Skip to main content

Pathological Background of Reduced Cardiac MIBG Uptake

  • Chapter
  • First Online:
Clinical Assessment of the Autonomic Nervous System

Abstract

Cardiac MIBG uptake is reduced in Lewy body diseases, including Parkinson’s disease (PD), dementia with Lewy bodies, and pure autonomic failure. It is useful to differentiate Lewy body diseases from other related disorders. Postmortem studies have shown that tyrosine hydroxylase (TH)-immunoreactive axons in the heart are decreased, primarily due to degeneration of the cardiac sympathetic nerve in pathologically confirmed Lewy body disease but not in other related disorders. This supports the findings that reduced cardiac MIBG uptake is found in Lewy body disease. In incidental Lewy body disease (iLBD), TH-immunoreactive axons are relatively preserved, while α-synuclein aggregates accumulate in the heart in abundant numbers. In PD, α-synuclein aggregates are reduced in the heart but are increased in the mother neurons of the cardiac sympathetic nerve in the paravertebral sympathetic ganglia. This distal-dominant degeneration of the cardiac sympathetic nervous system may represent the pathological mechanism underlying the common degenerative process in PD. Furthermore, degeneration of the cardiac sympathetic nerve can occur in familial PD due to PARK1, PARK4, and PARK8 with Lewy bodies in the brain. Therefore, degeneration of the cardiac sympathetic nerve is closely related to the presence of Lewy bodies in a wide range of neurodegenerative processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fujiwara H, Hasegawa M, Dohmae N, Kawashima A, Masliah E, Goldberg MS, et al. α-synuclein is phosphorylated in synucleinopathy lesions. Nat Cell Biol. 2002;4:160–4.

    Article  CAS  PubMed  Google Scholar 

  2. Braak H, Del Tredici K, Rüb U, de Vos RA, Jasen Steur EN, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging. 2003;24:197–211.

    Article  PubMed  Google Scholar 

  3. Braak H, de Vos RA, Bohl J, Del Tredici K. Gastric α-synuclein immunoreactive inclusions in Meissner’s and Auerbach’s plexuses in cases staged for Parkinson’s disease-related brain pathology. Neurosci Lett. 2006;396:67–72.

    Article  CAS  PubMed  Google Scholar 

  4. Bloch A, Probst A, Bissig H, Adams H, Tolnay M. α-synuclein pathology of the spinal and peripheral autonomic nervous system in neurologically unimpaired elderly subjects. Neuropathol Appl Neurobiol. 2006;32:284–95.

    Article  CAS  PubMed  Google Scholar 

  5. Orimo S, Uchihara T, Nakamura A, Mori F, Kakita A, Wakabayashi K, et al. Axonal α-synuclein aggregates herald centripetal degeneration of cardiac sympathetic nerve in Parkinson disease. Brain. 2008;131:642–50.

    Article  PubMed  Google Scholar 

  6. Okada Y, Ito Y, Aida J, Yasuhara M, Ohkawa S, Hirokawa K. Lewy bodies in the sinoatrial nodal ganglion: clinicopathological studies. Pathol Int. 2004;54:682–7.

    Article  PubMed  Google Scholar 

  7. Ghebremedhin E, Del Tredici K, Langston JW, Braak H. Diminished tyrosine hydroxylase immunoreactivity in the cardiac conduction system and myocardium in Parkinson’s disease: an anatomical study. Acta Neuropathol. 2009;118:777–84.

    Article  CAS  PubMed  Google Scholar 

  8. Minguez-Castellanos A, Chamorro CE, Escamilla-Sevilla F, Ortega-Moreno A, Rebollo AC, Gomez-Rio M, et al. Do α-synuclein aggregates in autonomic plexuses predate Lewy body disorders? A cohort study. Neurology. 2007;68:2012–8.

    Article  CAS  PubMed  Google Scholar 

  9. Navarro-Otano J, Gelpi E, Mestres CA, Quintana E, Rauek S, Ribalta T, et al. Alpha-synuclein aggregates in epicardial fat tissue in living subjects without parkinsonism. Parkinsonism Relat Disord. 2013;19:27–31.

    Article  PubMed  Google Scholar 

  10. Gelpi E, Navarro-Otano J, Tolosa E, Gaig C, Compta Y, Rey MJ, et al. Multiple organ involvement by alpha-synuclein pathology in Lewy body disorders. Mov Disord. 2014;29:1010–8.

    Article  PubMed  Google Scholar 

  11. Janes RD, Brandys JC, Hopkins DA, Johnstone DE, Murphy DA, Armour JA. Anatomy of human extrinsic cardiac nerves and ganglia. Am J Cardiol. 1986;57:299–309.

    Article  CAS  PubMed  Google Scholar 

  12. Bannister R, Mathias CJ. Introduction and classification of autonomic disorders. In: Mathias CJ, Bannister R, editors. Autonomic failure. A textbook of clinical disorders of the autonomic nervous system. 4th ed. New York: Oxford University Press; 1999. p. xvii–xii.

    Google Scholar 

  13. Wakabayashi K, Takahashi H, Ohama E, Takeda S, Ikuta F. Lewy bodies in the visceral auto nomic nervous system in Parkinson’s disease. In: Narabayashi H, Nagatsu N, Yanagisawa N, Mizuno Y, editors. Advances in neurology. New York: Lippincott-Raven; 1993. p. 609–12.

    Google Scholar 

  14. Orimo S, Ozawa E, Oka T, Nakade S, Tsuchiya K, Yoshimoto M, et al. Different histopathology accounting for a decrease in myocardial MIBG uptake in PD and MSA. Neurology. 2001;57:1140–1.

    Article  CAS  PubMed  Google Scholar 

  15. Orimo S, Oka T, Miura H, Tsuchiya K, Mori F, Wakabayashi K, et al. Sympathetic cardiac denervation in Parkinson’s disease and pure autonomic failure but not in multiple system atrophy. J Neurol Neurosurg Psychiatry. 2002;73:776–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kawano H, Okada R, Yano K. Histological study on the distribution of autonomic nerves in the human heart. Heart Vessel. 2003;18:32–9.

    Article  Google Scholar 

  17. Amino T, Orimo S, Ihoh Y, Takahashi A, Uchihara H, Mizusawa H. Profound cardiac sympathetic denervation occurs in Parkinson disease. Brain Pathol. 2005;15:29–34.

    Article  PubMed  Google Scholar 

  18. Mitsui J, Saito Y, Momose T, Shimizu J, Arai N, Shibahara J, et al. Pathology of the sympathetic nervous system corresponding to the decreased cardiac uptake in 123I-metaiodobenzylguanidine (MIBG) scintigraphy in a patient with Parkinson disease. J Neurol Sci. 2006;15(243):101–4.

    Article  Google Scholar 

  19. Orimo S, Amino T, Ito Y, Takahashi A, Kojo T, Uchihara T, et al. Cardiac sympathetic denervation precedes neuronal loss in the sympathetic ganglia in Lewy body disease. Acta Neuropathol. 2005;109:583–8.

    Article  PubMed  Google Scholar 

  20. Orimo S, Ozawa E, Nakade S, Sugimoto T, Mizusawa H. 123I-metaiodobenzylguanidine myo cardial scintigraphy in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1999;67:189–94.

    Google Scholar 

  21. Courbon F, Brefel-Courbon C, Thalamas C, Alibelli MJ, Berry I, Montastruc JL, et al. Cardiac MIBG scintigraphy is a sensitive tool for detecting cardiac sympathetic denervation in Parkinson’s disease. Mov Disord. 2003;18:890–7.

    Article  PubMed  Google Scholar 

  22. Orimo S, Takahashi A, Uchihara T, Mori F, Kakita A, Wakabayashi K, et al. Degeneration of cardiac sympathetic nerve begins in the early disease process of Parkinson’s disease. Brain Pathol. 2007;17:24–30.

    Article  CAS  PubMed  Google Scholar 

  23. Fujishiro H, Frigerio R, Burnett M, Klos KJ, Josephs KA, Delledonne A, et al. Cardiac sym pathetic denervation correlates with clinical and pathologic stages of Parkinson’s disease. Mov Disord. 2008;23:1085–92.

    Google Scholar 

  24. Miki Y, Mori F, Wakabayashi K, Kuroda N, Orimo S. Incidental Lewy body disease restricted to the heart and stellate ganglia. Mov Disord. 2009;24:2299–301.

    Article  PubMed  Google Scholar 

  25. Hawkes CH, Del Tredici K, Braak H. Parkinson’s disease: a dual-hit hypothesis. Neuropathol Appl Neurobiol. 2007;33:599–614.

    Article  CAS  PubMed  Google Scholar 

  26. Tomiyama H, Lesage S, Tan EK, Jeon BS. Familial Parkinson’s disease/parkinsonism. Biomed Res Int. 2015;736915. 2 pages.

    Google Scholar 

  27. Zarranz JJ, Alegre J, Gomez-Esteban JC, Lezcano E, Ros R, Ampuero I, et al. The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol. 2004;55:164–73.

    Article  CAS  PubMed  Google Scholar 

  28. Zarranz JJ, Fernandez-Bedoya A, Lambarri I, Gomez-Esteban JC, Lezcano E, Zamacona J, et al. Abnormal sleep architecture is an early feature in the E46K familial synucleinopathy. Mov Disord. 2005;20:1310–5.

    Article  PubMed  Google Scholar 

  29. Tijero B, Gomez-Esteban JC, Llorens V, Lezcano E, Gonzalez-Fernandez MC, de Pancorbo MM, et al. Cardiac sympathetic denervation precedes nigrostriatal loss in the E46K mutation of the alpha-synuclein gene (SNCA). Clin Auton Res. 2010;20:267–9.

    Article  CAS  PubMed  Google Scholar 

  30. Tijero B, Gómez-Esteban JC, Lezcano E, Fernández-González C, Somme J, Llorens V, et al. Cardiac sympathetic denervation in symptomatic and asymptomatic carriers of the E46K mutation in the α synuclein gene. Parkinsonism Relat Disord. 2013;19:95–100.

    Article  PubMed  Google Scholar 

  31. Orimo S, Amino T, Yokochi M, Kojo T, Uchihara T, Takahashi T, et al. Preserved cardiac sympathetic nerve accounts for normal cardiac uptake of MIBG in PARK2. Mov Disord. 2005;20:1350–3.

    Article  PubMed  Google Scholar 

  32. Hayashi S, Wakabayashi K, Ishikawa A, Nagai H, Saito M, Maruyama M, et al. An autopsy case of autosomal-recessive juvenile parkinsonism with a homozygous exon 4 deletion in the parkin gene. Mov Disord. 2000;15:884–8.

    Article  CAS  PubMed  Google Scholar 

  33. Farrer M, Kachergus J, Forno L, Lincoln S, Wang DS, Hulihan M, et al. Comparison of kindreds with parkinsonism and α-synuclein genomic multiplications. Ann Neurol. 2004;55:174–9.

    Article  CAS  PubMed  Google Scholar 

  34. Singleton A, Gwinn-Hardy K, Sharabi Y, Li ST, Holmes C, Dendi R, et al. Association between cardiac denervation and parkinsonism caused by alpha-synuclein gene triplication. Brain. 2004;127:768–72.

    Article  PubMed  Google Scholar 

  35. Nishioka K, Hayashi S, Farrer MJ, Singleton AB, Yoshino H, Imai H, et al. Clinical heterogeneity of α-synuclein gene duplication in Parkinson’s disease. Ann Neurol. 2006;59:298–309.

    Article  CAS  PubMed  Google Scholar 

  36. Orimo S, Uchihara T, Nakamura A, Mori F, Ikeuchi T, Onodera O, et al. Cardiac sympathetic denervation in Parkinson’s disease linked to SNCA duplication. Acta Neuropathol. 2008;116:575–7.

    Article  PubMed  Google Scholar 

  37. Wakabayashi K, Hayashi S, Ishikawa A, Hayashi T, Okuizumi K, Tanaka H, et al. Autosomal dominant diffuse Lewy body disease. Acta Neuropathol. 1998;96:207–10.

    Article  CAS  PubMed  Google Scholar 

  38. Ikeuchi T, Kakita A, Shiga A, Kasuga K, Kaneko H, Tan CF, et al. Patients homozygous and heterozygous for SNCA duplication in a family with parkinsonism and dementia. Arch Neurol. 2008;65:514–9.

    Article  PubMed  Google Scholar 

  39. Khan NL, Jain S, Lynch JM, Pavese N, Abou-Sleiman P, Holton JL, et al. Mutations in the gene LRRK2 encoding dardarin (PARK8) cause familial Parkinson’s disease: clinical, pathological, olfactory and functional imaging and genetic data. Brain. 2005;128:2786–96.

    Article  PubMed  Google Scholar 

  40. Giasson BI, Covy JP, Bonini NM, Hurtig HI, Farrer MJ, Farrer MJ, et al. Biochemical and pathological characterization of Lrrk2. Ann Neurol. 2006;59:315–22.

    Article  CAS  PubMed  Google Scholar 

  41. Nukada H, Kowa H, Saitoh T, Tazaki Y, Miura S. A big family of paralysis agitans. Rinsho Sinkeigaku. 1978;18:627–34 (in Japanese).

    CAS  Google Scholar 

  42. Hasegawa K, Stoessl AJ, Yokoyama T, Kowa H, Wszolek ZK, Yagishita S. Familial parkinsonism: study of original Sagamihara PARK8 (I2020T) kindred with variable clinicopathologic outcomes. Parkinsonism Relat Disord. 2009;15:300–6.

    Article  PubMed  Google Scholar 

  43. Goldstein DS, Imrich R, Peckham E, Holmes C, Lopex G, Crews C, et al. Neurocirculatory and nigrostriatal abnormalities in Parkinson disease from LRRK2 mutation. Neurology. 2007;69:1580–4.

    Article  CAS  PubMed  Google Scholar 

  44. Braune S. The role of cardiac metaiodobenzylguanidine uptake in the differential diagnosis of parkinsonian syndromes. Clin Auton Res. 2001;11:351–5.

    Article  CAS  PubMed  Google Scholar 

  45. Braune S, Reinhardt M, Schnitzer R, Riedel A, Lücking CH. Cardiac uptake of [123I]MIBG separates Parkinson’s disease from multiple system atrophy. Neurology. 1999;53:1020–5.

    Article  CAS  PubMed  Google Scholar 

  46. Druschky A, Hilz MJ, Platsch G, Radespiel-Tröger M, Druschky K, Kuwert T, et al. Differentiation of Parkinson’s disease and multiple system atrophy in early disease stages by means of I-123-MIBG-SPECT. J Neurol Sci. 2000;175:3–12.

    Article  CAS  PubMed  Google Scholar 

  47. Taki J, Nakajima K, Hwang E-H, Matsunari I, Komai K, Yoshita M, et al. Peripheral sympathetic dysfunction in patients with Parkinson’s disease without autonomic failure is heart selective and disease specific. Eur J Nucl Med. 2000;27:566–73.

    Article  CAS  PubMed  Google Scholar 

  48. Yoshita M. Differentiation of idiopathic Parkinson’s disease from striatonigral degeneration and progressive supranuclear palsy. Acta Neurol Scand. 1998;91:14–8.

    Google Scholar 

  49. Orimo S, Kanazawa T, Nakamura A, Uchihara T, Mori F, Kakita A, et al. Degeneration of cardiac sympathetic nerve can occur in multiple system atrophy. Acta Neuropathol. 2007;113:81–6.

    Article  PubMed  Google Scholar 

  50. Gray F, Vincent D, Hauw JJ. Quantitative study of lateral horn cells in 15 cases of multiple system atrophy. Acta Neuropathol. 1988;75:513–8.

    Article  CAS  PubMed  Google Scholar 

  51. Kennedy PGE, Duchen LW. A quantitative study of intermediolateral column cells in motor neuron disease and the Shy-Drager syndrome. J Neurol Neurosurg Psychiatry. 1985;48:1103–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nakajima R, Takahashi K, Nakamura H, Otomo E, Kameyama M. A quantitative study on the intermediolateral cells of the thoracic cord in degenerative diseases of the nervous system. Clin Neurol. 1981;21:581–6.

    CAS  Google Scholar 

  53. Oppemheimer DR. Lateral horn cells in progressive autonomic failure. J Neurol Sci. 1980;46:393–404.

    Article  Google Scholar 

  54. Daniel SE. The neuropathology and neurochemistry of multiple system atrophy. In: Mathias CJ, Bannister SR, editors. Autonomic failure. Oxford: Oxford University Press; 1999. p. 321–8.

    Google Scholar 

  55. Orimo S, Uchihara T, Kanazawa T, Itoh Y, Wakabayashi K, Kakita A, et al. Unmyelinated axons are more vulnerable to degeneration than myelinated axons of the cardiac nerve in Parkinson’s disease. J Neuropathol Appl Neurobiol. 2011;37:791–802.

    Article  CAS  Google Scholar 

  56. Braak H, Del Tredici K. Poor protracted myelination as a contributory factor to neurodegenerative disorders. Neurobiol Aging. 2004;25:19–23.

    Article  CAS  PubMed  Google Scholar 

  57. Nieuwenhuys R. Structure and organization of fibre system. In: Nieuwenbuys R, Tendokelaar HJ, Nicholson C, editors. The central nervous system of vertebrates, vol. 1. Berlin: Springer; 1999. p. 113–57.

    Google Scholar 

  58. Bartzokis G, Cummings JL, Sultzer D. White matter structural integrity in healthy aging adults and patients with Alzheimer disease. Arch Neurol. 2003;60:393–8.

    Article  PubMed  Google Scholar 

  59. Hildebrand C, Remahl S, Persson H, Bjartmar C. Myelinated nerve fibers in the CNS. Prog Neurobiol. 1993;40:319–84.

    Article  CAS  PubMed  Google Scholar 

  60. Takahashi M, Ikemura M, Oka T, Uchihara T, Wakabayashi K, Kakita A, et al. Quantitative correlation between cardiac MIBG uptake and remaining axons in the cardiac sympathetic nerve in Lewy body disease. J Neurol Neurosurg Psychiatry. 2015;86:939–44.

    Google Scholar 

  61. Burns RS, Chiueh CC, Markey SP, Ebert MH, Jacobowitz DM, Kopin IJ. A primate model of parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine. Proc Natl Acad Sci U S A. 1983;80:4546–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Heikkila RE, Sonsalla PK. The MPTP-treated mouse as a model of parkinsonism: how good is it? Neurochem Int. 1992;20(Suppl):299S–303.

    Article  CAS  PubMed  Google Scholar 

  63. Sonsalla PK, Heikkila RE. The influence of dose and dosing interval on MPTP-induced dopaminergic neurotoxicity in mice. Eur J Pharmacol. 1986;129:339–5.

    Article  CAS  PubMed  Google Scholar 

  64. Sundström E, Strömberg I, Tsutsumi T, Olson L, Jonsson G. Studies on the effect of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) on central catecholamine neurons in C57BL/6 mice. Comparison with three other strains of mice. Brain Res. 1987;405:26–38.

    Article  PubMed  Google Scholar 

  65. Takatsu H, Wada H, Maekawa N, Takemura M, Saito K, Fujiwara H. Significant reduction of 125I-meta-iodobenzylguanidine accumulation directly caused by 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydroxypyridine, a toxic agent for inducing experimental Parkinson’s disease. Nucl Med Commun. 2002;23:161–6.

    Article  CAS  PubMed  Google Scholar 

  66. Takatsu H, Nishida H, Matsuo H, Watanabe S, Nagashima K, Wada H, et al. Cardiac sympathetic denervation from the early stage of Parkinson’s disease: clinical and experimental studies with radiolabeled MIBG. J Nucl Med. 2000;41:71–7.

    CAS  PubMed  Google Scholar 

  67. Fukumitsu N, Suzuki M, Fukuda T, Kiyono Y, Kajiyama S, Saji H. Reduced 125I-meta-iodobenzylguanidine uptake and norepinephrine transporter density in the hearts of mice with MPTP-induced parkinsonism. Nucl Med Biol. 2006;33:37–42.

    Article  CAS  PubMed  Google Scholar 

  68. Amino T, Uchihara T, Tsunekawa H, Takahata K, Shimazu S, Mizusawa H, et al. Myocardial nerve fibers are preserved in MPTP-treated mice, despite cardiac sympathetic dysfunction. Neurosci Res. 2008;60:314–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Orimo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan

About this chapter

Cite this chapter

Orimo, S. (2017). Pathological Background of Reduced Cardiac MIBG Uptake. In: Iwase, S., Hayano, J., Orimo, S. (eds) Clinical Assessment of the Autonomic Nervous System. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56012-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-56012-8_18

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-56010-4

  • Online ISBN: 978-4-431-56012-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics