Skip to main content

Inherited Metabolic Disorders of the Liver

  • Chapter
  • First Online:
Book cover Human iPS Cells in Disease Modelling

Abstract

Inherited metabolic disorders (IMD) include more than 70 monogenetic disorders that are mostly associated with enzyme deficiencies. Although IMDs are rarely diagnosed, their combined incidence among full-term neonates has been estimated to account for 20 % of illnesses. One of the most common IMDs originating in the liver and necessitating transplantation is α1-antitrypsin deficiency. Although several in vitro and in vivo models have been used to study this disease, the application of patient-specific hIPSCs and their differentiation to hepatic lineages has allowed not only physiologically relevant insights into the disease mechanisms but also provides the opportunity to understand patient-patient variabilities in phenotypes and sets the stage for the identification of novel biomarkers and the design of drugs that target them. This chapter discusses the wide application range of hIPSCs and addresses how this cellular system can meet previous shortcomings in advancing research into the molecular mechanisms of disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • American Thoracic Society and European Respiratory (2003) American Thoracic Society Documents American Thoracic Society/European Respiratory Society Statement: standards for the diagnosis and management of individuals with. Am J Respir Clin Care Med 168:818–900. doi:10.1164/rccm.168.7.818

    Article  Google Scholar 

  • Barbour KW, Wei F, Brannan C, Flotte TR, Baumann H, Berger FG (2002) The murine alpha-1-proteinase inhibitor gene family: polymorphism, chromosomal location, and structure. Genomics 80(5):515–522. doi:10.1006/geno.2002.6864

    Article  CAS  PubMed  Google Scholar 

  • Bhatia SN, Underhill GH, Zaret KS, Fox IJ (2014) Cell and tissue engineering for liver disease. Sci Transl Med 6(245):1–21

    Google Scholar 

  • Bhogal RH, Hodson J, Bartlett DC, Weston CJ, Curbishley SM, Haughton E, Williams KT et al (2011) Isolation of primary human hepatocytes from normal and diseased liver tissue: a one hundred liver experience. PLoS One 6(3):1–8. doi:10.1371/journal.pone.0018222

    Article  Google Scholar 

  • Borriello F, Krauter KS (1991) Multiple murine alpha-1-protease inhibitor genes show unusual evolutionary divergence. Proc Natl Acad Sci 88:9417–9421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brantly M, Nukiwa T, Crystal RG (1988) Molecular basis of alpha-1-antitrypsin deficiency. Am J Med 84(6A):13–31

    Article  PubMed  Google Scholar 

  • Cabezn T, Wilde MDE, Heriont P, Loriaut R, Bollent A (1984) Expression of human a1-antitrypsin cDNA in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 81:6594–6598

    Article  Google Scholar 

  • Cameron PH, Chevet E, Thomas DY, John JM, Cameron PH, Chevet E, Pluquet O et al (2009) Calnexin phosphorylation attenuates the release of partially misfolded alpha-1-antitrypsin to the secretory pathway. J Biol Chem 284:34570–34579. doi:10.1074/jbc.M109.053165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlson JA, Rogers BB, Sifers RN, Hawkins HK, Finegold MJ, Woo SL (1988) Multiple tissues express alpha 1-antitrypsin in transgenic mice and man. J Clin Invest 82(1):26–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlson JA, Rogers BB, Sifers RN, Finegold MJ, Clift SM, DeMayo FJ, Bullock DW et al (1989) Accumulation of iZ alpha 1-antitrypsin causes liver damage in transgenic mice. J Clin Invest 83(4):1183–1190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cayo MA, Cai J, Delaforest A, Noto FK, Nagaoka M, Clark BS, Collery RF et al (2012) JD induced pluripotent stem cell–derived hepatocytes faithfully recapitulate the pathophysiology of familial hypercholesterolemia. Hepatology 56(6):2163–2171. doi:10.1002/hep.25871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeMeo DL, Silverman EK (2004) Alpha-1-antitrypsin deficiency. 2: genetic aspects of alpha-1-antitrypsin deficiency: phenotypes and genetic modifiers of emphysema risk. Thorax 59:259–264. doi:10.1136/thx.2003.006502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dycaico MJ, Grant SGN, Felts K, Nichols WS, Geller SA, Hager JH, Pollard AMYJ et al (1988) Neonatal hepatitis induced by alpha-1-antitrypsin: a transgenic mouse model. Science 242:1409–1412

    Article  CAS  PubMed  Google Scholar 

  • Eriksson S (1996) A 30-year perspective on alpha-1-antitrypsin deficiency. Chest 110(6):237–242

    Article  Google Scholar 

  • Eriksson S, Carlson J, Velez R (1986) Risk of cirrhosis and primary liver cancer in alpha-1-antitrypsin deficiency. N Engl J Med 314:736–739

    Article  CAS  PubMed  Google Scholar 

  • Fairbanks KD, Tavill AS (2008) Liver disease in alpha 1-antitrypsin deficiency: a review. Am J Gastroenterol 103(8):2136–2141. doi:10.1111/j.1572-0241.2008.01955.x; quiz 2142

    Article  CAS  PubMed  Google Scholar 

  • Fregonese L, Stolk J (2008) Hereditary alpha-1-antitrypsin deficiency and its clinical consequences. Orphanet J Rare Dis 3(16):1–9. doi:10.1186/1750-1172-3-16

    Google Scholar 

  • Garrod AE (1923) Inborn errors of metabolism, vol 2. Henry Frowde and Hodder & Stoughton, London

    Google Scholar 

  • Gartner JC Jr, Zitelli BJ, Malatack JJ, Shaw BW, Iwatsuki S, Starzl TE (1984) Orthotopic liver transplantation in children: two-year experience with 47 patients. Pediatrics 74(1):140–145

    PubMed  PubMed Central  Google Scholar 

  • Gooptu B, Lomas DA (2008) Polymers and inflammation: disease mechanisms of the serpinopathies. J Exp Med 205(7):1529–1534. doi:10.1084/jem.20072080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gosai SJ, Kwak JH, Luke CJ, Long OS, King DE, Kovatch KJ, Paul A, et al (2010) Automated high-content live animal drug screening using C. elegans expressing the aggregation prone serpin a1-antitrypsin Z. PLoS One 5(11):e15460. doi:10.1371/journal.pone.0015460

    Google Scholar 

  • Graham K, Le A, Sifers R (1990) Accumulation of the insoluble PiZ variant of human alpha 1-antitrypsin within the hepatic endoplasmic reticulum does not elevate the steady-state level of grp78/BiP. J Biol Chem 265:20463–20468

    CAS  PubMed  Google Scholar 

  • Gramignoli R, Tahan V, Dorko K, Skvorak KJ, Hansel MC, Zhao W, Venkataramanan R et al (2013) New potential cell source for hepatocyte transplantation: discarded livers from metabolic disease liver transplants. Stem Cell Res 11(1):563–573. doi:10.1016/j.scr.2013.03.002.New

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hengstler J, Brulport M, Schormann W, Bauer A, Hermes M, Nussler A, Fandrich F et al (2005) Generation of human hepatocytes by stem cell technology: definition of the hepatocyte. Expert Opin Drug Metab Toxicol 1(1):61–74

    Article  CAS  PubMed  Google Scholar 

  • Hidvegi T, Schmidt BZ, Hale P, Perlmutter DH, Hidvegi T, Schmidt BZ, Hale P et al (2005) Accumulation of mutant alpha1-antitrypsin Z in the endoplasmic reticulum activates caspases-4 and -12, NF-KB, and BAP31 but not the unfolded protein response. J Biol Chem 280:39002–39015. doi:10.1074/jbc.M508652200

    Article  CAS  PubMed  Google Scholar 

  • Hidvegi T, Ewing M, Hale P, Dippold C, Beckett C, Kemp C, Maurice N et al (2010) An autophagy-enhancing drug promotes degradation of mutant alpha-1-antitrypsin Z and reduces hepatic fibrosis. Science 329:229–232. doi:10.1126/science.1190354

    Article  CAS  PubMed  Google Scholar 

  • Hinds R, Hadchouel A, Shanmugham NP, Al-Hussaini A, Chambers S, Cheeseman P, Mieli-Vergani G et al (2006) Variable degree of liver involvement in siblings with PiZZ alpha-1-antitrypsin deficiency-related liver disease. J Pediatr Gastroenterol Nutr 43:136–138

    Article  CAS  PubMed  Google Scholar 

  • Huang P, Zhang L, Gao Y, He Z, Yao D, Wu Z, Cen J et al (2009) Article direct reprogramming of human fibroblasts to functional and expandable hepatocytes. Stem Cell 14(3):370–384. doi:10.1016/j.stem.2014.01.003. Elsevier Inc

    Google Scholar 

  • Huntington JA, Read RJ, Carrell RW (2000) Structure of a serpin-protease complex shows inhibition by deformation. Nature 407:923–926

    Article  CAS  PubMed  Google Scholar 

  • Janoff A (1985) Elastases and emphysema. Current assessment of the protease-antiprotease hypothesis. Am Rev Respir Dis 132(2):417–433

    CAS  PubMed  Google Scholar 

  • Janoff A, Scherer J (1968) Mediators of inflammation in leukocyte lysosomes – IX. Elastinolytic activity in granules of human polymorphonuclear leukocytes. J Exp Med 128(5):1137–1155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jenne DE (1994) Structure of the azurocidin, proteinase 3, and neutrophil elastase genes – implications for inflammation and vasculitis. Am J Respir Crit Care Med 150:S147–S154

    Article  CAS  PubMed  Google Scholar 

  • Jeppsson JO (1976) Amino acid substitution Glu leads to Lys alpha1-antitrypsin PiZ. FEBS Lett 65(2):195–197

    Article  CAS  PubMed  Google Scholar 

  • Kaushal S, Annamali M, Blomenkamp K, Rudnick D, Halloran D, Brunt E, Teckman J (2010) Rapamycin reduces intrahepatic alpha-1-antitrypsin mutant Z protein polymers and liver injury in a mouse model. Exp Biol Med 235(6):700–709. doi:10.1258/ebm.2010.009297.Rapamycin

    Article  CAS  Google Scholar 

  • Kmieć Z (2001) Cooperation of liver cells in health and disease. Adv Anat Embryol Cell Biol 161(III–XIII):1–151

    Google Scholar 

  • Kruse KB, Brodsky JL, McCracken AA (2006) Characterization of an ERAD gene as VPS30/ATG6 reveals two alternative and functionally distinct protein quality control pathways: one for soluble Z variant of human alpha-1 proteinase inhibitor (A1PiZ) and another for aggregates of A1PiZ. Mol Biol Cell 17:203–212. doi:10.1091/mbc.E04

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larsson C (1978) Natural history and life expectancy in severe alpha-1-antitrypsin deficiency, PiZ. Acta Med Scand 204(5):345–351

    CAS  PubMed  Google Scholar 

  • Laurell CB, Eriksson S (1963) The electrophoretic α 1 -globulin pattern of serum in α 1 -antitrypsin deficiency. Scand J Clin Lab Invest 15(2):132–140. doi:10.3109/15412555.2013.771956

    Article  CAS  Google Scholar 

  • Lomas DA, Li-Evans D, Finch JT, Carrell RW (1992) The mechanisms of Z alpha-1-antitrypsin accumulation in the liver. Nature 357:605–607

    Article  CAS  PubMed  Google Scholar 

  • Luisetti M, Seersholm N (2004) Alpha-1-antitrypsin deficiency – 1: epidemiology of alpha-1-antitrypsin deficiency. Thorax 59:164–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martins A (1999) Inborn errors of metabolism: a clinical overview. Sao Paulo Med J 117(6):251–265

    CAS  PubMed  Google Scholar 

  • Martorana PA, Brand T, Gardi C, van Even P, de Santi MM, Calzoni P, Marcolongo P, Lungarella G (1993) The pallid mouse. A model of genetic alpha 1-antitrypsin deficiency. Lab Invest 68(2):233–241. Lab Invest

    CAS  PubMed  Google Scholar 

  • McCracken AA, Brodsky JL (1996) Assembly of ER-associated protein degradation in vitro: dependence on cytosol, calnexin, and ATP. J Cell Biol 132(3):291–298

    Article  CAS  PubMed  Google Scholar 

  • Morrison HM, Afford SC, Stockley RA (1984) Inhibitory capacity of alpha-1-antitrypsin in lung secretions: variability and the effect of drugs. Thorax 39:510–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ordóñez A, Snapp EL, Tan L, Miranda E, Marciniak SJ, Lomas DA (2013) Endoplasmic reticulum polymers impair luminal protein mobility and sensitise to cellular stress in α1-antitrypsin deficiency. Hepatology 57(5):2049–2060. doi:10.1002/hep.26173.Endoplasmic

  • Owen MC, Carrell RW (1976) Alpha-1-antitrypsin: molecular abnormality of S variant. Br Med J 1:130–131

    Article  Google Scholar 

  • Perlmutter DH (2011) Alpha-1-antitrypsin deficiency: importance of proteasomal and autophagic degradative pathways in disposal of liver disease–associated protein aggregates. Annu Rev Med 62:333–345. doi:10.1146/annurev-med-042409-151920

    Article  CAS  PubMed  Google Scholar 

  • Perlmutter DH, Cole FS, Kilbridge P, Rossing T (1985) Expression of the alpha-1-proteinase inhibitor gene in human monocytes and macrophages. Proc Natl Acad Sci 82:795–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qu D, Teckman JH, Omura S, Perlmutter DH (1996) Degradation of a mutant secretory protein, α-1-antitrypsin Z, in the endoplasmic reticulum requires proteasome activity. J Biol Chem 271:22791–22795. doi:10.1074/jbc.271.37.22791

    Article  CAS  PubMed  Google Scholar 

  • Rashid ST, Vallier L (2010) Induced pluripotent stem cells – alchemist's tale or clinical reality? Expert Rev Mol Med 12:25

    Article  PubMed  Google Scholar 

  • Rashid ST, Corbineau S, Hannan N, Marciniak SJ, Miranda E, Alexander G, Huang-doran I et al (2010) Modeling inherited metabolic disorders of the liver using human induced pluripotent stem cells. J Clin Invest 120(9):3127–3136. doi:10.1172/JCI43122DS1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sampaziotis F, Segeritz C-P, Vallier L (2015) Potential of human induced pluripotent stem cells in studies of liver disease. Hepatology 62(1):303–11

    Article  PubMed  Google Scholar 

  • Sandborg RR, Smolen JE (1988) Biology of disease: early biochemical events in leukocyte activation. Lab Invest 59:300–320

    CAS  PubMed  Google Scholar 

  • Schwartz RE, Fleming HE, Khetani SR, Bhatia SN (2014) Pluripotent stem cell-derived hepatocyte-like cells. Biotechnol Adv 32(2):504–513. doi:10.1016/j.biotechadv.2014.01.003. Elsevier B.V

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott CM, Kruse KB, Schmidt Z, Perlmutter DH, Mccracken AA, Brodsky JL (2007) ADD66, a, gene involved in the endoplasmic reticulum-associated degradation of alpha-1-antitrypsin-Z in yeast, facilitates proteasome activity and assembly. Mol Biol Cell 18:3776–3787. doi:10.1091/mbc.E07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seersholm N, Kok-jensen A, Dirksen A (1994) Survival of patients with severe alpha-1-antitrypsin deficiency with special reference to non-index cases. Thorax 49:695–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serres F (2002) Worldwide racial and ethnic distribution of alpha-1-antitrypsin deficiency. Chest 122:1818–1829

    Article  PubMed  Google Scholar 

  • Seymour C, Thomason M, Chalmers R, Addison G, Bain M, Cockburn F, Littlejohns P et al (1997) Newborn screening for inborn errors of metabolism: a systematic review. Health Technol Assess 1(11):1–95

    Google Scholar 

  • Shapiro SD (2007) Transgenic and gene-targeted mice as models for chronic obstructive pulmonary disease. Eur Respir J 29(2):375–8

    Article  CAS  PubMed  Google Scholar 

  • Sifers RN, Carlson JA, Clift SM, DeMayo FJ, Bullock DW, Woo SL (1987) Tissue specific expression of the human alpha-1-antitrypsin gene in transgenic mice. Nucleic Acids Res 15(4):1459–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Si-Tayeb K, Lemaigre P, Duncan SA (2010) Organogenesis and development of the liver. Dev Cell 18:175–189. doi:10.1016/j.devcel.2010.01.011

    Article  CAS  PubMed  Google Scholar 

  • Stoller JK, Tomashefski J, Crystal RG, Arroliga A, Strange C, Killian DK, Schluchter MD et al (2005) Mortality in individuals with severe deficiency of alpha-1-antitrypsin. Chest 127:1196–1204

    CAS  PubMed  Google Scholar 

  • Sveger T (1976) Liver disease in alpha-1-antitrypsin deficiency detected by screening of 200,000 infants. N Engl J Med 294:1316–1321

    Article  CAS  PubMed  Google Scholar 

  • Sveger T (1988) The natural history of liver disease in alpha 1-antitrypsin deficient children. Acta Paediatr Scand 77(6):847–851

    Article  CAS  PubMed  Google Scholar 

  • Tafaleng EN, Chakraborty S, Han B, Hale P, Wu W, Soto-gutierrez A, Feghali-bostwick CA et al (2015) Induced pluripotent stem cells model personalized variations in liver disease resulting from a1-antitrypsin deficiency. Hepatology 00(00):1–11. doi:10.1002/hep.27753

    Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676. doi:10.1016/j.cell.2006.07.024

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872. doi:10.1016/j.cell.2007.11.019

    Article  CAS  PubMed  Google Scholar 

  • Takayama K, Kawabata K, Nagamoto Y, Kishimoto K, Tashiro K, Mizuguchi H (2013) 3D spheroid culture of hESC/hiPSC-derived hepatocyte-like cells for drug toxicity testing. Biomaterials 34:1781–1789. doi:10.1016/j.biomaterials.2012.11.029. Elsevier Ltd

    Article  CAS  PubMed  Google Scholar 

  • Tobin M, Cook P, Hutchison D (1983) Alpha 1 antitrypsin deficiency: the clinical and physiological features of pulmonary emphysema in subjects homozygous for Pi type Z. A survey by the British Thoracic Association. Br J Dis Chest 77(1):14–27

    Article  CAS  PubMed  Google Scholar 

  • Touboul T, Hannan NR, Corbineau S, Martinez A, Martinet C, Branchereau S, Mainot S et al (2010) Generation of functional hepatocytes from human embryonic stem cells under chemically defined conditions that recapitulate liver development. Hepatology 51(5):1754–65

    Article  CAS  PubMed  Google Scholar 

  • Travis J, Salvesen GS (1983) Human plasma proteinase inhibitors. Ann Rev Biochem 52:655–709

    Article  CAS  PubMed  Google Scholar 

  • Werner ED, Brodsky JL, McCracken AA (1996) Proteasome-dependent endoplasmic reticulum-associated protein degradation: an unconventional route to a familiar fate. Proc Natl Acad Sci 93:13797–13801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wernig M, Meissner A, Foreman R, Brambrink T, Ku M, Hochedlinger K, Bernstein BE et al (2007) In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448(7151):318–324. doi:10.1038/nature05944

    Article  CAS  PubMed  Google Scholar 

  • Wilson AA, Ying L, Liesa M, Segeritz C-P, Mills JA, Shen SS, Jean J et al (2015) Emergence of a stage-dependent human liver disease signature with directed differentiation of alpha-1 antitrypsin-deficient iPS cells. Stem Cell Rep 4:873–885. doi:10.1016/j.stemcr.2015.02.021

    Article  CAS  Google Scholar 

  • Wu Y, Whitman INA, Molmenti E, Moore K, Hippenmeyert P, Perlmutter DH (1994) A lag in intracellular degradation of mutant alpha-1-antitrypsin correlates with the liver disease phenotype in homozygous PiZZ alpha-1-antitrypsin deficiency. Proc Natl Acad Sci 91:9014–9018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu J, Chau KF, Vodyanik MA, Jiang J, Jiang Y (2011) Efficient feeder-free episomal reprogramming with small molecules. PLoS One 6(3):1–10. doi:10.1371/journal.pone.0017557

    Article  Google Scholar 

  • Yusa K, Rashid ST, Strick-Marchand H, Varela I, Liu P-Q, Paschon DE, Miranda E et al (2011) Targeted gene correction of α1-antitrypsin deficiency in induced pluripotent stem cells. Nature 478(7369):391–394. doi:10.1038/nature10424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludovic Vallier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Segeritz, CP., Vallier, L. (2016). Inherited Metabolic Disorders of the Liver. In: Fukuda, K. (eds) Human iPS Cells in Disease Modelling. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55966-5_7

Download citation

Publish with us

Policies and ethics