Skip to main content

Role of Circulating Blood Cells in Maternal Tissue Remodeling and Embryo-Maternal Cross Talk

  • Chapter
  • First Online:
Uterine Endometrial Function

Abstract

In humans, progesterone production of the corpus luteum during pregnancy is maintained by human chorionic gonadotropin (HCG) secreted by the implanting embryo. In addition to this endocrine system, accumulating evidence suggests that circulating immune cells play an important role in the embryo-maternal cross talk through blood circulation. Peripheral blood mononuclear cells (PBMC) derived from women in early pregnancy enhanced progesterone production by human luteal cells and trophoblast invasion in vitro. Spleen cells derived from mice during early pregnancy induced endometrial differentiation and embryo implantation in vivo. Furthermore, recombinant HCG stimulated human PBMC to produce chemokines through lectin-glycan interaction, promoting trophoblast invasion. Consequently, we proposed that the maternal immune system undergoes functional changes by recognizing developing embryos from the early stage of pregnancy and assists embryo implantation in cooperation with the endocrine system. On the other hand, chemokines secreted from the locally deposited platelets induced neovascularization during corpus luteum formation and promoted extravillous trophoblast invasion during placental formation, reconstructing maternal endometrial spiral arteries. These findings suggest that circulating blood cells including PBMC and platelets positively contribute to embryo-maternal cross talk and maternal tissue remodeling around the implantation period.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Simón C, Pellicer A, Polan ML. Interleukin-1 system crosstalk between embryo and endometrium in implantation. Hum Reprod. 1995;10 Suppl 2:43–54. Review.

    Article  PubMed  Google Scholar 

  2. Lea RG, Sandra O. Immunoendocrine aspects of endometrial function and implantation. Reproduction. 2007;134:389–404. Review.

    Article  CAS  PubMed  Google Scholar 

  3. Granot I, Gnainsky Y, Dekel N. Endometrial inflammation and effect on implantation improvement and pregnancy outcome. Reproduction. 2012;144:661–8. doi:10.1530/REP-12-0217. Epub 2012 Oct 1. Review.

    Article  CAS  PubMed  Google Scholar 

  4. Schjenken JE, Robertson SA. Seminal fluid and immune adaptation for pregnancy – comparative biology in mammalian species. Reprod Domest Anim. 2014;49 Suppl 3:27–36. doi:10.1111/rda.12383. Review.

    Article  PubMed  Google Scholar 

  5. Espey LL. Current status of the hypothesis that mammalian ovulation is comparable to an inflammatory reaction. Biol Reprod. 1994;2:233–8. Review.

    Article  Google Scholar 

  6. Fujiwara H, Maeda M, Imai K, Fukuoka M, Yasuda K, Horie K, Takakura K, Taii S, Mori T. Differential expression of aminopeptidase-N on human ovarian granulosa and theca cells. J Clin Endocrinol Metab. 1992;74:91–5.

    CAS  PubMed  Google Scholar 

  7. Corner GW. The histological dating of the human corpus luteum of menstruation. Am J Anat. 1956;98:377–401.

    Article  PubMed  Google Scholar 

  8. Yan Z, Weich HA, Bernart W, Breckwoldt M, Neulen J. Vascular endothelial growth factor (VEGF) messenger ribonucleic acid (mRNA) expression in luteinized human granulosa cells in vitro. J Clin Endocrinol Metab. 1993;77:1723–5.

    CAS  PubMed  Google Scholar 

  9. Koga K, Osuga Y, Tsutsumi O, Momoeda M, Suenaga A, Kugu K, Fujiwara T, Takai Y, Yano T, Taketani Y. Evidence for the presence of angiogenin in human follicular fluid and the up-regulation of its production by human chorionic gonadotropin and hypoxia. J Clin Endocrinol Metab. 2000;85:3352–5.

    CAS  PubMed  Google Scholar 

  10. Fraser HM, Bell J, Wilson H, Taylor PD, Morgan K, Anderson RA, Duncan WC. Localization and quantification of cyclic changes in the expression of endocrine gland vascular endothelial growth factor in the human corpus luteum. J Clin Endocrinol Metab. 2005;90:427–34.

    Article  CAS  PubMed  Google Scholar 

  11. Sugino N, Suzuki T, Sakata A, Miwa I, Asada H, Taketani T, Yamagata Y, Tamura H. Angiogenesis in the human corpus luteum: changes in expression of angiopoietins in the corpus luteum throughout the menstrual cycle and in early pregnancy. J Clin Endocrinol Metab. 2005;90:6141–8.

    Article  CAS  PubMed  Google Scholar 

  12. Yen SSC. Endocrine-metabolic adaptations in pregnancy. In: Yen SSC, Jaffe RB, editors. Reproductive endocrinology. 3rd ed. Philadelphia: Saunders; 1991. p. 936–81.

    Google Scholar 

  13. Takao Y, Honda T, Ueda M, Hattori N, Yamada S, Maeda M, Fujiwara H, Mori T, Wimalasena J. Immunohistochemical localization of the LH/HCG receptor in human ovary: HCG enhances cell surface expression of LH/HCG receptor on luteinizing granulosa cells in vitro. Mol Hum Reprod. 1997;3:569–78.

    Article  CAS  PubMed  Google Scholar 

  14. Fraser HM, Duncan WC. Vascular morphogenesis in the primate ovary. Angiogenesis. 2005;8:101–16. Epub 2005 Oct 21. Review.

    Article  PubMed  Google Scholar 

  15. Emi N, Kanzaki H, Yoshida M, Takakura K, Kariya M, Okamoto N, Imai K, Mori T. Lymphocytes stimulate progesterone production by cultured human granulosa luteal cells. Am J Obstet Gynecol. 1991;165:1469–74.

    Article  CAS  PubMed  Google Scholar 

  16. Fukuoka M, Yasuda K, Emi N, Fujiwara H, Iwai M, Takakura K, Kanzaki H, Mori T. Cytokine modulation of progesterone and estradiol secretion in cultures of luteinized human granulosa cells. J Clin Endocrinol Metab. 1992;75:254–8.

    CAS  PubMed  Google Scholar 

  17. Xie S, Luca M, Huang S, Gutman M, Reich R, Johnson JP, Bar-Eli M. Expression of MCAM/MUC18 by human melanoma cells leads to increased tumor growth and metastasis. Cancer Res. 1997;57:2295–303.

    CAS  PubMed  Google Scholar 

  18. Egawa M, Yoshioka S, Higuchi T, Sato Y, Tatsumi K, Fujiwara H, Fujii S. Ephrin B1 is expressed on human luteinizing granulosa cells in corpora lutea of the early luteal phase: the possible involvement of the B class Eph-ephrin system during corpus luteum formation. J Clin Endocrinol Metab. 2003;88:4384–92.

    Article  CAS  PubMed  Google Scholar 

  19. Yoshioka S, Fujiwara H, Higuchi T, Yamada S, Maeda M, Fujii S. Melanoma cell adhesion molecule (MCAM/CD146) is expressed on human luteinizing granulosa cells: enhancement of its expression by hCG, interleukin-1 and tumour necrosis factor-α. Mol Hum Reprod. 2003;9:311–9.

    Article  CAS  PubMed  Google Scholar 

  20. Furukawa K, Fujiwara H, Sato Y, Zeng BX, Fujii H, Yoshioka S, Nishi E, Nishio T. Platelets are novel regulators of neovascularization and luteinization during human corpus luteum formation. Endocrinology. 2007;148:3056–64. Epub 2007 Apr 19.

    Article  CAS  PubMed  Google Scholar 

  21. Alam V, Altieri E, Zegers-Hochschild F. Preliminary results on the role of embryonic human chorionic gonadotrophin in corpus luteum rescue during early pregnancy and the relationship to abortion and ectopic pregnancy. Hum Reprod. 1999;14:2375–8.

    Article  CAS  PubMed  Google Scholar 

  22. Kratzer PG, Taylor RN. Corpus luteum function in early pregnancies is primarily determined by the rate of change of human chorionic gonadotropin levels. Am J Obstet Gynecol. 1990;163:1497–502.

    Article  CAS  PubMed  Google Scholar 

  23. Fujiwara H, Ueda M, Imai K, et al. Human leukocyte antigen-DR is a differentiation antigen for human granulosa cells. Biol Reprod. 1993;49:705–15.

    Article  CAS  PubMed  Google Scholar 

  24. Hattori N, Ueda M, Fujiwara H, Fukuoka M, Maeda M, Mori T. Human luteal cells express leukocyte functional antigen (LFA)-3. J Clin Endocrinol Metab. 1995;80:78–84.

    CAS  PubMed  Google Scholar 

  25. Bukovsky A, Caudle MR, Carson RJ, Gaytán F, Huleihel M, Kruse A, Schatten H, Telleria CM. Immune physiology in tissue regeneration and aging, tumor growth, and regenerative medicine. Aging (Albany NY). 2009;1:157–81. Review.

    Article  CAS  PubMed Central  Google Scholar 

  26. Hashii K, Fujiwara H, Yoshioka S, et al. Peripheral blood mononuclear cells stimulate progesterone production by luteal cells derived from pregnant and non-pregnant women: possible involvement of interleukin-4 and interleukin-10 in corpus luteum function and differentiation. Hum Reprod. 1998;13:2738–44.

    Article  CAS  PubMed  Google Scholar 

  27. Fujiwara H. Hypothesis: immune cells contribute to systemic cross-talk between the embryo and mother during early pregnancy in cooperation with the endocrine system. Reprod Med Biol. 2006;5:19–29.

    Article  CAS  Google Scholar 

  28. Psychoyos A. The implantation window: basic and clinical aspects. In: Mori T et al., editors. Perspectives in assisted reproduction. Rome: Ares Serono Symposia; 1993. p. 57–62.

    Google Scholar 

  29. Dey SK. Implantation. In: Adashi EY et al., editors. Reproductive endocrinology, surgery, and technology. Philadelphia: Lippincott–Raven; 1996. p. 421–34.

    Google Scholar 

  30. Takabatake K, Fujiwara H, Goto Y, et al. Intravenous administration of splenocytes in early pregnancy changes the implantation window in mice. Hum Reprod. 1997;12:583–5.

    Article  CAS  PubMed  Google Scholar 

  31. Takabatake K, Fujiwara H, Goto Y, et al. Splenocytes in early pregnancy promote embryo implantation by regulating endometrial differentiation in mice. Hum Reprod. 1997;12:2102–7.

    Article  CAS  PubMed  Google Scholar 

  32. Bhatt H, Brunet LJ, Stewart CL. Uterine expression of leukemia inhibitory factor coincides with the onset of blastocyst implantation. Proc Natl Acad Sci U S A. 1991;88:11408–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fujita K, Nakayama T, Takabatake K, Higuchi T, Fujita J, Maeda M, Fujiwara H, Mori T. Administration of thymocytes derived from non-pregnant mice induces an endometrial receptive stage and leukaemia inhibitory factor expression in the uterus. Hum Reprod. 1998;13:2888–94.

    Article  CAS  PubMed  Google Scholar 

  34. Kosaka K, Fujiwara H, Tatsumi K, et al. Human peripheral blood mononuclear cells enhance cell-cell interaction between human endometrial epithelial cells and BeWo-cell spheroids. Hum Reprod. 2003;18:19–25.

    Article  CAS  PubMed  Google Scholar 

  35. Yoshioka S, Fujiwara H, Nakayama T, Kosaka K, Mori T, Fujii S. Intrauterine administration of autologous peripheral blood mononuclear cells promotes implantation rates in patients with repeated failure of IVF-embryo transfer. Hum Reprod. 2006;21:3290–4.

    Article  CAS  PubMed  Google Scholar 

  36. Nakayama T, Fujiwara H, Maeda M, Inoue T, Yoshioka S, Mori T, Fujii S. Human peripheral blood mononuclear cells (PBMC) in early pregnancy promote embryo invasion in vitro: HCG enhances the effects of PBMC. Hum Reprod. 2002;17:207–12.

    Article  CAS  PubMed  Google Scholar 

  37. Egawa H, Fujiwara H, Hirano T, Nakayama T, Higuchi T, Tatsumi K, Mori T, Fujii S. Peripheral blood mononuclear cells in early pregnancy promote invasion of human choriocarcinoma cell line, BeWo cells. Hum Reprod. 2002;17:473–80.

    Article  PubMed  Google Scholar 

  38. Adcock 3rd E, Teasdale T, August CS, Cox S, Meschia G, Ballaglia TC, Naughton MA. Human chorionic gonadotropin: its possible role in maternal lymphocyte suppression. Science. 1973;181:845–7.

    Article  CAS  PubMed  Google Scholar 

  39. Muchmore AV, Blaese RM. Immunoregulatory properties of fractions from human pregnancy urine: evidence that human chorionic gonadotropin is not responsible. J Immunol. 1977;118:881–6.

    CAS  PubMed  Google Scholar 

  40. Kosaka K, Fujiwara H, Tatsumi K, et al. Human chorionic gonadotropin (HCG) activates monocytes to produce interleukin-8 via a different pathway from luteinizing hormone/HCG receptor system. J Clin Endocrinol Metab. 2002;87:5199–208.

    Article  CAS  PubMed  Google Scholar 

  41. Cole LA. Hyperglycosylated hCG. Placenta. 2007;28:977–86.

    Article  CAS  PubMed  Google Scholar 

  42. Cole LA. New discoveries on the biology and detection of human chorionic gonadotropin. Reprod Biol Endocrinol. 2009;7:8.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Handschuh K, Guibourdenche J, Tsatsaris V, Guesnon M, Laurendeau I, Evain-Brion D, Fournier T. Human chorionic gonadotropin produced by the invasive trophoblast but not the villous trophoblast promotes cell invasion and is down-regulated by peroxisome proliferator-activated receptor-γ. Endocrinology. 2007;148:5011–9.

    Article  CAS  PubMed  Google Scholar 

  44. Pijnenborg R, Bland JM, Robertson WB, Brosens I. Uteroplacental arterial changes related to interstitial trophoblast migration in early human pregnancy. Placenta. 1983;4:397–413.

    Article  CAS  PubMed  Google Scholar 

  45. Aplin JD. Implantation, trophoblast differentiation and haemochorial placentation: mechanistic evidence in vivo and in vitro. J Cell Sci. 1991;99:681–92.

    PubMed  Google Scholar 

  46. Lala PK, Chakraborty C. Factors regulating trophoblast migration and invasiveness: possible derangements contributing to pre-eclampsia and fetal injury. Placenta. 2003;24:575–87.

    Article  CAS  PubMed  Google Scholar 

  47. Sato Y, Higuchi H, Yoshioka S, Tatsumi K, Fujiwara H, Fujii S. Trophoblasts acquire a chemokine receptor, CCR1, as they differentiate towards invasive phenotype. Development. 2003;130:5519–32.

    Article  CAS  PubMed  Google Scholar 

  48. Sato Y, Fujiwara H, Zeng B-X, Higuchi T, Yoshioka S, Fujii S. Platelet-derived soluble factors induce human extravillous trophoblast migration and differentiation: platelets are a possible regulator of trophoblast infiltration into maternal spiral arteries. Blood. 2005;106:428–35.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Fujiwara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Fujiwara, H. et al. (2016). Role of Circulating Blood Cells in Maternal Tissue Remodeling and Embryo-Maternal Cross Talk. In: Kanzaki, H. (eds) Uterine Endometrial Function. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55972-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55972-6_4

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55970-2

  • Online ISBN: 978-4-431-55972-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics