultrastructural morphometric study of efferent nerve terminals on murine bone marrow stromal cells, and the recognition of a novel anatomical unit: the “neuro-reticular complex”. Am J Anat. 1990;187:261–76.PubMedCrossRefGoogle Scholar
  227. 227.
    Katayama Y, Battista M, Kao WM, et al. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell. 2006;124:407–21.PubMedCrossRefGoogle Scholar
  228. 228.
    Park D, Xiang AP, Mao FF, et al. Nestin is required for the proper self-renewal of neural stem cells. Stem Cells. 2010;28:2162–71.PubMedCrossRefGoogle Scholar
  229. 229.
    Wilson A, Murphy MJ, Oskarsson T, et al. c-Myc controls the balance between hematopoietic stem cell self-renewal and differentiation. Genes Dev. 2004;18:2747–63.PubMedPubMedCentralCrossRefGoogle Scholar
  230. 230.
    Taoudi S, Bee T, Hilton A, et al. ERG dependence distinguishes developmental control of hematopoietic stem cell maintenance from hematopoietic specification. Genes Dev. 2011;25:251–62.PubMedPubMedCentralCrossRefGoogle Scholar
  231. 231.
    Adams GB, Chabner KT, Alley IR, et al. Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor. Nature. 2006;439:599–603.PubMedCrossRefGoogle Scholar
  232. 232.
    De Bock K, Georgiadou M, Carmeliet P. Role of endothelial cell metabolism in vessel sprouting. Cell Metab. 2013;18:634–47.PubMedCrossRefGoogle Scholar
  233. 233.
    De Bock K, Georgiadou M, Schoors S, et al. Role of PFKFB3-driven glycolysis in vessel sprouting. Cell. 2013;154:651–63.PubMedCrossRefGoogle Scholar
  234. 234.
    Peier M, Walpen T, Christofori G, et al. Sprouty2 expression controls endothelial monolayer integrity and quiescence. Angiogenesis. 2013;16:455–68.PubMedCrossRefGoogle Scholar
  235. 235.
    Sundlisæter E, Edelmann RJ, Hol J, et al. The alarmin IL-33 is a notch target in quiescent endothelial cells. Am J Pathol. 2012;181:1099–111.PubMedCrossRefGoogle Scholar
  236. 236.
    Sawada J, Urakami T, Li F, et al. Small GTPase R-Ras regulates integrity and functionality of tumor blood vessels. Cancer Cell. 2012;22:235–49.PubMedPubMedCentralCrossRefGoogle Scholar
  237. 237.
    Rossi E, Sanz-Rodriguez F, Eleno N, et al. Endothelial endoglin is involved in inflammation: role in leukocyte adhesion and transmigration. Blood. 2013;121:403–15.PubMedCrossRefGoogle Scholar
  238. 238.
    Park S, Dimaio TA, Liu W, et al. Endoglin regulates the activation and quiescence of endothelium by participating in canonical and non-canonical TGF-β signaling pathways. J Cell Sci. 2013;126:1392–405.PubMedPubMedCentralCrossRefGoogle Scholar
  239. 239.
    McAllister KA, Baldwin MA, Thukkani AK, et al. Six novel mutations in the endoglin gene in hereditary hemorrhagic telangiectasia type 1 suggest a dominant-negative effect of receptor function. Hum Mol Genet. 1995;4:1983–5.PubMedCrossRefGoogle Scholar
  240. 240.
    Schleicher M, Shepherd BR, Suarez Y, et al. Prohibitin-1 maintains the angiogenic capacity of endothelial cells by regulating mitochondrial function and senescence. J Cell Biol. 2008;180:101–12.PubMedPubMedCentralCrossRefGoogle Scholar
  241. 241.
    Maier JA, Voulalas P, Roeder D, et al. Extension of the life-span of human endothelial cells by an interleukin-1 α antisense oligomer. Science. 1990;249:1570–4.PubMedCrossRefGoogle Scholar
  242. 242.
    Orjalo AV, Bhaumik D, Gengler BK, et al. Cell surface-bound IL-1α is an upstream regulator of the senescence-associated IL-6/IL-8 cytokine network. Proc Natl Acad Sci U S A. 2009;106:17031–6.PubMedPubMedCentralCrossRefGoogle Scholar
  243. 243.
    Abderrahmani R, Francois A, Buard V, et al. PAI-1-dependent endothelial cell death determines severity of radiation-induced intestinal injury. PLoS One. 2012;7:e35740.PubMedPubMedCentralCrossRefGoogle Scholar
  244. 244.
    Kortlever RM, Higgins PJ, Bernards R. Plasminogen activator inhibitor-1 is a critical downstream target of p53 in the induction of replicative senescence. Nat Cell Biol. 2006;8:877–84.PubMedPubMedCentralCrossRefGoogle Scholar
  245. 245.
    Boulanger CA, Smith GH. Reducing mammary cancer risk through premature stem cell senescence. Oncogene. 2001;20:2264–72.PubMedCrossRefGoogle Scholar
  246. 246.
    Chaffer CL, Marjanovic ND, Lee T, et al. Poised chromatin at the ZEB1 promoter enables breast cancer cell plasticity and enhances tumorigenicity. Cell. 2013;154:61–74.PubMedPubMedCentralCrossRefGoogle Scholar
  247. 247.
    Cheung TH, Rando TA. Molecular regulation of stem cell quiescence. Nat Rev Mol Cell Biol. 2013;14:329–40.PubMedCrossRefGoogle Scholar
  248. 248.
    Taliaferro-Smith L, Nagalingam A, Zhong D, et al. LKB1 is required for adiponectin-mediated modulation of AMPK-S6K axis and inhibition of migration and invasion of breast cancer cells. Oncogene. 2009;28:2621–33.PubMedPubMedCentralCrossRefGoogle Scholar
  249. 249.
    Hockel M, Vaupel P. Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst. 2001;93:266–76.PubMedCrossRefGoogle Scholar
  250. 250.
    Ng KP, Manjeri A, Lee KL, et al. Physiologic hypoxia promotes maintenance of CML stem cells despite effective BCR-ABL1 inhibition. Blood. 2014;123:3316–26.PubMedCrossRefGoogle Scholar
  251. 251.
    Colla S, Storti P, Donofrio G, et al. Low bone marrow oxygen tension and hypoxia-inducible factor-1α overexpression characterize patients with multiple myeloma: role on the transcriptional and proangiogenic profiles of CD138(+) cells. Leukemia. 2010;24:1967–70.PubMedCrossRefGoogle Scholar
  252. 252.
    Hu J, Handisides DR, Van Valckenborgh E, et al. Targeting the multiple myeloma hypoxic niche with TH-302, a hypoxia-activated prodrug. Blood. 2010;116:1524–7.PubMedCrossRefGoogle Scholar
  253. 253.
    Raje NS, Yee AJ, Roodman GD. Advances in supportive care for multiple myeloma. J Natl Compr Canc Netw. 2014;12:502–11.PubMedGoogle Scholar
  254. 254.
    Kool MM, Galac S, Kooistra HS, et al. Expression of angiogenesis-related genes in canine cortisol-secreting adrenocortical tumors. Domest Anim Endocrinol. 2014;47:73–82.PubMedCrossRefGoogle Scholar
  255. 255.
    Erickson-Miller CL, Pillarisetti K, Kirchner J, et al. Low or undetectable TPO receptor expression in malignant tissue and cell lines derived from breast, lung, and ovarian tumors. BMC Cancer. 2012;12:405.PubMedPubMedCentralCrossRefGoogle Scholar
  256. 256.
    Joeckel E, Haber T, Prawitt D, et al. High calcium concentration in bones promotes bone metastasis in renal cell carcinomas expressing calcium-sensing receptor. Mol Cancer. 2014;13:42.PubMedPubMedCentralCrossRefGoogle Scholar
  257. 257.
    Adhikari AS, Agarwal N, Wood BM, et al. CD117 and Stro-1 identify osteosarcoma tumor-initiating cells associated with metastasis and drug resistance. Cancer Res. 2010;70:4602–12.PubMedPubMedCentralCrossRefGoogle Scholar
  258. 258.
    Humphries MJ, Yamada KM, Olden K. Investigation of the biological effects of anti-cell adhesive synthetic peptides that inhibit experimental metastasis of B16-F10 murine melanoma cells. J Clin Invest. 1988;81:782–90.PubMedPubMedCentralCrossRefGoogle Scholar
  259. 259.
    Schmidt T, Kharabi Masouleh B, Loges S, et al. Loss or inhibition of stromal-derived PlGF prolongs survival of mice with imatinib-resistant Bcr-Abl1(+) leukemia. Cancer Cell. 2011;19:740–53.PubMedCrossRefGoogle Scholar
  260. 260.
    Rius J, Guma M, Schachtrup C, et al. NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1α. Nature. 2008;453:807–11.PubMedPubMedCentralCrossRefGoogle Scholar
  261. 261.
    Pantuck AJ, An J, Liu H, et al. NF-kappaB-dependent plasticity of the epithelial to mesenchymal transition induced by Von Hippel-Lindau inactivation in renal cell carcinomas. Cancer Res. 2010;70:752–61.PubMedCrossRefGoogle Scholar
  262. 262.
    Walmsley SR, Print C, Farahi N, et al. Hypoxia-induced neutrophil survival is mediated by HIF-1α-dependent NF-kappaB activity. J Exp Med. 2005;201:105–15.PubMedPubMedCentralCrossRefGoogle Scholar
  263. 263.
    O’Neill LAJ, Hardie DG. Metabolism of inflammation limited by AMPK and pseudo-starvation. Nature. 2013;493:346–55.PubMedCrossRefGoogle Scholar
  264. 264.
    Calabrese C, Poppleton H, Kocak M, et al. A perivascular niche for brain tumor stem cells. Cancer Cell. 2007;11:69–82.PubMedCrossRefGoogle Scholar
  265. 265.
    Kleeberger W, Bova GS, Nielsen ME, et al. Roles for the stem cell associated intermediate filament Nestin in prostate cancer migration and metastasis. Cancer Res. 2007;67:9199–206.PubMedPubMedCentralCrossRefGoogle Scholar
  266. 266.
    Su HT, Weng CC, Hsiao PJ, et al. Stem cell marker nestin is critical for TGF-β1-mediated tumor progression in pancreatic cancer. Mol Cancer Res. 2013;11:768–79.PubMedCrossRefGoogle Scholar
  267. 267.
    Malanchi I, Santamaria-Martinez A, Susanto E, et al. Interactions between cancer stem cells and their niche govern metastatic colonization. Nature. 2012;481:85–9.CrossRefGoogle Scholar
  268. 268.
    Capaccione KM, Pine SR. The Notch signaling pathway as a mediator of tumor survival. Carcinogenesis. 2013;34:1420–30.PubMedPubMedCentralCrossRefGoogle Scholar
  269. 269.
    Zhu TS, Costello MA, Talsma CE, et al. Endothelial cells create a stem cell niche in glioblastoma by providing NOTCH ligands that nurture self-renewal of cancer stem-like cells. Cancer Res. 2011;71:6061–72.PubMedPubMedCentralCrossRefGoogle Scholar
  270. 270.
    Cialfi S, Palermo R, Manca S, et al. Loss of Notch1-dependent p21(Waf1/Cip1) expression influences the Notch1 outcome in tumorigenesis. Cell Cycle (Georgetown, Tex). 2014;13:2046–55.CrossRefGoogle Scholar
  271. 271.
    Karnoub AE, Dash AB, Vo AP, et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature. 2007;449:557–63.PubMedCrossRefGoogle Scholar
  272. 272.
    Gerlinger M, Rowan AJ, Horswell S, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012;366:883–92.PubMedPubMedCentralCrossRefGoogle Scholar
  273. 273.
    Yachida S, Jones S, Bozic I, et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature. 2010;467:1114–7.PubMedPubMedCentralCrossRefGoogle Scholar
  274. 274.
    Campbell PJ, Yachida S, Mudie LJ, et al. The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature. 2010;467:1109–13.PubMedPubMedCentralCrossRefGoogle Scholar
  275. 275.
    Ding Z, Wu CJ, Chu GC, et al. SMAD4-dependent barrier constrains prostate cancer growth and metastatic progression. Nature. 2011;470:269–73.PubMedPubMedCentralCrossRefGoogle Scholar
  276. 276.
    Wang S, Gao J, Lei Q, et al. Prostate-specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer. Cancer Cell. 2003;4:209–21.PubMedCrossRefGoogle Scholar
  277. 277.
    Nguyen DX, Chiang AC, Zhang XH, et al. WNT/TCF signaling through LEF1 and HOXB9 mediates lung adenocarcinoma metastasis. Cell. 2009;138:51–62.PubMedPubMedCentralCrossRefGoogle Scholar
  278. 278.
    Greenburg G, Hay ED. Epithelia suspended in collagen gels can lose polarity and express characteristics of migrating mesenchymal cells. J Cell Biol. 1982;95:333–9.PubMedCrossRefGoogle Scholar
  279. 279.
    Yang J, Mani SA, Donaher JL, et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell. 2004;117:927–39.PubMedCrossRefGoogle Scholar
  280. 280.
    Shamir ER, Pappalardo E, Jorgens DM, et al. Twist1-induced dissemination preserves epithelial identity and requires E-cadherin. J Cell Biol. 2014;204:839–56.PubMedPubMedCentralCrossRefGoogle Scholar
  281. 281.
    Tsai JH, Yang J. Epithelial-mesenchymal plasticity in carcinoma metastasis. Genes Dev. 2013;27:2192–206.PubMedPubMedCentralCrossRefGoogle Scholar
  282. 282.
    Mani SA, Guo W, Liao MJ, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133:704–15.PubMedPubMedCentralCrossRefGoogle Scholar
  283. 283.
    Cressey D. Neuroscientists claim growing pains. Nature. 2009;459:19.PubMedCrossRefGoogle Scholar
  284. 284.
    Grooteclaes ML, Frisch SM. Evidence for a function of CtBP in epithelial gene regulation and anoikis. Oncogene. 2000;19:3823–8.PubMedCrossRefGoogle Scholar
  285. 285.
    Nieto MA. The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol. 2002;3:155–66.PubMedCrossRefGoogle Scholar
  286. 286.
    Fernando RI, Castillo MD, Litzinger M, et al. IL-8 signaling plays a critical role in the epithelial-mesenchymal transition of human carcinoma cells. Cancer Res. 2011;71:5296–306.PubMedPubMedCentralCrossRefGoogle Scholar
  287. 287.
    Ocana OH, Corcoles R, Fabra A, et al. Metastatic colonization requires the repression of the epithelial-mesenchymal transition inducer Prrx1. Cancer Cell. 2012;22:709–24.PubMedCrossRefGoogle Scholar
  288. 288.
    Lawson DA, Bhakta NR, Kessenbrock K, et al. Single-cell analysis reveals a stem-cell program in human metastatic breast cancer cells. Nature. 2015;526:131–5.PubMedPubMedCentralCrossRefGoogle Scholar
  289. 289.
    Yang MH, Wu MZ, Chiou SH, et al. Direct regulation of TWIST by HIF-1α promotes metastasis. Nat Cell Biol. 2008;10:295–305.PubMedCrossRefGoogle Scholar
  290. 290.
    Su YW, Xie TX, Sano D, et al. IL-6 stabilizes twist and enhances tumor cell motility in head and neck cancer cells through activation of casein kinase 2. PLoS One. 2011;6:e19412.PubMedPubMedCentralCrossRefGoogle Scholar
  291. 291.
    Covert MW, Leung TH, Gaston JE, et al. Achieving stability of lipopolysaccharide-induced NF-kappaB activation. Science. 2005;309:1854–7.PubMedCrossRefGoogle Scholar
  292. 292.
    Lopez-Soto A, Huergo-Zapico L, Galvan JA, et al. Epithelial-mesenchymal transition induces an antitumor immune response mediated by NKG2D receptor. J Immunol. 2013;190:4408–19.PubMedCrossRefGoogle Scholar
  293. 293.
    Lu H, Clauser KR, Tam WL, et al. A breast cancer stem cell niche supported by juxtacrine signalling from monocytes and macrophages. Nat Cell Biol. 2014;16:1105–17.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  • Yoshiro Maru
    • 1
  1. 1.Department of PharmacologyTokyo Women’s Medical UniversityTokyoJapan

Personalised recommendations