Skip to main content

Muscle Sympathetic Nerve Activity and Cardiovascular Disease

  • Chapter
  • First Online:
Clinical Assessment of the Autonomic Nervous System

Abstract

The sympathetic nervous system can rapidly respond to the onset of a disruption in arterial pressure and plays essential roles in regulating cardiovascular function together with the renin-angiotensin-aldosterone system. On the other hand, chronic sympathetic overactivity could be associated with the onset and progression of hypertension, heart failure, or arrhythmia. The fact that sympathetic overactivity is an independent predictor of a poor outcome in patients with heart failure has been known for about 30 years. Accurate assessment of sympathetic nerve activity is required in clinical practice. Various methods including measuring neurotransmitters (norepinephrine), evaluating the responses of effectors (heart rate or blood pressure), neurotransmitter imaging (meta-iodobenzylguanidine), and so on have been applied to evaluate sympathetic nerve functions. However, quantifying the time-varying sympathetic activity which maintains body homeostasis over time is difficult. Microneurographic recording is the only way to directly evaluate sympathetic nerve activity from the human peripheral nerves. This chapter describes recent observations obtained by microneurographic recordings of muscle sympathetic nerve activity that have been adopted to reconsider the relationship between sympathetic nerve activity and several cardiovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guyton AC, Hall JE. The autonomic nervous system; the adrenal medulla. In: Guyton AC, Hall JE, editors. Textbook of medical physiology. 9th ed. Philadelphia: W.B. Saunders Company; 1996. p. 769–81.

    Google Scholar 

  2. Katz AM, Konstam MA. The neurohumoral response in heart failure: functional signaling. In: Katz AM, Konstam MA, editors. Heart failure. Pathophysiology, molecular biology, and clinical management. 2nd ed. Philadelphia: Lippincott Williams & Wilkins, a Wolters Kluwer Business; 2009. p. 89–133.

    Google Scholar 

  3. Mann DL. Pathophysiology of heart failure. In: Bonow RO, Mann DL, Zipes DP, Libby P, editors. Braunwald’s heart disease. A textbook of cardiovascular medicine. 9th ed. Philadelphia, PA: Elsevier Saunders; 2012. p. 487–504.

    Google Scholar 

  4. Malliani A, Schwartz JP, Zanchetti A. A sympathetic reflex elicited by experimental coronary occlusion. Am J Physiol. 1969;217:703–9.

    CAS  PubMed  Google Scholar 

  5. Malliani A, Peterson DF, Bishop VS, Brown AM. Spinal sympathetic cardiocardiac reflex. Circ Res. 1972;30:158–66.

    Article  CAS  PubMed  Google Scholar 

  6. Minisi AJ, Thames MD. Activation of cardiac sympathetic afferents during coronary occlusion. Evidence for reflex activation of sympathetic nervous system during transmural myocardial ischemia in the dog. Circulation. 1991;84:357–67.

    Article  CAS  PubMed  Google Scholar 

  7. Ciećwierz D, Hering D, Somers VK, Wdowczyk-Szulc J, Kara T, Skarzyński P, et al. Sympathetic neural responses to coronary occlusion during balloon angioplasty. J Hypertens. 2007;25:1650–4.

    Article  PubMed  Google Scholar 

  8. Gomes ME, Aengevaeren WR, Lenders JW, Verheugt FW, Smits P, Tack CJ. Improving myocardial perfusion by percutaneous coronary intervention reduces central sympathetic activity in stable angina. Clin Cardiol. 2010;33:E16–21.

    Article  PubMed  Google Scholar 

  9. Graham LN, Smith PA, Stoker JB, Mackintosh AF, Mary DA. Time course of sympathetic neural hyperactivity after uncomplicated acute myocardial infarction. Circulation. 2002;106:793–7.

    Article  PubMed  Google Scholar 

  10. Notarius CF, Spaak J, Morris BL, Floras JS. Comparison of muscle sympathetic activity in ischemic and nonischemic heart failure. J Card Fail. 2007;13:470–5.

    Article  PubMed  Google Scholar 

  11. Calhoun DA, Jones D, Textor S, Goff DC, Murphy TP, Toto RD, et al. Resistant hypertension: diagnosis, evaluation, and treatment: a scientific statement from the American Heart Association Professional Education Committee of the Council for High Blood Pressure Research. Circulation. 2008;117:e510–26.

    Article  PubMed  Google Scholar 

  12. Grassi G, Seravalle G, Brambilla G, Pini C, Alimento M, Facchetti R, et al. Marked sympathetic activation and baroreflex dysfunction in true resistant hypertension. Int J Cardiol. 2014;177:1020–5.

    Article  PubMed  Google Scholar 

  13. Kompanowska-Jezierska E, Walkowska A, Johns EJ, Sadowski J. Early effects of renal denervation in the anaesthetised rat: natriuresis and increased cortical blood flow. J Physiol. 2001;531(Pt 2):527–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Krum H, Schlaich M, Whitbourn R, Sobotka PA, Sadowski J, Bartus K, et al. Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet. 2009;373:1275–81.

    Article  PubMed  Google Scholar 

  15. Schlaich MP, Sobotka PA, Krum H, Lambert E, Esler MD. Renal sympathetic-nerve ablation for uncontrolled hypertension. N Engl J Med. 2009;361:932–4.

    Article  CAS  PubMed  Google Scholar 

  16. Chinushi M, Izumi D, Iijima K, Suzuki K, Furushima H, Saitoh O, et al. Blood pressure and autonomic responses to electrical stimulation of the renal arterial nerves before and after ablation of the renal artery. Hypertension. 2013;61:450–6.

    Article  CAS  PubMed  Google Scholar 

  17. Brinkmann J, Heusser K, Schmidt BM, Menne J, Klein G, Bauersachs J, et al. Catheter-based renal nerve ablation and centrally generated sympathetic activity in difficult-to-control hypertensive patients: prospective case series. Hypertension. 2012;60:1485–90.

    Article  CAS  PubMed  Google Scholar 

  18. Hering D, Lambert EA, Marusic P, Walton AS, Krum H, Lambert GW, et al. Substantial reduction in single sympathetic nerve firing after renal denervation in patients with resistant hypertension. Hypertension. 2013;61:457–64.

    Article  CAS  PubMed  Google Scholar 

  19. Vink EE, Verloop WL, Siddiqi L, van Schelven LJ, Liam Oey P, Blankestijn PJ. The effect of percutaneous renal denervation on muscle sympathetic nerve activity in hypertensive patients. Int J Cardiol. 2014;176:8–12.

    Article  CAS  PubMed  Google Scholar 

  20. Hering D, Marusic P, Walton AS, Duval J, Lee R, Sata Y, et al. Renal artery anatomy affects the blood pressure response to renal denervation in patients with resistant hypertension. Int J Cardiol. 2016;202:388–93.

    Article  PubMed  Google Scholar 

  21. Ye S, Zhong H, Yanamadala V, Campese VM. Renal injury caused by intrarenal injection of phenol increases afferent and efferent renal sympathetic nerve activity. Am J Hypertens. 2002;15:717–24.

    Article  CAS  PubMed  Google Scholar 

  22. Brandt MC, Mahfoud F, Reda S, Schirmer SH, Erdmann E, Böhm M, et al. Renal sympathetic denervation reduces left ventricular hypertrophy and improves cardiac function in patients with resistant hypertension. J Am Coll Cardiol. 2012;59:901–9.

    Article  PubMed  Google Scholar 

  23. Nozawa T, Igawa A, Fujii N, Kato B, Yoshida N, Asanoi H, et al. Effects of long-term renal sympathetic denervation on heart failure after myocardial infarction in rats. Heart Vessels. 2002;16:51–6.

    Article  PubMed  Google Scholar 

  24. Cohn JN, Levine TB, Olivari MT, Garberg V, Lura D, Francis GS, et al. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med. 1984;311:819–23.

    Article  CAS  PubMed  Google Scholar 

  25. Barretto AC, Santos AC, Munhoz R, Rondon MU, Franco FG, Trombetta IC, et al. Increased muscle sympathetic nerve activity predicts mortality in heart failure patients. Int J Cardiol. 2009;135:302–7.

    Article  PubMed  Google Scholar 

  26. Floras JS. Sympathetic nervous system activation in human heart failure: clinical implications of an updated model. J Am Coll Cardiol. 2009;54:375–85.

    Article  CAS  PubMed  Google Scholar 

  27. Heusser K, Tank J, Engeli S, Diedrich A, Menne J, Eckert S, et al. Carotid baroreceptor stimulation, sympathetic activity, baroreflex function, and blood pressure in hypertensive patients. Hypertension. 2010;55:619–26.

    Article  CAS  PubMed  Google Scholar 

  28. Swedberg K, Cleland J, Dargie H, Drexler H, Follath F, Komajda M, et al. Guidelines for the diagnosis and treatment of chronic heart failure: executive summary (update 2005): the task force for the diagnosis and treatment of chronic heart failure of the European Society of Cardiology. Eur Heart J. 2005;26:1115–40.

    Article  PubMed  Google Scholar 

  29. Levy D, Kenchaiah S, Larson MG, Benjamin EJ, Kupka MJ, Ho KK, et al. Long-term trends in the incidence of and survival with heart failure. N Engl J Med. 2002;347:1397–402.

    Article  PubMed  Google Scholar 

  30. Azevedo ER, Kubo T, Mak S, Al-Hesayen A, Schofield A, Allan R, et al. Nonselective versus selective beta-adrenergic receptor blockade in congestive heart failure: differential effects on sympathetic activity. Circulation. 2001;104:2194–9.

    Article  CAS  PubMed  Google Scholar 

  31. De Matos LD, Gardenghi G, Rondon MU, Soufen HN, Tirone AP, Barretto AC, et al. Impact of 6 months of therapy with carvedilol on muscle sympathetic nerve activity in heart failure patients. J Card Fail. 2004;10:496–502.

    Article  PubMed  Google Scholar 

  32. Ferguson DW, Berg WJ, Sanders JS, Roach PJ, Kempf JS, Kienzle MG. Sympathoinhibitory responses to digitalis glycosides in heart failure patients. Direct evidence from sympathetic neural recordings. Circulation. 1989;80:65–77.

    Article  CAS  PubMed  Google Scholar 

  33. Grassi G, Cattaneo BM, Seravalle G, Lanfranchi A, Pozzi M, Morganti A, et al. Effects of chronic ACE inhibition on sympathetic nerve traffic and baroreflex control of circulation in heart failure. Circulation. 1997;96:1173–9.

    Article  CAS  PubMed  Google Scholar 

  34. Hikosaka M, Yuasa F, Yuyama R, Mimura J, Kawamura A, Motohiro M, et al. Candesartan and arterial baroreflex sensitivity and sympathetic nerve activity in patients with mild heart failure. J Cardiovasc Pharmacol. 2002;40:875–80.

    Article  CAS  PubMed  Google Scholar 

  35. Menon DV, Arbique D, Wang Z, Adams-Huet B, Auchus RJ, Vongpatanasin W. Differential effects of chlorthalidone versus spironolactone on muscle sympathetic nerve activity in hypertensive patients. J Clin Endocrinol Metab. 2009;94:1361–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kishi T, Hirooka Y, Kimura Y, Ito K, Shimokawa H, Takeshita A. Increased reactive oxygen species in rostral ventrolateral medulla contribute to neural mechanisms of hypertension in stroke-prone spontaneously hypertensive rats. Circulation. 2004;109:2357–62.

    Article  CAS  PubMed  Google Scholar 

  37. Deo SH, Fisher JP, Vianna LC, Kim A, Chockalingam A, Zimmerman MC, et al. Statin therapy lowers muscle sympathetic nerve activity and oxidative stress in patients with heart failure. Am J Physiol Heart Circ Physiol. 2012;303:H377–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mortara A, Sleight P, Pinna GD, Maestri R, Prpa A, La Rovere MT, et al. Abnormal awake respiratory patterns are common in chronic heart failure and may prevent evaluation of autonomic tone by measures of heart rate variability. Circulation. 1997;96:246–52.

    Article  CAS  PubMed  Google Scholar 

  39. Ponikowski P, Anker SD, Chua TP, Francis D, Banasiak W, Poole-Wilson PA, et al. Oscillatory breathing patterns during wakefulness in patients with chronic heart failure: clinical implications and role of augmented peripheral chemosensitivity. Circulation. 1999;100:2418–24.

    Article  CAS  PubMed  Google Scholar 

  40. Poletti R, Passino C, Giannoni A, Zyw L, Prontera C, Bramanti F, et al. Risk factors and prognostic value of daytime Cheyne-Stokes respiration in chronic heart failure patients. Int J Cardiol. 2009;137:47–53.

    Article  PubMed  Google Scholar 

  41. Van de Borne P, Oren R, Abouassaly C, Anderson E, Somers VK. Effect of Cheyne-Stokes respiration on muscle sympathetic nerve activity in severe congestive heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol. 1998;8:432–6.

    Article  Google Scholar 

  42. Naughton MT, Floras JS, Rahman MA, Jamal M, Bradley TD. Respiratory correlates of muscle sympathetic nerve activity in heart failure. Clin Sci (Lond). 1998;93:277–85.

    Article  Google Scholar 

  43. Goso Y, Asanoi H, Ishise H, Kameyama T, Hirai T, Nozawa T, et al. Respiratory modulation of muscle sympathetic nerve activity in patients with chronic heart failure. Circulation. 2001;104:418–23.

    Article  CAS  PubMed  Google Scholar 

  44. Ueno H, Asanoi H, Yamada K, Oda Y, Takagawa J, Kameyama T, et al. Attenuated respiratory modulation of chemoreflex-mediated sympathoexcitation in patients with chronic heart failure. J Card Fail. 2004;10:236–43.

    Article  PubMed  Google Scholar 

  45. Gilmartin GS, Lynch M, Tamisier R, Weiss JW. Chronic intermittent hypoxia in humans during 28 nights results in blood pressure elevation and increased muscle sympathetic nerve activity. Am J Physiol Heart Circ Physiol. 2010;299:H925–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yamamoto K, Eubank W, Franzke M, Mifflin S. Resetting of the sympathetic baroreflex is associated with the onset of hypertension during chronic intermittent hypoxia. Auton Neurosci. 2013;173:22–7.

    Article  PubMed  Google Scholar 

  47. Morgan BJ, Crabtree DC, Palta M, Skatrud JB. Combined hypoxia and hypercapnia evokes long-lasting sympathetic activation in humans. J Appl Physiol. 1995;79:205–13.

    CAS  PubMed  Google Scholar 

  48. Harada D, Asanoi H, Takagawa J, Ishise H, Ueno H, Oda Y, et al. Slow and deep respiration suppresses steady-state sympathetic nerve activity in patients with chronic heart failure: from modeling to clinical application. Am J Physiol Heart Circ Physiol. 2014;307:H1159–68.

    Article  CAS  PubMed  Google Scholar 

  49. Teschler H, Döhring J, Wang YM, Berthon-Jones M. Adaptive pressure support servo-ventilation: a novel treatment for Cheyne-Stokes respiration in heart failure. Am J Respir Crit Care Med. 2001;164:614–9.

    Article  CAS  PubMed  Google Scholar 

  50. Harada D, Joho S, Oda Y, Hirai T, Asanoi H, Inoue H. Short term effect of adaptive servo-ventilation on muscle sympathetic nerve activity in patients with heart failure. Auton Neurosci. 2011;161:95–102.

    Article  PubMed  Google Scholar 

  51. Usui K, Bradley TD, Spaak J, Ryan CM, Kubo T, Kaneko Y, et al. Inhibition of awake sympathetic nerve activity of heart failure patients with obstructive sleep apnea by nocturnal continuous positive airway pressure. J Am Coll Cardiol. 2005;45:2008–11.

    Article  PubMed  Google Scholar 

  52. Naughton MT, Floras JS, Rahman MA, Jamal M, Bradley TD. Respiratory correlates of muscle sympathetic nerve activity in heart failure. Clin Sci (Lond). 1998;95:277–85.

    Article  CAS  Google Scholar 

  53. Heindl S, Dodt C, Krahwinkel M, Hasenfuss G, Andreas S. Short term effect of continuous positive airway pressure on muscle sympathetic nerve activity in patients with chronic heart failure. Heart. 2001;85:185–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zubin Maslov P, Breskovic T, Shoemaker JK, Olson TP, Johnson BD, Eterovic D, et al. Firing patterns of muscle sympathetic neurons during short-term use of continuous positive airway pressure in healthy subjects and in chronic heart failure patients. Respir Physiol Neurobiol. 2013;187:149–56.

    Article  PubMed  Google Scholar 

  55. Ushijima R, Joho S, Akabane T, Oda Y, Inoue H. Differing effects of adaptive servoventilation and continuous positive airway pressure on muscle sympathetic nerve activity in patients with heart failure. Circ J. 2014;78:1387–95.

    Article  PubMed  Google Scholar 

  56. Spaak J, Egri ZJ, Kubo T, Yu E, Ando S, Kaneko Y, et al. Muscle sympathetic nerve activity during wakefulness in heart failure patients with and without sleep apnea. Hypertension. 2005;46:1327–32.

    Article  CAS  PubMed  Google Scholar 

  57. Kaneko Y, Floras JS, Usui K, Plante J, Tkacova R, Kubo T, et al. Cardiovascular effects of continuous positive airway pressure in patients with heart failure and obstructive sleep apnea. N Engl J Med. 2003;348:1233–1241.

    Google Scholar 

  58. Kasai T, Narui K, Dohi T, Yanagisawa N, Ishiwata S, Ohno M, et al. Prognosis of patients with heart failure and obstructive sleep apnea treated with continuous positive airway pressure. Chest. 2008;133:690–6.

    Article  PubMed  Google Scholar 

  59. Joho S, Oda Y, Ushijima R, Hirai T, Inoue H. Effect of adaptive servoventilation on muscle sympathetic nerve activity in patients with chronic heart failure and central sleep apnea. J Card Fail. 2012;18:769–75.

    Article  PubMed  Google Scholar 

  60. Velez-Roa S, Ciarka A, Najem B, Vachiery JL, Naeije R, van de Borne P. Increased sympathetic nerve activity in pulmonary artery hypertension. Circulation. 2004;110:1308–12.

    Article  PubMed  Google Scholar 

  61. Ciarka A, Vachièry JL, Houssière A, Gujic M, Stoupel E, Velez-Roa S, et al. Atrial septostomy decreases sympathetic overactivity in pulmonary arterial hypertension. Chest. 2007;131:1831–7.

    Article  PubMed  Google Scholar 

  62. Ciarka A, Doan V, Velez-Roa S, Naeije R, van de Borne P. Prognostic significance of sympathetic nervous system activation in pulmonary arterial hypertension. Am J Respir Crit Care Med. 2010;181:1269–75.

    Article  PubMed  Google Scholar 

  63. Chen SL, Zhang FF, Xu J, Xie DJ, Zhou L, Nguyen T, et al. Pulmonary artery denervation to treat pulmonary arterial hypertension: the single-center, prospective, first-in-man PADN-1 study (first-in-man pulmonary artery denervation for treatment of pulmonary artery hypertension). J Am Coll Cardiol. 2013;62:1092–100.

    Article  PubMed  Google Scholar 

  64. Bogaard HJ, Natarajan R, Mizuno S, Abbate A, Chang PJ, Chau VQ, et al. Adrenergic receptor blockade reverses right heart remodeling and dysfunction in pulmonary hypertensive rats. Am J Respir Crit Care Med. 2010;182:652–60.

    Article  CAS  PubMed  Google Scholar 

  65. de Man FS, Handoko ML, van Ballegoij JJ, Schalij I, Bogaards SJ, Postmus PE, et al. Bisoprolol delays progression towards right heart failure in experimental pulmonary hypertension. Circ Heart Fail. 2012;5:97–105.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by JSPS KAKENHI Grant Number 15K01363.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuji Joho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan

About this chapter

Cite this chapter

Joho, S. (2017). Muscle Sympathetic Nerve Activity and Cardiovascular Disease. In: Iwase, S., Hayano, J., Orimo, S. (eds) Clinical Assessment of the Autonomic Nervous System. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56012-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-56012-8_3

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-56010-4

  • Online ISBN: 978-4-431-56012-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics