Basic Research

  • Yoshiro Maru


The word <oncogene> sounds a little bit quaint these days. However, we should bear in mind how BCR-ABL was discovered (see Table  9.1 in Chap.  9). The golden marker Ph in CML is indeed the place where the BCR-ABL oncogene is generated. Tumors in animals were known in the past including Rous sarcoma in chicken discovered by Peyton Rous in 1911 that is transmissible from chicken to chicken by RS retrovirus, Yoshida sarcoma in albino rat discovered by Tomizo Yoshida in 1944 that was chemically induced [1, 2]. Howard Temin showed in 1958 that morphological transformation of chicken fibroblasts by RSV was quantitated in a focus-forming assay, which eventually led to the discovery of reverse transcriptase under his persistent hypothesis that the transformation is mediated by a RSV-dependent DNA intermediate, namely DNA provirus, stabilized in the transformed cells [3]. We should consider the fact that acute viral infection is a self-limited process for propagation of virus but persistent transformation of the infected cells needs to have some stable alterations pertinent to the cells.


Reactive Oxygen Species Androgen Receptor Nucleotide Excision Repair Glycolysis Pathway Fumarate Hydratase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Rous P. A sarcoma of the fowl transmissible by an agent separable from the tumor cells. J Exp Med. 1911;13:397–411.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Yoshida T, Muta Y, Sasaki Z. Studien uber das “Ascites-Sarcom”(I). Proc Imp Acad Tokyo. 1944;20:611–6.Google Scholar
  3. 3.
    Temin HM, Rubin H. Characteristics of an assay for Rous sarcoma virus and Rous sarcoma cells in tissue culture. Virology. 1958;6:669–88.PubMedCrossRefGoogle Scholar
  4. 4.
    Abelson HT, Rabstein LS. Lymphosarcoma: virus-induced thymic-independent disease in mice. Cancer Res. 1970;30:2213–22.PubMedGoogle Scholar
  5. 5.
    Maru Y. Molecular biology of chronic myeloid leukemia. Cancer Sci. 2012;103:1601–10.PubMedCrossRefGoogle Scholar
  6. 6.
    Daley GQ, Van Etten RA, Baltimore D. Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science. 1990;247:824–30.PubMedCrossRefGoogle Scholar
  7. 7.
    Koschmieder S, Gottgens B, Zhang P, et al. Inducible chronic phase of myeloid leukemia with expansion of hematopoietic stem cells in a transgenic model of BCR-ABL leukemogenesis. Blood. 2005;105:324–34.PubMedCrossRefGoogle Scholar
  8. 8.
    Shinohara M, Koga T, Okamoto K, et al. Tyrosine kinases Btk and Tec regulate osteoclast differentiation by linking RANK and ITAM signals. Cell. 2008;132:794–806.PubMedCrossRefGoogle Scholar
  9. 9.
    Rassoulzadegan M, Naghashfar Z, Cowie A, et al. Expression of the large T protein of polyoma virus promotes the establishment in culture of “normal” rodent fibroblast cell lines. Proc Natl Acad Sci U S A. 1983;80:4354–8.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Daley GQ, Baltimore D. Transformation of an interleukin 3-dependent hematopoietic cell line by the chronic myelogenous leukemia-specific P210bcr/abl protein. Proc Natl Acad Sci U S A. 1988;85:9312–6.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Folkman J, Hochberg M. Self-regulation of growth in three dimensions. J Exp Med. 1973;138:745–53.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    LaBaer J, Garrett MD, Stevenson LF, et al. New functional activities for the p21 family of CDK inhibitors. Genes Dev. 1997;11:847–62.PubMedCrossRefGoogle Scholar
  13. 13.
    Blain SW, Scher HI, Cordon-Cardo C, et al. p27 as a target for cancer therapeutics. Cancer Cell. 2003;3:111–5.PubMedCrossRefGoogle Scholar
  14. 14.
    Occhi G, Regazzo D, Trivellin G, et al. A novel mutation in the upstream open reading frame of the CDKN1B gene causes a MEN4 phenotype. PLoS Genet. 2013;9:e1003350.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Pateras IS, Apostolopoulou K, Niforou K, et al. p57KIP2: “Kip”ing the cell under control. Mol Cancer Res. 2009;7:1902–19.PubMedCrossRefGoogle Scholar
  16. 16.
    Zhang Y, Xiong Y, Yarbrough WG. ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell. 1998;92:725–34.PubMedCrossRefGoogle Scholar
  17. 17.
    Schubbert S, Shannon K, Bollag G. Hyperactive Ras in developmental disorders and cancer. Nat Rev Cancer. 2007;7:295–308.PubMedCrossRefGoogle Scholar
  18. 18.
    Kratz CP, Rapisuwon S, Reed H, et al. Cancer in Noonan, Costello, cardiofaciocutaneous and LEOPARD syndromes. Am J Med Genet C Semin Med Genet. 2011;157c:83–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Garcea RL, Imperiale MJ. Simian virus 40 infection of humans. J Virol. 2003;77:5039–45.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Linzer DI, Levine AJ. Characterization of a 54K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell. 1979;17:43–52.PubMedCrossRefGoogle Scholar
  21. 21.
    Maru Y, Yamaguchi S, Takahashi T, et al. Virally activated Ras cooperates with integrin to induce tubulogenesis in sinusoidal endothelial cell lines. J Cell Physiol. 1998;176:223–34.PubMedCrossRefGoogle Scholar
  22. 22.
    Hahn WC, Counter CM, Lundberg AS, et al. Creation of human tumour cells with defined genetic elements. Nature. 1999;400:464–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Finlay CA, Hinds PW, Levine AJ. The p53 proto-oncogene can act as a suppressor of transformation. Cell. 1989;57:1083–93.PubMedCrossRefGoogle Scholar
  24. 24.
    Komuro H, Valentine MB, Rubnitz JE, et al. p27KIP1 deletions in childhood acute lymphoblastic leukemia. Neoplasia. 1999;1:253–61.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Shao LJ, Shi HY, Ayala G, et al. Haploinsufficiency of the maspin tumor suppressor gene leads to hyperplastic lesions in prostate. Cancer Res. 2008;68:5143–51.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Honda H, Ushijima T, Wakazono K, et al. Acquired loss of p53 induces blastic transformation in p210(bcr/abl)-expressing hematopoietic cells: a transgenic study for blast crisis of human CML. Blood. 2000;95:1144–50.PubMedGoogle Scholar
  27. 27.
    Skorski T, Nieborowska-Skorska M, Wlodarski P, et al. Blastic transformation of p53-deficient bone marrow cells by p210bcr/abl tyrosine kinase. Proc Natl Acad Sci U S A. 1996;93:13137–42.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Rogakou EP, Pilch DR, Orr AH, et al. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem. 1998;273:5858–68.PubMedCrossRefGoogle Scholar
  29. 29.
    Krejci L, Altmannova V, Spirek M, et al. Homologous recombination and its regulation. Nucleic Acids Res. 2012;40:5795–818.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Lieber MR. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem. 2010;79:181–211.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Cheng Q, Barboule N, Frit P, et al. Ku counteracts mobilization of PARP1 and MRN in chromatin damaged with DNA double-strand breaks. Nucleic Acids Res. 2011;39:9605–19.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    O’Driscoll M, Cerosaletti KM, Girard PM, et al. DNA ligase IV mutations identified in patients exhibiting developmental delay and immunodeficiency. Mol Cell. 2001;8:1175–85.PubMedCrossRefGoogle Scholar
  33. 33.
    Rodriguez MI, Peralta-Leal A, O’Valle F, et al. PARP-1 regulates metastatic melanoma through modulation of vimentin-induced malignant transformation. PLoS Genet. 2013;9:e1003531.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Compe E, Egly JM. TFIIH: when transcription met DNA repair. Nat Rev Mol Cell Biol. 2012;13:343–54.PubMedCrossRefGoogle Scholar
  35. 35.
    Sobol RW. Genome instability caused by a germline mutation in the human DNA repair gene POLB. PLoS Genet. 2012;8:e1003086.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Zheng L, Dai H, Zhou M, et al. Fen1 mutations result in autoimmunity, chronic inflammation and cancers. Nat Med. 2007;13:812–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Christmann M, Kaina B. Transcriptional regulation of human DNA repair genes following genotoxic stress: trigger mechanisms, inducible responses and genotoxic adaptation. Nucleic Acids Res. 2013;41:8403–20.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Wijnen J, van der Klift H, Vasen H, et al. MSH2 genomic deletions are a frequent cause of HNPCC. Nat Genet. 1998;20:326–8.PubMedCrossRefGoogle Scholar
  39. 39.
    Sudo H, Maru Y. LAPSER1 is a putative cytokinetic tumor suppressor that shows the same centrosome and midbody subcellular localization pattern as p80 katanin. FASEB J. 2007;21:2086–100.PubMedCrossRefGoogle Scholar
  40. 40.
    Zhang CZ, Spektor A, Cornils H, et al. Chromothripsis from DNA damage in micronuclei. Nature. 2015;522:179–84.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Zhang CZ, Leibowitz ML, Pellman D. Chromothripsis and beyond: rapid genome evolution from complex chromosomal rearrangements. Genes Dev. 2013;27:2513–30.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Tsukahara F, Maru Y. Bag1 directly routes immature BCR-ABL for proteasomal degradation. Blood. 2010;116:3582–92.PubMedCrossRefGoogle Scholar
  43. 43.
    Powers MV, Clarke PA, Workman P. Dual targeting of HSC70 and HSP72 inhibits HSP90 function and induces tumor-specific apoptosis. Cancer Cell. 2008;14:250–62.PubMedCrossRefGoogle Scholar
  44. 44.
    Leu JI, Pimkina J, Frank A, et al. A small molecule inhibitor of inducible heat shock protein 70. Mol Cell. 2009;36:15–27.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Matlashewski G, Lamb P, Pim D, et al. Isolation and characterization of a human p53 cDNA clone: expression of the human p53 gene. EMBO J. 1984;3:3257–62.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Finlay CA, Hinds PW, Tan TH, et al. Activating mutations for transformation by p53 produce a gene product that forms an hsc70-p53 complex with an altered half-life. Mol Cell Biol. 1988;8:531–9.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Malhotra JD, Miao H, Zhang K, et al. Antioxidants reduce endoplasmic reticulum stress and improve protein secretion. Proc Natl Acad Sci U S A. 2008;105:18525–30.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Tsujimoto Y, Finger LR, Yunis J, et al. Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18) chromosome translocation. Science. 1984;226:1097–9.PubMedCrossRefGoogle Scholar
  49. 49.
    Delbridge AR, Valente LJ, Strasser A. The role of the apoptotic machinery in tumor suppression. Cold Spring Harb Perspect Biol. 2012;4:a008789.Google Scholar
  50. 50.
    van Rooij MM, Nash BA, Rajaraman S, et al. A fractal approach to dynamic inference and distribution analysis. Front Physiol. 2013;4:1.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Makarov VL, Hirose Y, Langmore JP. Long G tails at both ends of human chromosomes suggest a C strand degradation mechanism for telomere shortening. Cell. 1997;88:657–66.PubMedCrossRefGoogle Scholar
  52. 52.
    Zhao Y, Sfeir AJ, Zou Y, et al. Telomere extension occurs at most chromosome ends and is uncoupled from fill-in in human cancer cells. Cell. 2009;138:463–75.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Galati A, Micheli E, Cacchione S. Chromatin structure in telomere dynamics. Front Oncol. 2013;3:46.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Hemann MT, Strong MA, Hao LY, et al. The shortest telomere, not average telomere length, is critical for cell viability and chromosome stability. Cell. 2001;107:67–77.PubMedCrossRefGoogle Scholar
  55. 55.
    Yamaguchi H, Calado RT, Ly H, et al. Mutations in TERT, the gene for telomerase reverse transcriptase, in aplastic anemia. N Engl J Med. 2005;352:1413–24.PubMedCrossRefGoogle Scholar
  56. 56.
    Keller G, Brassat U, Braig M, et al. Telomeres and telomerase in chronic myeloid leukemia: impact for pathogenesis, disease progression and targeted therapy. Hematol Oncol. 2009;27:123–9.PubMedCrossRefGoogle Scholar
  57. 57.
    Vicente-Duenas C, Barajas-Diego M, Romero-Camarero I, et al. Essential role for telomerase in chronic myeloid leukemia induced by BCR-ABL in mice. Oncotarget. 2012;3:261–6.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.PubMedCrossRefGoogle Scholar
  59. 59.
    Verdun RE, Crabbe L, Haggblom C, et al. Functional human telomeres are recognized as DNA damage in G2 of the cell cycle. Mol Cell. 2005;20:551–61.PubMedCrossRefGoogle Scholar
  60. 60.
    Sedivy JM. Telomeres limit cancer growth by inducing senescence: long-sought in vivo evidence obtained. Cancer Cell. 2007;11:389–91.PubMedCrossRefGoogle Scholar
  61. 61.
    Kuilman T, Michaloglou C, Mooi WJ, et al. The essence of senescence. Genes Dev. 2010;24:2463–79.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Yogev O, Anzi S, Inoue K, et al. Induction of transcriptionally active Jun proteins regulates drug-induced senescence. J Biol Chem. 2006;281:34475–83.PubMedCrossRefGoogle Scholar
  63. 63.
    Gabai VL, Yaglom JA, Waldman T, et al. Heat shock protein Hsp72 controls oncogene-induced senescence pathways in cancer cells. Mol Cell Biol. 2009;29:559–69.PubMedCrossRefGoogle Scholar
  64. 64.
    Swanson EC, Manning B, Zhang H, et al. Higher-order unfolding of satellite heterochromatin is a consistent and early event in cell senescence. J Cell Biol. 2013;203:929–42.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Young ARJ, Narita M, Ferreira M, et al. Autophagy mediates the mitotic senescence transition. Genes Dev. 2009;23:798–803.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Dankort D, Curley DP, Cartlidge RA, et al. BrafV600E cooperates with Pten loss to induce metastatic melanoma. Nat Genet. 2009;41:544–52.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Kuilman T, Michaloglou C, Vredeveld LCW, et al. Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell. 2008;133:1019–31.PubMedCrossRefGoogle Scholar
  68. 68.
    Yang G, Rosen DG, Zhang Z, et al. The chemokine growth-regulated oncogene 1 (Gro-1) links RAS signaling to the senescence of stromal fibroblasts and ovarian tumorigenesis. Proc Natl Acad Sci. 2006;103:16472–7.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Fumagalli M, Rossiello F, Clerici M, et al. Telomeric DNA damage is irreparable and causes persistent DNA-damage-response activation. Nat Cell Biol. 2012;14:355–65.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Bombarde O, Boby C, Gomez D, et al. TRF2/RAP1 and DNA–PK mediate a double protection against joining at telomeric ends. EMBO J. 2010;29:1573–84.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Ramsey KM, Yoshino J, Brace CS, et al. Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science. 2009;324:651–4.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Bensaad K, Tsuruta A, Selak MA, et al. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell. 2006;126:107–20.PubMedCrossRefGoogle Scholar
  73. 73.
    Bell EL, Klimova TA, Eisenbart J, et al. The Qo site of the mitochondrial complex III is required for the transduction of hypoxic signaling via reactive oxygen species production. J Cell Biol. 2007;177:1029–36.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Warburg O. On the origin of cancer cells. Science. 1956;123:309–14.PubMedCrossRefGoogle Scholar
  75. 75.
    Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324:1029–33.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Gowans GJ, Hawley SA, Ross FA, et al. AMP is a true physiological regulator of AMP-activated protein kinase by both allosteric activation and enhancing net phosphorylation. Cell Metab. 2013;18:556–66.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Mehenni H, Gehrig C, Nezu J, et al. Loss of LKB1 kinase activity in Peutz-Jeghers syndrome, and evidence for allelic and locus heterogeneity. Am J Hum Genet. 1998;63:1641–50.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Pineda CT, Ramanathan S, Fon Tacer K, et al. Degradation of AMPK by a cancer-specific ubiquitin ligase. Cell. 2015;160:715–28.PubMedCrossRefGoogle Scholar
  79. 79.
    Pena CG, Nakada Y, Saatcioglu HD, et al. LKB1 loss promotes endometrial cancer progression via CCL2-dependent macrophage recruitment. J Clin Invest. 2015;125:4063–76.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Roca H, Varsos ZS, Pienta KJ. CCL2 is a negative regulator of AMP-activated protein kinase to sustain mTOR complex-1 activation, survivin expression, and cell survival in human prostate cancer PC3 cells. Neoplasia. 2009;11:1309–17.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Mathupala SP, Ko YH, Pedersen PL. Hexokinase-2 bound to mitochondria: cancer’s stygian link to the “Warburg Effect” and a pivotal target for effective therapy. Semin Cancer Biol. 2009;19:17–24.PubMedCrossRefGoogle Scholar
  82. 82.
    Weihrauch D, Wilkie MP, Walsh PJ. Ammonia and urea transporters in gills of fish and aquatic crustaceans. J Exp Biol. 2009;212:1716–30.PubMedCrossRefGoogle Scholar
  83. 83.
    Son J, Lyssiotis CA, Ying H, et al. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature. 2013;496:101–5.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Biankin AV, Waddell N, Kassahn KS, et al. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature. 2012;491:399–405.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Watson IR, Takahashi K, Futreal PA, et al. Emerging patterns of somatic mutations in cancer. Nat Rev Genet. 2013;14:703–18.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Hirayama A, Kami K, Sugimoto M, et al. Quantitative metabolome profiling of colon and stomach cancer microenvironment by capillary electrophoresis time-of-flight mass spectrometry. Cancer Res. 2009;69:4918–25.PubMedCrossRefGoogle Scholar
  87. 87.
    Kimmelman AC. The dynamic nature of autophagy in cancer. Genes Dev. 2011;25:1999–2010.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Cheong H, Lindsten T, Wu J, et al. Ammonia-induced autophagy is independent of ULK1/ULK2 kinases. Proc Natl Acad Sci U S A. 2011;108:11121–6.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Lock R, Roy S, Kenific CM, et al. Autophagy facilitates glycolysis during Ras-mediated oncogenic transformation. Mol Biol Cell. 2011;22:165–78.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Gong C, Bauvy C, Tonelli G, et al. Beclin 1 and autophagy are required for the tumorigenicity of breast cancer stem-like/progenitor cells. Oncogene. 2013;32:2261–72, 72e 1-11.PubMedCrossRefGoogle Scholar
  91. 91.
    Kominsky DJ, Klawitter J, Brown JL, et al. Abnormalities in glucose uptake and metabolism in imatinib-resistant human BCR-ABL–positive cells. Clin Cancer Res. 2009;15:3442–50.PubMedCrossRefGoogle Scholar
  92. 92.
    Pollard PJ, Brière JJ, Alam NA, et al. Accumulation of Krebs cycle intermediates and over-expression of HIF1α in tumours which result from germline FH and SDH mutations. Hum Mol Genet. 2005;14:2231–9.PubMedCrossRefGoogle Scholar
  93. 93.
    Selak MA, Armour SM, MacKenzie ED, et al. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-α prolyl hydroxylase. Cancer Cell. 2005;7:77–85.PubMedCrossRefGoogle Scholar
  94. 94.
    Sasaki M, Knobbe CB, Munger JC, et al. IDH1(R132H) mutation increases murine haematopoietic progenitors and alters epigenetics. Nature. 2012;488:656–9.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Rohle D, Popovici-Muller J, Palaskas N, et al. An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells. Science. 2013;340:626–30.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Donohoe DR, Collins LB, Wali A, et al. The Warburg effect dictates the mechanism of butyrate-mediated histone acetylation and cell proliferation. Mol Cell. 2012;48:612–26.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Semenza GL. Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene. 2009;29:625–34.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Ivan M, Kondo K, Yang H, et al. HIFα targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science. 2001;292:464–8.PubMedCrossRefGoogle Scholar
  99. 99.
    Lando D, Peet DJ, Whelan DA, et al. Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch. Science. 2002;295:858–61.PubMedCrossRefGoogle Scholar
  100. 100.
    Baracca A, Chiaradonna F, Sgarbi G, et al. Mitochondrial complex I decrease is responsible for bioenergetic dysfunction in K-ras transformed cells. Biochim Biophys Acta. 2010;1797:314–23.PubMedCrossRefGoogle Scholar
  101. 101.
    Ishikawa K, Takenaga K, Akimoto M, et al. ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science. 2008;320:661–4.PubMedCrossRefGoogle Scholar
  102. 102.
    Vafa O, Wade M, Kern S, et al. c-Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function. Mol Cell. 2002;9:1031–44.PubMedCrossRefGoogle Scholar
  103. 103.
    Gao P, Zhang H, Dinavahi R, et al. HIF-dependent antitumorigenic effect of antioxidants in vivo. Cancer Cell. 2007;12:230–8.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Cam H, Easton JB, High A, et al. mTORC1 signaling under hypoxic conditions is controlled by ATM-dependent phosphorylation of HIF-1α. Mol Cell. 2010;40:509–20.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Duran A, Linares JF, Galvez AS, et al. The signaling adaptor p62 is an important NF-kappaB mediator in tumorigenesis. Cancer Cell. 2008;13:343–54.PubMedCrossRefGoogle Scholar
  106. 106.
    Valencia T, Kim JY, Abu-Baker S, et al. Metabolic reprogramming of stromal fibroblasts through p62-mTORC1 signaling promotes inflammation and tumorigenesis. Cancer Cell. 2014;26:121–35.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Yin S, Cao W. Toll-like receptor signaling induces Nrf2 pathway activation through p62-triggered Keap1 degradation. Mol Cell Biol. 2015;35:2673–83.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Cho H-S, Mason K, Ramyar KX, et al. Structure of the extracellular region of HER2 alone and in complex with the Herceptin Fab. Nature. 2003;421:756–60.PubMedCrossRefGoogle Scholar
  109. 109.
    Hanker AB, Pfefferle AD, Balko JM, et al. Mutant PIK3CA accelerates HER2-driven transgenic mammary tumors and induces resistance to combinations of anti-HER2 therapies. Proc Natl Acad Sci. 2013;110:14372–7.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Park S, Jiang Z, Mortenson ED, et al. The therapeutic effect of anti-HER2/neu antibody depends on both innate and adaptive immunity. Cancer Cell. 2010;18:160–70.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Prall OWJ, Sarcevic B, Musgrove EA, et al. Estrogen-induced activation of Cdk4 and Cdk2 during G1-S phase progression is accompanied by increased cyclin D1 expression and decreased cyclin-dependent kinase inhibitor association with cyclin E-Cdk2. J Biol Chem. 1997;272:10882–94.PubMedCrossRefGoogle Scholar
  112. 112.
    Hanks A, Keyomarsi K, Moghadam S. Breaking the cycle: an insight into the role of ERα in eukaryotic cell cycles. J Carcinog. 2011;10:25.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Gorrini C, Gang BP, Bassi C, et al. Estrogen controls the survival of BRCA1-deficient cells via a PI3K-NRF2-regulated pathway. Proc Natl Acad Sci U S A. 2014;111:4472–7.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Yuan X, Cai C, Chen S, et al. Androgen receptor functions in castration-resistant prostate cancer and mechanisms of resistance to new agents targeting the androgen axis. Oncogene. 2014;33:2815–25.PubMedCrossRefGoogle Scholar
  115. 115.
    Liu Y-N, Liu Y, Lee H-J, et al. Activated androgen receptor downregulates E-cadherin gene expression and promotes tumor metastasis. Mol Cell Biol. 2008;28:7096–108.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Cai C, Wang H, He HH, et al. ERG induces androgen receptor-mediated regulation of SOX9 in prostate cancer. J Clin Invest. 2013;123:1109–22.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Maru Y. The tumor suppressor LZTS2 functions through the cellular samurai Katanin. Cent Eur J Biol. 2009;4:1–10.Google Scholar
  118. 118.
    Hisada M, Garber JE, Li FP, et al. Multiple primary cancers in families with Li-Fraumeni syndrome. J Natl Cancer Inst. 1998;90:606–11.PubMedCrossRefGoogle Scholar
  119. 119.
    Sugano K, Taniguchi T, Saeki M, et al. Germline p53 mutation in a case of Li-Fraumeni syndrome presenting gastric cancer. Jpn J Clin Oncol. 1999;29:513–6.PubMedCrossRefGoogle Scholar
  120. 120.
    Olive KP, Tuveson DA, Ruhe ZC, et al. Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome. Cell. 2004;119:847–60.PubMedCrossRefGoogle Scholar
  121. 121.
    Lang GA, Iwakuma T, Suh Y-A, et al. Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome. Cell. 2004;119:861–72.PubMedCrossRefGoogle Scholar
  122. 122.
    Harvey M, McArthur MJ, Montgomery Jr CA, et al. Genetic background alters the spectrum of tumors that develop in p53-deficient mice. FASEB J. 1993;7:938–43.PubMedGoogle Scholar
  123. 123.
    Dimitrov SD, Lu D, Naetar N, et al. Physiological modulation of endogenous BRCA1 p220 abundance suppresses DNA damage during the cell cycle. Genes Dev. 2013;27:2274–91.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  • Yoshiro Maru
    • 1
  1. 1.Department of PharmacologyTokyo Women’s Medical UniversityTokyoJapan

Personalised recommendations