Skip to main content

Synthesis, Genetics, and Congenital Diseases of GPI-Anchored Proteins

  • Chapter
  • First Online:

Abstract

In this chapter, we present basic research covering paroxysmal nocturnal hemoglobinuria (PNH). PNH is characterized by impaired regulation of the complement system because of reduced surface expression of complement regulatory molecules, CD55 (DAF) and CD59. Both proteins are glycosylphosphatidylinositol-anchored proteins (GPI-APs) present in wide variety of cells exposed to complement. GPI-AP deficiency is caused by somatic mutation of PIGA in hematopoietic stem cells, the primary defect in PNH. Clinical manifestations, such as hemolytic anemia, also occur when other factors induce clonal expansion of the affected hematopoietic stem cells. Although a defect in any 20 or more genes essential for GPI biosynthesis and/or remodeling can cause PNH, only PIGA, encoding an enzyme catalyzing the first step in GPI biosynthesis, was known to be a gene responsible for PNH over the last two decades. This is because among the more than 20 genes, PIGA is the only gene located on the X-chromosome and a single mutation is sufficient to cause PIG-A dysfunction. PNH caused by compound defects of somatic and germ line mutations in the PIGT gene located on chromosome 20 was recently found. In addition to PNH, revolutionary development of next-generation sequencing (NGS) has enabled the identification of inherited GPI deficiencies with various clinical phenotypes, such as intellectual disability, developmental delay, seizures, and hypotonia. Currently, individuals with mutations in 12 genes along the GPI biosynthetic pathway have been identified. Further development of NGS will facilitate discovery of more inherited GPI deficiencies and possibly PNH. Therefore, characterizing the biosynthetic pathway of GPI is increasingly more important for understanding the pathology of GPI deficiencies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Almeida AM, Murakami Y, Baker A, Maeda Y, Roberts IA, Kinoshita T, Layton DM, Karadimitris A (2007) Targeted therapy for inherited GPI deficiency. N Engl J Med 356(16):1641–1647

    Article  CAS  PubMed  Google Scholar 

  2. Almeida AM, Murakami Y, Layton DM, Hillmen P, Sellick GS, Maeda Y, Richards S, Patterson S, Kotsianidis I, Mollica L, Crawford DH, Baker A, Ferguson M, Roberts I, Houlston R, Kinoshita T, Karadimitris A (2006) Hypomorphic promoter mutation in PIGM causes inherited glycosylphosphatidylinositol deficiency. Nat Med 12(7):846–851

    Article  CAS  PubMed  Google Scholar 

  3. Araten DJ, Nafa K, Pakdeesuwan K, Luzzatto L (1999) Clonal populations of hematopoietic cells with paroxysmal nocturnal hemoglobinuria genotype and phenotype are present in normal individuals. Proc Natl Acad Sci U S A 96:5209–5214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ashida H, Hong Y, Murakami Y, Shishioh N, Sugimoto N, Kim YU, Maeda Y, Kinoshita T (2005) Mammalian PIG-X and yeast Pbn1p are the essential components of glycosylphosphatidylinositol-mannosyltransferase I. Mol Biol Cell 16(3):1439–1448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ast T, Cohen G, Schuldiner M (2013) A network of cytosolic factors targets SRP-independent proteins to the endoplasmic reticulum. Cell 152(5):1134–1145. doi:10.1016/j.cell.2013.02.003

    Article  CAS  PubMed  Google Scholar 

  6. Belet S, Fieremans N, Yuan X, Van Esch H, Verbeeck J, Ye Z, Cheng L, Brodsky BR, Hu H, Kalscheuer VM, Brodsky RA, Froyen G (2013) Early frameshift mutation in PIGA identified in a large XLID family without neonatal lethality. Hum Mutat 35(3):350–355. doi:10.1002/humu.22498

    Article  CAS  Google Scholar 

  7. Benghezal M, Benachour A, Rusconi S, Aebi M, Conzelmann A (1996) Yeast Gpi8p is essential for GPI anchor attachment onto proteins. EMBO J 15:6575–6583

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Bessler M, Mason PJ, Hillmen P, Luzzatto L (1994) Mutations in the PIG-A gene causing partial deficiency of GPI-linked surface proteins (PNH II) in patients with paroxysmal nocturnal haemoglobinuria. Br J Haematol 87:863–866

    Article  CAS  PubMed  Google Scholar 

  9. Bonnon C, Wendeler MW, Paccaud JP, Hauri HP (2010) Selective export of human GPI-anchored proteins from the endoplasmic reticulum. J Cell Sci 123(Pt 10):1705–1715. doi:10.1242/jcs.062950

    Article  CAS  PubMed  Google Scholar 

  10. Bosson R, Jaquenoud M, Conzelmann A (2006) GUP1 of Saccharomyces cerevisiae encodes an O-acyltransferase involved in remodeling of the GPI anchor. Mol Biol Cell 17(6):2636–2645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chiyonobu T, Inoue N, Morimoto M, Kinoshita T, Murakami Y (2014) Glycosylphosphatidylinositol (GPI) anchor deficiency caused by mutations in PIGW is associated with West syndrome and hyperphosphatasia with mental retardation syndrome. J Med Genet 51(3):203–207. doi:10.1136/jmedgenet-2013-102156

    Article  CAS  PubMed  Google Scholar 

  12. Eisenhaber B, Eisenhaber S, Kwang TY, Gruber G, Eisenhaber F (2014) Transamidase subunit GAA1/GPAA1 is a M28 family metallo-peptide-synthetase that catalyzes the peptide bond formation between the substrate protein’s omega-site and the GPI lipid anchor’s phosphoethanolamine. Cell Cycle 13(12):1912–1917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Endo M, Ware R, Vreeke T, Singh S, Howard T, Tomita A, Holguin M, Parker C (1996) Molecular basis of the heterogeneity of expression of glycosyl phosphatidylinositol anchored proteins in paroxysmal nocturnal hemoglobinuria. Blood 87:2546–2557

    CAS  PubMed  Google Scholar 

  14. Fujihara Y, Tokuhiro K, Muro Y, Kondoh G, Araki Y, Ikawa M, Okabe M (2013) Expression of TEX101, regulated by ACE, is essential for the production of fertile mouse spermatozoa. Proc Natl Acad Sci U S A 110(20):8111–8116. doi:10.1073/pnas.1222166110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fujita M, Maeda Y, Ra M, Yamaguchi Y, Taguchi R, Kinoshita T (2009) GPI glycan remodeling by PGAP5 regulates transport of GPI-anchored proteins from the ER to the Golgi. Cell 139(2):352–365. doi:10.1016/j.cell.2009.08.040

    Article  CAS  PubMed  Google Scholar 

  16. Fujita M, Umemura M, Yoko-o T, Jigami Y (2006) PER1 is required for GPI-phospholipase A2 activity and involved in lipid remodeling of GPI-anchored proteins. Mol Biol Cell 17(12):5253–5264. doi:10.1091/mbc.E06-08-0715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fujita M, Watanabe R, Jaensch N, Romanova-Michaelides M, Satoh T, Kato M, Riezman H, Yamaguchi Y, Maeda Y, Kinoshita T (2011) Sorting of GPI-anchored proteins into ER exit sites by p24 proteins is dependent on remodeled GPI. J Cell Biol 194(1):61–75. doi:10.1083/jcb.201012074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hamburger D, Egerton M, Riezman H (1995) Yeast Gaa1p is required for attachment of a completed GPI anchor onto proteins. J Cell Biol 129:629–639

    Article  CAS  PubMed  Google Scholar 

  19. Handa N, Terada T, Kamewari Y, Hamana H, Tame JR, Park SY, Kinoshita K, Ota M, Nakamura H, Kuramitsu S, Shirouzu M, Yokoyama S (2003) Crystal structure of the conserved protein TT1542 from Thermus thermophilus HB8. Protein Sci A Publ Protein Soc 12(8):1621–1632. doi:10.1110/gad.03104003

    Article  CAS  Google Scholar 

  20. Hansen L, Tawamie H, Murakami Y, Mang Y, ur Rehman S, Buchert R, Schaffer S, Muhammad S, Bak M, Nothen MM, Bennett EP, Maeda Y, Aigner M, Reis A, Kinoshita T, Tommerup N, Baig SM, Abou Jamra R (2013) Hypomorphic mutations in PGAP2, encoding a GPI-anchor-remodeling protein, cause autosomal-recessive intellectual disability. Am J Hum Genet 92(4):575–583. doi:10.1016/j.ajhg.2013.03.008

  21. Hirata T, Fujita M, Kanzawa N, Murakami Y, Maeda Y, Kinoshita T (2013) Glycosylphosphatidylinositol mannosyltransferase II is the rate-limiting enzyme in glycosylphosphatidylinositol biosynthesis under limited dolichol-phosphate mannose availability. J Biochem 154(3):257–264. doi:10.1093/jb/mvt045

    Article  CAS  PubMed  Google Scholar 

  22. Hiroi Y, Komuro I, Chen R, Hosoda T, Mizuno T, Kudoh S, Georgescu SP, Medof ME, Yazaki Y (1998) Molecular cloning of human homolog of yeast GAA1 which is required for attachment of glycosylphosphatidylinositols to proteins. FEBS Lett 421:252–258

    Article  CAS  PubMed  Google Scholar 

  23. Hochsmann B, Dohna-Schwake C, Kyrieleis HA, Pannicke U, Schrezenmeier H (2014) Targeted therapy with eculizumab for inherited CD59 deficiency. N Engl J Med 370(1):90–92. doi:10.1056/NEJMc1308104

    Article  PubMed  CAS  Google Scholar 

  24. Hong Y, Maeda Y, Watanabe R, Inoue N, Ohishi K, Kinoshita T (2000) Requirement of PIG-F and PIG-O for transferring phosphoethanolamine to the third mannose in glycosylphosphatidylinositol. J Biol Chem 275:20911–20919

    Article  CAS  PubMed  Google Scholar 

  25. Hong Y, Maeda Y, Watanabe R, Ohishi K, Mishkind M, Riezman H, Kinoshita T (1999) Pig-n, a mammalian homologue of yeast Mcd4p, is involved in transferring phosphoethanolamine to the first mannose of the glycosylphosphatidylinositol. J Biol Chem 274:35099–35106

    Article  CAS  PubMed  Google Scholar 

  26. Hong Y, Ohishi K, Kang JY, Tanaka S, Inoue N, Nishimura J, Maeda Y, Kinoshita T (2003) Human PIG-U and yeast Cdc91p are the fifth subunit of GPI transamidase that attaches GPI-anchors to proteins. Mol Biol Cell 14:1780–1789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Houjou T, Hayakawa J, Watanabe R, Tashima Y, Maeda Y, Kinoshita T, Taguchi R (2007) Changes in molecular species profiles of glycosylphosphatidylinositol-anchor precursors in early stages of biosynthesis. J Lipid Res 48:1599–1606

    Article  CAS  PubMed  Google Scholar 

  28. Howard MF, Murakami Y, Pagnamenta AT, Daumer-Haas C, Fischer B, Hecht J, Keays DA, Knight SJ, Kolsch U, Kruger U, Leiz S, Maeda Y, Mitchell D, Mundlos S, Phillips JA 3rd, Robinson PN, Kini U, Taylor JC, Horn D, Kinoshita T, Krawitz PM (2014) Mutations in PGAP3 impair GPI-anchor maturation, causing a subtype of hyperphosphatasia with mental retardation. Am J Hum Genet 94(2):278–287. doi:10.1016/j.ajhg.2013.12.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Iida Y, Takeda J, Miyata T, Inoue N, Nishimura J, Kitani T, Maeda K, Kinoshita T (1994) Characterization of genomic PIG-A gene:a gene for GPI-anchor biosynthesis and paroxysmal nocturnal hemoglobinuria. Blood 83:3126–3131

    CAS  PubMed  Google Scholar 

  30. Ikezawa H (2002) Glycosylphosphatidylinositol (GPI)-anchored proteins. Biol Pharm Bull 25(4):409–417

    Article  CAS  PubMed  Google Scholar 

  31. Inoue N, Kinoshita T, Orii T, Takeda J (1993) Cloning of a human gene, PIG-F, a component of glycosylphosphatidylinositol anchor biosynthesis, by a novel expression cloning strategy. J Biol Chem 268:6882–6885

    CAS  PubMed  Google Scholar 

  32. Inoue N, Watanabe R, Takeda J, Kinoshita T (1996) PIG-C, one of the three human genes involved in the first step of glycosylphosphatidylinositol biosynthesis is a homologue of Saccharomyces cerevisiae GPI2. Biochem Biophys Res Commun 226:193–199

    Article  CAS  PubMed  Google Scholar 

  33. Jaensch N, Correa IR Jr, Watanabe R (2014) Stable cell surface expression of GPI-anchored proteins, but not intracellular transport, depends on their fatty acid structure. Traffic 15(12):1305–1329. doi:10.1111/tra.12224

    Article  CAS  PubMed  Google Scholar 

  34. Johnston JJ, Gropman AL, Sapp JC, Teer JK, Martin JM, Liu CF, Yuan X, Ye Z, Cheng L, Brodsky RA, Biesecker LG (2012) The phenotype of a germline mutation in PIGA: the gene somatically mutated in paroxysmal nocturnal hemoglobinuria. Am J Hum Genet 90(2):295–300. doi:10.1016/j.ajhg.2011.11.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kamitani T, Chang HM, Rollins C, Waneck GL, Yeh ET (1993) Correction of the class H defect in glycosylphosphatidylinositol anchor biosynthesis in Ltk- cells by a human cDNA clone. J Biol Chem 268(28):20733–20736

    CAS  PubMed  Google Scholar 

  36. Kang JY, Hong Y, Ashida H, Shishioh N, Murakami Y, Morita YS, Maeda Y, Kinoshita T (2005) PIG-V involved in transferring the second mannose in glycosylphosphatidylinositol. J Biol Chem 280(10):9489–9497. doi:10.1074/jbc.M413867200

    Article  CAS  PubMed  Google Scholar 

  37. Kanzawa N, Maeda Y, Ogiso H, Murakami Y, Taguchi R, Kinoshita T (2009) Peroxisome dependency of alkyl-containing GPI-anchor biosynthesis in the endoplasmic reticulum. Proc Natl Acad Sci U S A 106(42):17711–17716. doi:10.1073/pnas.0904762106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kanzawa N, Shimozawa N, Wanders RJ, Ikeda K, Murakami Y, Waterham HR, Mukai S, Fujita M, Maeda Y, Taguchi R, Fujiki Y, Kinoshita T (2012) Defective lipid remodeling of GPI anchors in peroxisomal disorders, Zellweger syndrome, and rhizomelic chondrodysplasia punctata. J Lipid Res 53(4):653–663. doi:10.1194/jlr.M021204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kato M, Saitsu H, Murakami Y, Kikuchi K, Watanabe S, Iai M, Miya K, Matsuura R, Takayama R, Ohba C, Nakashima M, Tsurusaki Y, Miyake N, Hamano S, Osaka H, Hayasaka K, Kinoshita T, Matsumoto N (2014) PIGA mutations cause early-onset epileptic encephalopathies and distinctive features. Neurology 82(18):1587–1596. doi:10.1212/WNL.0000000000000389

    Article  CAS  PubMed  Google Scholar 

  40. Kerwin JL, Tuininga AR, Ericsson LH (1994) Identification of molecular species of glycerophospholipids and sphingomyelin using electrospray mass spectrometry. J Lipid Res 35(6):1102–1114

    CAS  PubMed  Google Scholar 

  41. Kondoh G, Tojo H, Nakatani Y, Komazawa N, Murata C, Yamagata K, Maeda Y, Kinoshita T, Okabe M, Taguchi R, Takeda J (2005) Angiotensin-converting enzyme is a GPI-anchored protein releasing factor crucial for fertilization. Nat Med 11(2):160–166

    Article  CAS  PubMed  Google Scholar 

  42. Kostova Z, Rancour DM, Menon AK, Orlean P (2000) Photoaffinity labelling with P3-(4-azidoanilido)uridine 5′-triphosphate identifies Gpi3p as the UDP-GlcNAc-binding subunit of the enzyme that catalyses formation of GlcNAc-phosphatidylinositol, the first glycolipid intermediate in glycosylphosphatidylinositol synthesis. Biochem J 350:815–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Krawitz PM, Hochsmann B, Murakami Y, Teubner B, Kruger U, Klopocki E, Neitzel H, Hoellein A, Schneider C, Parkhomchuk D, Hecht J, Robinson PN, Mundlos S, Kinoshita T, Schrezenmeier H (2013) A case of paroxysmal nocturnal hemoglobinuria caused by a germline mutation and a somatic mutation in PIGT. Blood 122(7):1312–1315. doi:10.1182/blood-2013-01-481499

    Article  CAS  PubMed  Google Scholar 

  44. Krawitz PM, Murakami Y, Hecht J, Kruger U, Holder SE, Mortier GR, Delle Chiaie B, De Baere E, Thompson MD, Roscioli T, Kielbasa S, Kinoshita T, Mundlos S, Robinson PN, Horn D (2012) Mutations in PIGO, a member of the GPI-anchor-synthesis pathway, cause hyperphosphatasia with mental retardation. Am J Hum Genet 91(1):146–151. doi:10.1016/j.ajhg.2012.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Krawitz PM, Schweiger MR, Rodelsperger C, Marcelis C, Kolsch U, Meisel C, Stephani F, Kinoshita T, Murakami Y, Bauer S, Isau M, Fischer A, Dahl A, Kerick M, Hecht J, Kohler S, Jager M, Grunhagen J, de Condor BJ, Doelken S, Brunner HG, Meinecke P, Passarge E, Thompson MD, Cole DE, Horn D, Roscioli T, Mundlos S, Robinson PN (2010) Identity-by-descent filtering of exome sequence data identifies PIGV mutations in hyperphosphatasia mental retardation syndrome. Nat Genet 42(10):827–829. doi:10.1038/ng.653

    Article  CAS  PubMed  Google Scholar 

  46. Kvarnung M, Nilsson D, Lindstrand A, Korenke GC, Chiang SC, Blennow E, Bergmann M, Stodberg T, Makitie O, Anderlid BM, Bryceson YT, Nordenskjold M, Nordgren A (2013) A novel intellectual disability syndrome caused by GPI anchor deficiency due to homozygous mutations in PIGT. J Med Genet 50(8):521–528. doi:10.1136/jmedgenet-2013-101654

    Article  CAS  PubMed  Google Scholar 

  47. Liu J, Mushegian A (2003) Three monophyletic superfamilies account for the majority of the known glycosyltransferases. Protein Sci A Publ Protein Soc 12(7):1418–1431. doi:10.1110/ps.0302103

    Article  CAS  Google Scholar 

  48. Luzzatto L, Nafa K (2000) Genetics of PNH. In: Young NS, Moss J (eds) Paroxysmal nocturnal hemoglobinuria and the glycosylphosphatidylinositol-linked proteins. Academic, San Diego, pp 21–47

    Google Scholar 

  49. Maeda Y, Tashima Y, Houjou T, Fujita M, Yoko-o T, Jigami Y, Taguchi R, Kinoshita T (2007) Fatty acid remodeling of GPI-anchored proteins is required for their raft association. Mol Biol Cell 18(4):1497–1506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Maeda Y, Tomita S, Watanabe R, Ohishi K, Kinoshita T (1998) DPM2 regulates biosynthesis of dolichol phosphate-mannose in mammalian cells: correct subcellular localization and stabilization of DPM1, and binding of dolichol phosphate. EMBO J 17:4920–4929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Maeda Y, Watanabe R, Harris CL, Hong Y, Ohishi K, Kinoshita K, Kinoshita T (2001) PIG-M transfers the first mannose to glycosylphosphatidylinositol on the lumenal side of the ER. EMBO J 20:250–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Manzano-Lopez J, Perez-Linero AM, Aguilera-Romero A, Martin ME, Okano T, Silva DV, Seeberger PH, Riezman H, Funato K, Goder V, Wellinger RE, Muniz M (2015) COPII coat composition is actively regulated by luminal cargo maturation. Curr Biol 25(2):152–162. doi:10.1016/j.cub.2014.11.039

    Article  CAS  PubMed  Google Scholar 

  53. Martin HC, Kim GE, Pagnamenta AT, Murakami Y, Carvill GL, Meyer E, Copley RR, Rimmer A, Barcia G, Fleming MR, Kronengold J, Brown MR, Hudspith KA, Broxholme J, Kanapin A, Cazier JB, Kinoshita T, Nabbout R, Consortium WGS, Bentley D, McVean G, Heavin S, Zaiwalla Z, McShane T, Mefford HC, Shears D, Stewart H, Kurian MA, Scheffer IE, Blair E, Donnelly P, Kaczmarek LK, Taylor JC (2014) Clinical whole-genome sequencing in severe early-onset epilepsy reveals new genes and improves molecular diagnosis. Hum Mol Genet 23(12):3200–3211. doi:10.1093/hmg/ddu030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Maydan G, Noyman I, Har-Zahav A, Neriah ZB, Pasmanik-Chor M, Yeheskel A, Albin-Kaplanski A, Maya I, Magal N, Birk E, Simon AJ, Halevy A, Rechavi G, Shohat M, Straussberg R, Basel-Vanagaite L (2011) Multiple congenital anomalies-hypotonia-seizures syndrome is caused by a mutation in PIGN. J Med Genet 48(6):383–389. doi:10.1136/jmg.2010.087114

    Article  CAS  PubMed  Google Scholar 

  55. McConville MJ, Ferguson MA (1993) The structure, biosynthesis and function of glycosylated phosphatidylinositols in the parasitic protozoa and higher eukaryotes. Biochem J 294(Pt 2):305–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. McKean DM, Niswander L (2012) Defects in GPI biosynthesis perturb Cripto signaling during forebrain development in two new mouse models of holoprosencephaly. Biol open 1(9):874–883. doi:10.1242/bio.20121982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Meyer U, Benghezal M, Imhof I, Conzelmann A (2000) Active site determination of Gpi8p, a caspase-related enzyme required for glycosylphosphatidylinositol anchor addition to proteins. Biochemistry 39:3461–3471

    Article  CAS  PubMed  Google Scholar 

  58. Miyata T, Takeda J, Iida Y, Yamada N, Inoue N, Takahashi M, Maeda K, Kitani T, Kinoshita T (1993) Cloning of PIG-A, a component in the early step of GPI-anchor biosynthesis. Science 259:1318–1320

    Article  CAS  PubMed  Google Scholar 

  59. Miyata T, Yamada N, Iida Y, Nishimura J, Takeda J, Kitani T, Kinoshita T (1994) Abnormalities of PIG-A transcripts in granulocytes from patients with paroxysmal nocturnal hemoglobinuria. N Engl J Med 330:249–255

    Article  CAS  PubMed  Google Scholar 

  60. Mochizuki K, Sugimori C, Qi Z, Lu X, Takami A, Ishiyama K, Kondo Y, Yamazaki H, Okumura H, Nakao S (2008) Expansion of donor-derived hematopoietic stem cells with PIGA mutation associated with late graft failure after allogeneic stem cell transplantation. Blood 112(5):2160–2162. doi:10.1182/blood-2008-02-141325

    Article  CAS  PubMed  Google Scholar 

  61. Motoyama N, Okada N, Yamashina M, Okada H (1992) Paroxysmal nocturnal hemoglobinuria due to hereditary nucleotide deletion in the HRF20 (CD59) gene. Eur J Immunol 22:2669–2673

    Article  CAS  PubMed  Google Scholar 

  62. Murakami H, Wang Y, Hasuwa H, Maeda Y, Kinoshita T, Murakami Y (2012) Enhanced response of T lymphocytes from Pgap3 knockout mouse: Insight into roles of fatty acid remodeling of GPI anchored proteins. Biochem Biophys Res Commun 417(4):1235–1241. doi:10.1016/j.bbrc.2011.12.116

    Article  CAS  PubMed  Google Scholar 

  63. Murakami Y, Kanzawa N, Saito K, Krawitz PM, Mundlos S, Robinson PN, Karadimitris A, Maeda Y, Kinoshita T (2012) Mechanism for release of alkaline phosphatase caused by glycosylphosphatidylinositol deficiency in patients with hyperphosphatasia mental retardation syndrome. J Biol Chem 287(9):6318–6325. doi:10.1074/jbc.M111.331090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Murakami Y, Siripanyaphinyo U, Hong Y, Tashima Y, Maeda Y, Kinoshita T (2005) The initial enzyme for glycosylphosphatidylinositol biosynthesis requires PIG-Y, a seventh component. Mol Biol Cell 16(11):5236–5246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Murakami Y, Siripanyapinyo U, Hong Y, Kang JY, Ishihara S, Nakakuma H, Maeda Y, Kinoshita T (2003) PIG-W is critical for inositol acylation but not for flipping of glycosylphosphatidylinositol-anchor. Mol Biol Cell 14(10):4285–4295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Murakami Y, Tawamie H, Maeda Y, Buttner C, Buchert R, Radwan F, Schaffer S, Sticht H, Aigner M, Reis A, Kinoshita T, Jamra RA (2014) Null mutation in PGAP1 impairing Gpi-anchor maturation in patients with intellectual disability and encephalopathy. PLoS Genet 10(5):e1004320. doi:10.1371/journal.pgen.1004320

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Nafa K, Bessler M, Castro-Malaspina H, Jhanwar S, Luzzatto L (1998) The spectrum of somatic mutations in the PIG-A gene in paroxysmal nocturnal hemoglobinuria includes large deletions and small duplications. Blood Cell Mol Dis 24:370–384

    Article  CAS  Google Scholar 

  68. Nakamura N, Inoue N, Watanabe R, Takahashi M, Takeda J, Stevens VL, Kinoshita T (1997) Expression cloning of PIG-L, a candidate N-acetylglucosaminyl-phosphatidylinositol deacetylase. J Biol Chem 272:15834–15840

    Article  CAS  PubMed  Google Scholar 

  69. Nakashima M, Kashii H, Murakami Y, Kato M, Tsurusaki Y, Miyake N, Kubota M, Kinoshita T, Saitsu H, Matsumoto N (2014) Novel compound heterozygous PIGT mutations caused multiple congenital anomalies-hypotonia-seizures syndrome 3. Neurogenetics 15(3):193–200. doi:10.1007/s10048-014-0408-y

    Article  PubMed  Google Scholar 

  70. Nevo Y, Ben-Zeev B, Tabib A, Straussberg R, Anikster Y, Shorer Z, Fattal-Valevski A, Ta-Shma A, Aharoni S, Rabie M, Zenvirt S, Goldshmidt H, Fellig Y, Shaag A, Mevorach D, Elpeleg O (2013) CD59 deficiency is associated with chronic hemolysis and childhood relapsing immune-mediated polyneuropathy. Blood 121(1):129–135. doi:10.1182/blood-2012-07-441857

    Article  CAS  PubMed  Google Scholar 

  71. Newton GL, Av-Gay Y, Fahey RC (2000) N-Acetyl-1-D-myo-inosityl-2-amino-2-deoxy-alpha-D-glucopyranoside deacetylase (MshB) is a key enzyme in mycothiol biosynthesis. J Bacteriol 182(24):6958–6963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ng BG, Hackmann K, Jones MA, Eroshkin AM, He P, Wiliams R, Bhide S, Cantagrel V, Gleeson JG, Paller AS, Schnur RE, Tinschert S, Zunich J, Hegde MR, Freeze HH (2012) Mutations in the glycosylphosphatidylinositol gene PIGL cause CHIME syndrome. Am J Hum Genet 90(4):685–688. doi:10.1016/j.ajhg.2012.02.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Nishimura J, Inoue N, Wada H, Ueda E, Pramoonjago P, Hirota T, Machii T, Kageyama T, Kanamaru A, Takeda J, Kinoshita T, Kitani T (1997) A patient with paroxysmal nocturnal hemoglobinuria bearing four independent PIG-A mutant clones. Blood 89:3470–3476

    CAS  PubMed  Google Scholar 

  74. Nozaki M, Ohishi K, Yamada N, Kinoshita T, Nagy A, Takeda J (1999) Developmental abnormalities of glycosylphosphatidylinositol-anchor-deficient embryos revealed by Cre/loxP system. Lab Invest 79:293–299

    CAS  PubMed  Google Scholar 

  75. Ohishi K, Inoue N, Kinoshita T (2001) PIG-S and PIG-T, essential for GPI anchor attachment to proteins, form a complex with GAA1 and GPI8. EMBO J 20:4088–4098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ohishi K, Inoue N, Maeda Y, Takeda J, Riezman H, Kinoshita T (2000) Gaa1p and gpi8p are components of a glycosylphosphatidylinositol (GPI) transamidase that mediates attachment of GPI to proteins. Mol Biol Cell 11:1523–1533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ohishi K, Nagamune K, Maeda Y, Kinoshita T (2003) Two subunits of glycosylphosphatidylinositol transamidase, GPI8 and PIG-T, form a functionally important intermolecular disulfide bridge. J Biol Chem 278(16):13959–13967

    Article  CAS  PubMed  Google Scholar 

  78. Oriol R, Martinez-Duncker I, Chantret I, Mollicone R, Codogno P (2002) Common origin and evolution of glycosyltransferases using Dol-P-monosaccharides as donor substrate. Mol Biol Evol 19:1451–1463

    Article  CAS  PubMed  Google Scholar 

  79. Park S, Lee C, Sabharwal P, Zhang M, Meyers CL, Sockanathan S (2013) GDE2 promotes neurogenesis by glycosylphosphatidylinositol-anchor cleavage of RECK. Science 339(6117):324–328. doi:10.1126/science.1231921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Parker C, Omine M, Richards S, Nishimura J, Bessler M, Ware R, Hillmen P, Luzzatto L, Young N, Kinoshita T, Rosse W, Socie G, International PNHIG (2005) Diagnosis and management of paroxysmal nocturnal hemoglobinuria. Blood 106(12):3699–3709. doi:10.1182/blood-2005-04-1717

  81. Pei J, Millay DP, Olson EN, Grishin NV (2011) CREST–a large and diverse superfamily of putative transmembrane hydrolases. Biol Direct 6:37. doi:10.1186/1745-6150-6-37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Roberts WL, Myher JJ, Kuksis A, Low MG, Rosenberry TL (1988) Lipid analysis of the glycoinositol phospholipid membrane anchor of human erythrocyte acetylcholinesterase. Palmitoylation of inositol results in resistance to phosphatidylinositol-specific phospholipase C. J Biol Chem 263:18766–18775

    CAS  PubMed  Google Scholar 

  83. Seong J, Wang Y, Kinoshita T, Maeda Y (2013) Implications of lipid moiety in oligomerization and immunoreactivities of GPI-anchored proteins. J Lipid Res 54(4):1077–1091. doi:10.1194/jlr.M034421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Shen W, Clemente MJ, Hosono N, Yoshida K, Przychodzen B, Yoshizato T, Shiraishi Y, Miyano S, Ogawa S, Maciejewski JP, Makishima H (2014) Deep sequencing reveals stepwise mutation acquisition in paroxysmal nocturnal hemoglobinuria. J Clin Invest 124(10):4529–4538. doi:10.1172/JCI74747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Shishioh N, Hong Y, Ohishi K, Ashida H, Maeda Y, Kinoshita T (2005) GPI7 is the second partner of PIG-F and involved in modification of glycosylphosphatidylinositol. J Biol Chem 280(10):9728–9734

    Article  CAS  PubMed  Google Scholar 

  86. Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572

    Article  CAS  PubMed  Google Scholar 

  87. Stokes MJ, Murakami Y, Maeda Y, Kinoshita T, Morita YS (2014) New insights into the functions of PIGF, a protein involved in the ethanolamine phosphate transfer steps of glycosylphosphatidylinositol biosynthesis. Biochem J 463(2):249–256. doi:10.1042/BJ20140541

    Article  CAS  PubMed  Google Scholar 

  88. Sutterlin C, Horvath A, Gerold P, Schwarz RT, Wang Y, Dreyfuss M, Riezman H (1997) Identification of a species-specific inhibitor of glycosylphosphatidylinositol synthesis. EMBO J 16:6374–6383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Suzuki KG, Kasai RS, Hirosawa KM, Nemoto YL, Ishibashi M, Miwa Y, Fujiwara TK, Kusumi A (2012) Transient GPI-anchored protein homodimers are units for raft organization and function. Nat Chem Biol 8(9):774–783. doi:10.1038/nchembio.1028

    Article  CAS  PubMed  Google Scholar 

  90. Swoboda KJ, Margraf RL, Carey JC, Zhou H, Newcomb TM, Coonrod E, Durtschi J, Mallempati K, Kumanovics A, Katz BE, Voelkerding KV, Opitz JM (2014) A novel germline PIGA mutation in Ferro-Cerebro-Cutaneous syndrome: a neurodegenerative X-linked epileptic encephalopathy with systemic iron-overload. Am J Med Genet A 164(1):17–28. doi:10.1002/ajmg.a.36189

    Article  CAS  Google Scholar 

  91. Takahashi M, Inoue N, Ohishi K, Maeda Y, Nakamura N, Endo Y, Fujita T, Takeda J, Kinoshita T (1996) PIG-B, a membrane protein of the endoplasmic reticulum with a large lumenal domain, is involved in transferring the third mannose of the GPI anchor. EMBO J 15(16):4254–4261

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Takeda J, Miyata T, Kawagoe K, Iida Y, Endo Y, Fujita T, Takahashi M, Kitani T, Kinoshita T (1993) Deficiency of the GPI anchor caused by a somatic mutation of the PIG-A gene in paroxysmal nocturnal hemoglobinuria. Cell 73:703–711

    Article  CAS  PubMed  Google Scholar 

  93. Takida S, Maeda Y, Kinoshita T (2008) Mammalian GPI-anchored proteins require p24 proteins for their efficient transport from the ER to the plasma membrane. Biochem J 409(2):555–562. doi:10.1042/BJ20070234

    Article  CAS  PubMed  Google Scholar 

  94. Tanaka S, Maeda Y, Tashima Y, Kinoshita T (2004) Inositol deacylation of glycosylphosphatidylinositol-anchored proteins is mediated by mammalian PGAP1 and yeast Bst1p. J Biol Chem 279:14256–14263

    Article  CAS  PubMed  Google Scholar 

  95. Tashima Y, Taguchi R, Murata C, Ashida H, Kinoshita T, Maeda Y (2006) PGAP2 is essential for correct processing and stable expression of GPI-anchored proteins. Mol Biol Cell 17(3):1410–1420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Udenfriend S, Kodukula K (1995) How glycosylphosphatidylinositol-anchored membrane proteins are made. Annu Rev Biochem 64:563–591

    Article  CAS  PubMed  Google Scholar 

  97. Ueda Y, Yamaguchi R, Ikawa M, Okabe M, Morii E, Maeda Y, Kinoshita T (2007) PGAP1 knock-out mice show otocephaly and male infertility. J Biol Chem 282(42):30373–30380. doi:10.1074/jbc.M705601200

    Article  CAS  PubMed  Google Scholar 

  98. Urbaniak MD, Crossman A, Chang T, Smith TK, van Aalten DM, Ferguson MA (2005) The N-acetyl-D-glucosaminylphosphatidylinositol De-N-acetylase of glycosylphosphatidylinositol biosynthesis is a zinc metalloenzyme. J Biol Chem 280(24):22831–22838. doi:10.1074/jbc.M502402200

    Article  CAS  PubMed  Google Scholar 

  99. Vainauskas S, Menon AK (2004) A conserved proline in the last transmembrane segment of Gaa1 is required for glycosylphosphatidylinositol (GPI) recognition by GPI transamidase. J Biol Chem 279(8):6540–6545. doi:10.1074/jbc.M312191200

    Article  CAS  PubMed  Google Scholar 

  100. Vainauskas S, Menon AK (2006) Ethanolamine phosphate linked to the first mannose residue of glycosylphosphatidylinositol (GPI) lipids is a major feature of the GPI structure that is recognized by human GPI transamidase. J Biol Chem 281(50):38358–38364. doi:10.1074/jbc.M608896200

    Article  CAS  PubMed  Google Scholar 

  101. van der Crabben SN, Harakalova M, Brilstra EH, van Berkestijn FM, Hofstede FC, van Vught AJ, Cuppen E, Kloosterman W, Ploos van Amstel HK, van Haaften G, van Haelst MM (2014) Expanding the spectrum of phenotypes associated with germline PIGA mutations: a child with developmental delay, accelerated linear growth, facial dysmorphisms, elevated alkaline phosphatase, and progressive CNS abnormalities. Am J Med Genet A 164(1):29–35. doi:10.1002/ajmg.a.36184

    Article  CAS  Google Scholar 

  102. Vazquez HM, Vionnet C, Roubaty C, Conzelmann A (2014) Cdc1 removes the ethanolamine phosphate of the first mannose of GPI anchors and thereby facilitates the integration of GPI proteins into the yeast cell wall. Mol Biol Cell 25(21):3375–3388. doi:10.1091/mbc.E14-06-1033

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Volwerk JJ, Shashidhar MS, Kuppe A, Griffith OH (1990) Phosphatidylinositol-specific phospholipase C from Bacillus cereus combines intrinsic phosphotransferase and cyclic phosphodiesterase activities: a 31P NMR study. Biochemistry 29(35):8056–8062

    Article  CAS  PubMed  Google Scholar 

  104. Wang H, Chuhjo T, Yamazaki H, Shiobara S, Teramura M, Mizoguchi H, Nakao S (2001) Relative increase of granulocytes with a paroxysmal nocturnal haemoglobinuria phenotype in aplastic anaemia patients: the high prevalence at diagnosis. Eur J Haematol 66:200–205

    Article  CAS  PubMed  Google Scholar 

  105. Wang Y, Murakami Y, Yasui T, Wakana S, Kikutani H, Kinoshita T, Maeda Y (2013) Significance of glycosylphosphatidylinositol-anchored protein enrichment in lipid rafts for the control of autoimmunity. J Biol Chem 288(35):25490–25499. doi:10.1074/jbc.M113.492611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Watanabe K, Bianco C, Strizzi L, Hamada S, Mancino M, Bailly V, Mo W, Wen D, Miatkowski K, Gonzales M, Sanicola M, Seno M, Salomon DS (2007) Growth factor induction of Cripto-1 shedding by glycosylphosphatidylinositol-phospholipase D and enhancement of endothelial cell migration. J Biol Chem 282(43):31643–31655. doi:10.1074/jbc.M702713200

    Article  CAS  PubMed  Google Scholar 

  107. Watanabe R, Inoue N, Westfall B, Taron CH, Orlean P, Takeda J, Kinoshita T (1998) The first step of glycosylphosphatidylinositol biosynthesis is mediated by a complex of PIG-A, PIG-H, PIG-C and GPI1. EMBO J 17:877–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Watanabe R, Kinoshita T, Masaki R, Yamamoto A, Takeda J, Inoue N (1996) PIG-A and PIG-H, which participate in glycosylphosphatidylinositol anchor biosynthesis, form a protein complex in the endoplasmic reticulum. J Biol Chem 271:26868–26875

    Article  CAS  PubMed  Google Scholar 

  109. Watanabe R, Murakami Y, Marmor MD, Inoue N, Maeda Y, Hino J, Kangawa K, Julius M, Kinoshita T (2000) Initial enzyme for glycosylphosphatidylinositol biosynthesis requires PIG-P and is regulated by DPM2. EMBO J 19:4402–4411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Watanabe R, Ohishi K, Maeda Y, Nakamura N, Kinoshita T (1999) Mammalian PIG-L and its yeast homologue Gpi12p are N-acetylglucosaminylphosphatidylinositol de-N-acetylases essential in glycosylphosphatidylinositol biosynthesis. Biochem J 339:185–192

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Yamashina M, Ueda E, Kinoshita T, Takami T, Ojima A, Ono H, Tanaka H, Kondo N, Orii T, Okada N et al (1990) Inherited complete deficiency of 20-kilodalton homologous restriction factor (CD59) as a cause of paroxysmal nocturnal hemoglobinuria. N Engl J Med 323(17):1184–1189. doi:10.1056/NEJM199010253231707

    Article  CAS  PubMed  Google Scholar 

  112. Zoltewicz JS, Ashique AM, Choe Y, Lee G, Taylor S, Phamluong K, Solloway M, Peterson AS (2009) Wnt signaling is regulated by endoplasmic reticulum retention. PLoS One 4(7):e6191. doi:10.1371/journal.pone.0006191

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuke Maeda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Maeda, Y., Murakami, Y., Kinoshita, T. (2017). Synthesis, Genetics, and Congenital Diseases of GPI-Anchored Proteins. In: Kanakura, Y., Kinoshita, T., Nishimura, Ji. (eds) Paroxysmal Nocturnal Hemoglobinuria. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56003-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-56003-6_2

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-56001-2

  • Online ISBN: 978-4-431-56003-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics