Skip to main content

Technical Considerations for MIBG Cardiac Scintigraphy

  • Chapter
  • First Online:
Clinical Assessment of the Autonomic Nervous System
  • 1297 Accesses

Abstract

The most commonly used means of imaging to assess cardiac sympathetic denervation is cardiac 123I-metaiodobenzylguanidine (123I-MIBG) scintigraphy. The heart-to-mediastinum (H/M) ratio generated by planar imaging is used widely to assess sympathetic nerve involvement. The H/M ratio is a simple and reliable index, but its values can be influenced profoundly by differences in collimators. Region of interest (ROI) setting methods are also an important problem to generate reliable data. More recently, multicenter cross-calibration of 123I-MIBG H/M ratios to overcome camera-collimator variations, with the use of reference H/M ratios assessed by the phantom method and of a conversion coefficient for each camera-collimator system, demonstrated that H/M ratios under various conditions can be converted to standard H/M ratios for a range of ratios from normal to low. In addition, a standardized method for semiautomatic ROI setting in MIBG was developed. These technical advancements enable us to promote multicenter studies. We also discuss the imaging technique, analysis, and interpretation in this section.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Travin MI. Cardiac autonomic imaging with SPECT tracers. J Nucl Cardiol. 2013;20(1):128–43; quiz 46.

    Article  PubMed  Google Scholar 

  2. Goldstein DS. Sympathetic neuroimaging. Handb Clin Neurol. 2013;117:365–70.

    Article  PubMed  Google Scholar 

  3. Teresinska A. Metaiodobenzylguanidine scintigraphy of cardiac sympathetic innervation. Nucl Med Rev Cent East Eur. 2012;15(1):61–70.

    Article  PubMed  Google Scholar 

  4. Chirumamilla A, Travin MI. Cardiac applications of 123I-mIBG imaging. Semin Nucl Med. 2011;41(5):374–87.

    Article  PubMed  Google Scholar 

  5. Flotats A, Carrio I, Agostini D, Le Guludec D, Marcassa C, Schafers M, et al. Proposal for standardization of 123I-metaiodobenzylguanidine (MIBG) cardiac sympathetic imaging by the EANM Cardiovascular Committee and the European Council of Nuclear Cardiology. Eur J Nucl Med Mol Imaging. 2010;37(9):1802–12.

    Article  PubMed  Google Scholar 

  6. Wieland DM, Brown LE, Rogers WL, Worthington KC, Wu JL, Clinthorne NH, et al. Myocardial imaging with a radioiodinated norepinephrine storage analog. J Nucl Med. 1981;22(1):22–31.

    CAS  PubMed  Google Scholar 

  7. Sisson JC, Wieland DM, Sherman P, Mangner TJ, Tobes MC, Jacques Jr S. Metaiodobenzylguanidine as an index of the adrenergic nervous system integrity and function. J Nucl Med. 1987;28(10):1620–4.

    CAS  PubMed  Google Scholar 

  8. Solanki KK, Bomanji J, Moyes J, Mather SJ, Trainer PJ, Britton KE. A pharmacological guide to medicines which interfere with the biodistribution of radiolabelled meta-iodobenzylguanidine (MIBG). Nucl Med Commun. 1992;13(7):513–21.

    Article  CAS  PubMed  Google Scholar 

  9. Wafelman AR, Hoefnagel CA, Maes RA, Beijnen JH. Radioiodinated metaiodobenzylguanidine: a review of its biodistribution and pharmacokinetics, drug interactions, cytotoxicity and dosimetry. Eur J Nucl Med. 1994;21(6):545–59.

    Article  CAS  PubMed  Google Scholar 

  10. Dobbeleir AA, Hambye AS, Franken PR. Influence of high-energy photons on the spectrum of iodine-123 with low- and medium-energy collimators: consequences for imaging with 123I-labelled compounds in clinical practice. Eur J Nucl Med. 1999;26(6):655–8.

    Article  CAS  PubMed  Google Scholar 

  11. Inoue Y, Suzuki A, Shirouzu I, Machida T, Yoshizawa Y, Akita F, et al. Effect of collimator choice on quantitative assessment of cardiac iodine 123 MIBG uptake. J Nucl Cardiol. 2003;10(6):623–32.

    Article  PubMed  Google Scholar 

  12. Verberne HJ, Feenstra C, de Jong WM, Somsen GA, van Eck-Smit BL, Busemann SE. Influence of collimator choice and simulated clinical conditions on 123I-MIBG heart/mediastinum ratios: a phantom study. Eur J Nucl Med Mol Imaging. 2005;32(9):1100–7.

    Article  PubMed  Google Scholar 

  13. Verberne HJ, Habraken JB, van Eck-Smit BL, Agostini D, Jacobson AF. Variations in 123I-metaiodobenzylguanidine (MIBG) late heart mediastinal ratios in chronic heart failure: a need for standardisation and validation. Eur J Nucl Med Mol Imaging. 2008;35(3):547–53.

    Article  CAS  PubMed  Google Scholar 

  14. Van der Veen L, Scholte A, Stokkel M. Mathematical methods to determine quantitative parameters of myocardial 123I-MIBG studies: a review of the literature. Nucl Med Commun. 2010;31(7):617–28.

    PubMed  Google Scholar 

  15. Jacobson AF, Travin MI. Impact of medications on mIBG uptake, with specific attention to the heart: comprehensive review of the literature. J Nucl Cardiol. 2015;15. [Epub ahead of print].

    Google Scholar 

  16. Friedman NC, Hassan A, Grady E, Matsuoka DT, Jacobson AF. Efficacy of thyroid blockade on thyroid radioiodine uptake in 123I-mIBG imaging. J Nucl Med. 2014;55(2):211–5.

    Article  CAS  PubMed  Google Scholar 

  17. Nakajima K, Nakata T. Cardiac 123I-MIBG imaging for clinical decision making: 22-year experience in Japan. J Nucl Med. 2015;56 Suppl 4:11S–9.

    Article  CAS  PubMed  Google Scholar 

  18. Peterson TE, Furenlid LR. SPECT detectors: the Anger Camera and beyond. Phys Med Biol. 2011;56(17):R145–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nakajima K, Okuda K, Yoshimura M, Matsuo S, Wakabayashi H, Imanishi Y, et al. Multicenter cross-calibration of I-123 metaiodobenzylguanidine heart-to-mediastinum ratios to overcome camera-collimator variations. J Nucl Cardiol. 2014;21(5):970–8.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Nakajima K, Matsubara K, Ishikawa T, Motomura N, Maeda R, Akhter N, et al. Correction of iodine-123-labeled meta-iodobenzylguanidine uptake with multi-window methods for standardization of the heart-to-mediastinum ratio. J Nucl Cardiol. 2007;14(6):843–51.

    Article  PubMed  Google Scholar 

  21. Chen J, Garcia EV, Galt JR, Folks RD, Carrio I. Improved quantification in 123I cardiac SPECT imaging with deconvolution of septal penetration. Nucl Med Commun. 2006;27(7):551–8.

    Article  PubMed  Google Scholar 

  22. Nakajima K, Okuda K, Matsuo S, Yoshita M, Taki J, Yamada M, et al. Standardization of metaiodobenzylguanidine heart to mediastinum ratio using a calibration phantom: effects of correction on normal databases and a multicentre study. Eur J Nucl Med Mol Imaging. 2012;39(1):113–9.

    Article  CAS  PubMed  Google Scholar 

  23. Agostini D, Belin A, Amar MH, Darlas Y, Hamon M, Grollier G, et al. Improvement of cardiac neuronal function after carvedilol treatment in dilated cardiomyopathy: a 123I-MIBG scintigraphic study. J Nucl Med. 2000;41(5):845–51.

    CAS  PubMed  Google Scholar 

  24. Yamada T, Shimonagata T, Fukunami M, Kumagai K, Ogita H, Hirata A, et al. Comparison of the prognostic value of cardiac iodine-123 metaiodobenzylguanidine imaging and heart rate variability in patients with chronic heart failure: a prospective study. J Am Coll Cardiol. 2003;41(2):231–8.

    Article  PubMed  Google Scholar 

  25. Gerson MC, Craft LL, McGuire N, Suresh DP, Abraham WT, Wagoner LE. Carvedilol improves left ventricular function in heart failure patients with idiopathic dilated cardiomyopathy and a wide range of sympathetic nervous system function as measured by iodine 123 metaiodobenzylguanidine. J Nucl Cardiol. 2002;9(6):608–15.

    Article  PubMed  Google Scholar 

  26. Nakajima K. Normal values for nuclear cardiology: Japanese databases for myocardial perfusion, fatty acid and sympathetic imaging and left ventricular function. Ann Nucl Med. 2010;24(3):125–35.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Okuda K, Nakajima K, Hosoya T, Ishikawa T, Konishi T, Matsubara K, et al. Semi-automated algorithm for calculating heart-to-mediastinum ratio in cardiac Iodine-123 MIBG imaging. J Nucl Cardiol. 2011;18(1):82–9.

    Article  PubMed  Google Scholar 

  28. Wakabayashi T, Nakata T, Hashimoto A, Yuda S, Tsuchihashi K, Travin MI, et al. Assessment of underlying etiology and cardiac sympathetic innervation to identify patients at high risk of cardiac death. J Nucl Med. 2001;42(12):1757–67.

    CAS  PubMed  Google Scholar 

  29. Morozumi T, Kusuoka H, Fukuchi K, Tani A, Uehara T, Matsuda S, et al. Myocardial iodine-123-metaiodobenzylguanidine images and autonomic nerve activity in normal subjects. J Nucl Med. 1997;38(1):49–52.

    CAS  PubMed  Google Scholar 

  30. Somsen GA, Verberne HJ, Fleury E, Righetti A. Normal values and within-subject variability of cardiac I-123 MIBG scintigraphy in healthy individuals: implications for clinical studies. J Nucl Cardiol. 2004;11(2):126–33.

    Article  PubMed  Google Scholar 

  31. Agostini D, Carrio I, Verberne HJ. How to use myocardial 123I-MIBG scintigraphy in chronic heart failure. Eur J Nucl Med Mol Imaging. 2009;36(4):555–9.

    Article  PubMed  Google Scholar 

  32. Slomka PJ, Mehta PK, Germano G, Berman DS. Quantification of I-123-meta-iodobenzylguanidine heart-to-mediastinum ratios: not so simple after all. J Nucl Cardiol. 2014;21(5):979–83.

    Article  PubMed  Google Scholar 

  33. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation. 2002;105(4):539–42.

    Article  PubMed  Google Scholar 

  34. Tsuchimochi S, Tamaki N, Tadamura E, Kawamoto M, Fujita T, Yonekura Y, et al. Age and gender differences in normal myocardial adrenergic neuronal function evaluated by iodine-123-MIBG imaging. J Nucl Med. 1995;36(6):969–74.

    CAS  PubMed  Google Scholar 

  35. Estorch M, Serra-Grima R, Flotats A, Mari C, Berna L, Catafau A, et al. Myocardial sympathetic innervation in the athlete’s sinus bradycardia: is there selective inferior myocardial wall denervation? J Nucl Cardiol. 2000;7(4):354–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirohisa Watanabe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan

About this chapter

Cite this chapter

Watanabe, H., Sobue, G. (2017). Technical Considerations for MIBG Cardiac Scintigraphy. In: Iwase, S., Hayano, J., Orimo, S. (eds) Clinical Assessment of the Autonomic Nervous System. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56012-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-56012-8_14

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-56010-4

  • Online ISBN: 978-4-431-56012-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics