Skip to main content

Hematological Disorders

  • Chapter
  • First Online:
Human iPS Cells in Disease Modelling
  • 573 Accesses

Abstract

Hematological and immunological disorders are abnormalities of the blood system. Although the elucidation of their cellular pathophysiology has been largely based on in vitro studies using patient-derived primary hematopoietic cells or animal models, these approaches have potential limitations. Induced pluripotent stem cells (iPSCs) are potential cell sources for regenerative medicine and other clinical applications, such as cell therapy, drug screening, and the investigation of disease mechanisms. The discovery of disease-associated iPSCs has led to the development of a new field of disease modeling, which can provide somatic cells that cannot be directly obtained from the patient. There have been a number of reports evaluating the use of patient-derived iPSCs to treat hematological and immunological disorders, such as bone marrow failure, hemoglobinopathy, congenital immunodeficiency, hematological malignancies, and chromosomal abnormalities. In this chapter, we review these reports and focus on the application of disease-associated iPSCs for understanding human hematological and immunological disorders while discussing the current state of hematopoietic differentiation and future perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Batista LF, Pech MF, Zhong FL, Nguyen HN, Xie KT, Zaug AJ, Crary SM, Choi J, Sebastiano V, Cherry A, Giri N, Wernig M, Alter BP, Cech TR, Savage SA, Reijo Pera RA, Artandi SE (2011) Telomere shortening and loss of self-renewal in dyskeratosis congenita induced pluripotent stem cells. Nature 474(7351):399–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouma G, Ancliff PJ, Thrasher AJ, Burns SO (2010) Recent advances in the understanding of genetic defects of neutrophil number and function. Br J Haematol 151(4):312–326. doi:10.1111/j.1365-2141.2010.08361.x

    Article  CAS  PubMed  Google Scholar 

  • Briggs JA, Sun J, Shepherd J, Ovchinnikov DA, Chung TL, Nayler SP, Kao LP, Morrow CA, Thakar NY, Soo SY, Peura T, Grimmond S, Wolvetang EJ (2013) Integration-free induced pluripotent stem cells model genetic and neural developmental features of Down syndrome etiology. Stem Cells 31(3):467–478. doi:10.1002/stem.1297

    Article  CAS  PubMed  Google Scholar 

  • Bruwier A, Chantrain CF (2012) Hematological disorders and leukemia in children with Down syndrome. Eur J Pediatr 171:1301–1307

    Article  PubMed  Google Scholar 

  • Carette JE, Pruszak J, Varadarajan M, Blomen VA, Gokhale S, Camargo FD, Wernig M, Jaenisch R, Brummelkamp TR (2010) Generation of iPSCs from cultured human malignant cells. Blood 115(20):4039–4042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carpenter L, Malladi R, Yang CT, French A, Pilkington KJ, Forsey RW, Sloane-Stanley J, Silk KM, Davies TJ, Fairchild PJ, Enver T, Watt SM (2011) Human induced pluripotent stem cells are capable of B-cell lymphopoiesis. Blood 117(15):4008–4011

    Article  CAS  PubMed  Google Scholar 

  • Choi KD, Vodyanik MA, Slukvin II (2009) Generation of mature human myelomonocytic cells through expansion and differentiation of pluripotent stem cell-derived lin-CD34+CD43+CD45+ progenitors. J Clin Invest 119(9):2818–2829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chou ST, Byrska-Bishop M, Tober JM, Yao Y, Vandorn D, Opalinska JB, Mills JA, Choi JK, Speck NA, Gadue P, Hardison RC, Nemiroff RL, French DL, Weiss MJ (2012) Trisomy 21-associated defects in human primitive hematopoiesis revealed through induced pluripotent stem cells. Proc Natl Acad Sci U S A 109(43):17573–17578. doi:10.1073/pnas.1211175109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deans AJ, West SC (2011) DNA interstrand crosslink repair and cancer. Nat Rev Cancer 11(7):467–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gandre-Babbe S, Paluru P, Aribeana C, Chou ST, Bresolin S, Lu L, Sullivan SK, Tasian SK, Weng J, Favre H, Choi JK, French DL, Loh ML, Weiss MJ (2013) Patient-derived induced pluripotent stem cells recapitulate hematopoietic abnormalities of juvenile myelomonocytic leukemia. Blood 121(24):4925–4929. doi:10.1182/blood-2013-01-478412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gore A, Li Z, Fung HL, Young JE, Agarwal S, Antosiewicz-Bourget J, Canto I, Giorgetti A, Israel MA, Kiskinis E, Lee JH, Loh YH, Manos PD, Montserrat N, Panopoulos AD, Ruiz S, Wilbert ML, Yu J, Kirkness EF, Izpisua Belmonte JC, Rossi DJ, Thomson JA, Eggan K, Daley GQ, Goldstein LS, Zhang K (2011) Somatic coding mutations in human induced pluripotent stem cells. Nature 471(7336):63–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanna J, Markoulaki S, Schorderet P, Carey BW, Beard C, Wernig M, Creyghton MP, Steine EJ, Cassady JP, Foreman R, Lengner CJ, Dausman JA, Jaenisch R (2008) Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell 133(2):250–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hiramoto T, Ebihara Y, Mizoguchi Y, Nakamura K, Yamaguchi K, Ueno K, Nariai N, Mochizuki S, Yamamoto S, Nagasaki M, Furukawa Y, Tani K, Nakauchi H, Kobayashi M, Tsuji K (2013) Wnt3a stimulates maturation of impaired neutrophils developed from severe congenital neutropenia patient-derived pluripotent stem cells. Proc Natl Acad Sci U S A 110(8):3023–3028. doi:10.1073/pnas.1217039110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu K, Yu J, Suknuntha K, Tian S, Montgomery K, Choi KD, Stewart R, Thomson JA, Slukvin II (2011) Efficient generation of transgene-free induced pluripotent stem cells from normal and neoplastic bone marrow and cord blood mononuclear cells. Blood 117(14):e109–e119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji P, Jayapal SR, Lodish HF (2008) Enucleation of cultured mouse fetal erythroblasts requires Rac GTPases and mDia2. Nat Cell Biol 10(3):314–321

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Cowley SA, Siler U, Melguizo D, Tilgner K, Browne C, Dewilton A, Przyborski S, Saretzki G, James WS, Seger RA, Reichenbach J, Lako M, Armstrong L (2012) Derivation and functional analysis of patient-specific induced pluripotent stem cells as an in vitro model of chronic granulomatous disease. Stem Cells 30(4):599–611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keller G (2005) Embryonic stem cell differentiation: emergence of a new era in biology and medicine. Genes Dev 19(10):1129–1155

    Article  CAS  PubMed  Google Scholar 

  • Kim K, Doi A, Wen B, Ng K, Zhao R, Cahan P, Kim J, Aryee MJ, Ji H, Ehrlich LI, Yabuuchi A, Takeuchi A, Cunniff KC, Hongguang H, McKinney-Freeman S, Naveiras O, Yoon TJ, Irizarry RA, Jung N, Seita J, Hanna J, Murakami P, Jaenisch R, Weissleder R, Orkin SH, Weissman IL, Feinberg AP, Daley GQ (2010) Epigenetic memory in induced pluripotent stem cells. Nature 467(7313):285–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitajima K, Tanaka M, Zheng J, Yen H, Sato A, Sugiyama D, Umehara H, Sakai E, Nakano T (2006) Redirecting differentiation of hematopoietic progenitors by a transcription factor, GATA-2. Blood 107(5):1857–1863

    Article  CAS  PubMed  Google Scholar 

  • Kumano K, Arai S, Hosoi M, Taoka K, Takayama N, Otsu M, Nagae G, Ueda K, Nakazaki K, Kamikubo Y, Eto K, Aburatani H, Nakauchi H, Kurokawa M (2012) Generation of induced pluripotent stem cells from primary chronic myelogenous leukemia patient samples. Blood 119(26):6234–6242

    Article  CAS  PubMed  Google Scholar 

  • Kurahashi H, Hara J, Yumura-Yagi K, Tawa A, Kawa-Ha K (1992) Transient abnormal myelopoiesis in Down’s syndrome. Leuk Lymphoma 8(6):465–475. doi:10.3109/10428199209051029

    Article  CAS  PubMed  Google Scholar 

  • Kyba M, Perlingeiro RC, Daley GQ (2002) HoxB4 confers definitive lymphoid-myeloid engraftment potential on embryonic stem cell and yolk sac hematopoietic progenitors. Cell 109(1):29–37

    Article  CAS  PubMed  Google Scholar 

  • Lu HE, Yang YC, Chen SM, Su HL, Huang PC, Tsai MS, Wang TH, Tseng CP, Hwang SM (2013) Modeling neurogenesis impairment in Down syndrome with induced pluripotent stem cells from Trisomy 21 amniotic fluid cells. Exp Cell Res 319(4):498–505. doi:10.1016/j.yexcr.2012.09.017

    Article  CAS  PubMed  Google Scholar 

  • Maclean GA, Menne TF, Guo G, Sanchez DJ, Park IH, Daley GQ, Orkin SH (2012) Altered hematopoiesis in trisomy 21 as revealed through in vitro differentiation of isogenic human pluripotent cells. Proc Natl Acad Sci U S A 109(43):17567–17572. doi:10.1073/pnas.1215468109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mali P, Ye Z, Hommond HH, Yu X, Lin J, Chen G, Zou J, Cheng L (2008) Improved efficiency and pace of generating induced pluripotent stem cells from human adult and fetal fibroblasts. Stem Cells 26(8):1998–2005

    Article  CAS  PubMed  Google Scholar 

  • Marchetto MC, Carromeu C, Acab A, Yu D, Yeo GW, Mu Y, Chen G, Gage FH, Muotri AR (2010) A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell 143(4):527–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mekhoubad S, Bock C, de Boer AS, Kiskinis E, Meissner A, Eggan K (2012) Erosion of dosage compensation impacts human iPSC disease modeling. Cell Stem Cell 10(5):595–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morishima T, Watanabe KI, Niwa A, Hirai H, Saida S, Tanaka T, Kato I, Umeda K, Hiramatsu H, Saito MK, Matsubara K, Adachi S, Kobayashi M, Nakahata T, Heike T (2013) Genetic correction of HAX1 in induced pluripotent stem cells from a patient with severe congenital neutropenia improves defective granulopoiesis. Haematologica. doi:10.3324/haematol.2013.083873

    PubMed Central  Google Scholar 

  • Muller LU, Milsom MD, Harris CE, Vyas R, Brumme KM, Parmar K, Moreau LA, Schambach A, Park IH, London WB, Strait K, Schlaeger T, Devine AL, Grassman E, D’Andrea A, Daley GQ, Williams DA (2012) Overcoming reprogramming resistance of Fanconi anemia cells. Blood 119(23):5449–5457. doi:10.1182/blood-2012-02-408674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Myers KC, Davies SM, Shimamura A (2013) Clinical and molecular pathophysiology of Shwachman-Diamond syndrome: an update. Hematol Oncol Clin N Am 27(1):117–128, ix. doi:10.1016/j.hoc.2012.10.003

    Article  Google Scholar 

  • Ni Z, Knorr DA, Clouser CL, Hexum MK, Southern P, Mansky LM, Park IH, Kaufman DS (2011) Human pluripotent stem cells produce natural killer cells that mediate anti-HIV-1 activity by utilizing diverse cellular mechanisms. J Virol 85(1):43–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niemeyer CM, Kratz CP (2008) Paediatric myelodysplastic syndromes and juvenile myelomonocytic leukaemia: molecular classification and treatment options. Br J Haematol 140(6):610–624. doi:10.1111/j.1365-2141.2007.06958.x

    Article  CAS  PubMed  Google Scholar 

  • Niwa A, Umeda K, Chang H, Saito M, Okita K, Takahashi K, Nakagawa M, Yamanaka S, Nakahata T, Heike T (2009) Orderly hematopoietic development of induced pluripotent stem cells via Flk-1(+) hemoangiogenic progenitors. J Cell Physiol 221(2):367–377. doi:10.1002/jcp.21864

    Article  CAS  PubMed  Google Scholar 

  • Niwa A, Heike T, Umeda K, Oshima K, Kato I, Sakai H, Suemori H, Nakahata T, Saito MK (2011) A novel serum-free monolayer culture for orderly hematopoietic differentiation of human pluripotent cells via mesodermal progenitors. PLoS One 6(7), e22261. doi:10.1371/journal.pone.0022261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okita K, Matsumura Y, Sato Y, Okada A, Morizane A, Okamoto S, Hong H, Nakagawa M, Tanabe K, Tezuka K, Shibata T, Kunisada T, Takahashi M, Takahashi J, Saji H, Yamanaka S (2011) A more efficient method to generate integration-free human iPS cells. Nat Methods 8(5):409–412. doi:10.1038/nmeth.1591

    Article  CAS  PubMed  Google Scholar 

  • Papapetrou EP, Lee G, Malani N, Setty M, Riviere I, Tirunagari LM, Kadota K, Roth SL, Giardina P, Viale A, Leslie C, Bushman FD, Studer L, Sadelain M (2011) Genomic safe harbors permit high beta-globin transgene expression in thalassemia induced pluripotent stem cells. Nat Biotechnol 29(1):73–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raya A, Rodriguez-Piza I, Guenechea G, Vassena R, Navarro S, Barrero MJ, Consiglio A, Castella M, Rio P, Sleep E, Gonzalez F, Tiscornia G, Garreta E, Aasen T, Veiga A, Verma IM, Surralles J, Bueren J, Izpisua Belmonte JC (2009) Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature 460(7251):53–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saito M, Fujisawa A, Nishikomori R, Kambe N, Nakata-Hizume M, Yoshimoto M, Ohmori K, Okafuji I, Yoshioka T, Kusunoki T, Miyachi Y, Heike T, Nakahata T (2005) Somatic mosaicism of CIAS1 in a patient with chronic infantile neurologic, cutaneous, articular syndrome. Arthritis Rheum 52(11):3579–3585. doi:10.1002/art.21404

    Article  CAS  PubMed  Google Scholar 

  • Saito M, Nishikomori R, Kambe N, Fujisawa A, Tanizaki H, Takeichi K, Imagawa T, Iehara T, Takada H, Matsubayashi T, Tanaka H, Kawashima H, Kawakami K, Kagami S, Okafuji I, Yoshioka T, Adachi S, Heike T, Miyachi Y, Nakahata T (2008) Disease-associated CIAS1 mutations induce monocyte death, revealing low-level mosaicism in mutation-negative cryopyrin-associated periodic syndrome patients. Blood 111(4):2132–2141. doi:10.1182/blood-2007-06-094201

    Article  CAS  PubMed  Google Scholar 

  • Schiedlmeier B, Klump H, Will E, Arman-Kalcek G, Li Z, Wang Z, Rimek A, Friel J, Baum C, Ostertag W (2003) High-level ectopic HOXB4 expression confers a profound in vivo competitive growth advantage on human cord blood CD34+ cells, but impairs lymphomyeloid differentiation. Blood 101(5):1759–1768

    Article  CAS  PubMed  Google Scholar 

  • Sebastiano V, Maeder ML, Angstman JF, Haddad B, Khayter C, Yeo DT, Goodwin MJ, Hawkins JS, Ramirez CL, Batista LF, Artandi SE, Wernig M, Joung JK (2011) In situ genetic correction of the sickle cell anemia mutation in human induced pluripotent stem cells using engineered zinc finger nucleases. Stem Cells 29(11):1717–1726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi Y, Kirwan P, Smith J, MacLean G, Orkin SH, Livesey FJ (2012) A human stem cell model of early Alzheimer’s disease pathology in Down syndrome. Sci Transl Med 4(124):124–129. doi:10.1126/scitranslmed.3003771

    Google Scholar 

  • Stoffels M, Simon A (2011) Hyper-IgD syndrome or mevalonate kinase deficiency. Curr Opin Rheumatol 23(5):419–423

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676. doi:10.1016/j.cell.2006.07.024

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872. doi:10.1016/j.cell.2007.11.019

    Article  CAS  PubMed  Google Scholar 

  • Takayama N, Nishikii H, Usui J, Tsukui H, Sawaguchi A, Hiroyama T, Eto K, Nakauchi H (2008) Generation of functional platelets from human embryonic stem cells in vitro via ES-sacs, VEGF-promoted structures that concentrate hematopoietic progenitors. Blood 111(11):5298–5306

    Article  CAS  PubMed  Google Scholar 

  • Tanaka T, Takahashi K, Yamane M, Tomida S, Nakamura S, Oshima K, Niwa A, Nishikomori R, Kambe N, Hara H, Mitsuyama M, Morone N, Heuser JE, Yamamoto T, Watanabe A, Sato-Otsubo A, Ogawa S, Asaka I, Heike T, Yamanaka S, Nakahata T, Saito MK (2012) Induced pluripotent stem cells from CINCA syndrome patients as a model for dissecting somatic mosaicism and drug discovery. Blood 120(6):1299–1308. doi:10.1182/blood-2012-03-417881

    Article  CAS  PubMed  Google Scholar 

  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147

    Article  CAS  PubMed  Google Scholar 

  • Timmermans F, Velghe I, Vanwalleghem L, De Smedt M, Van Coppernolle S, Taghon T, Moore HD, Leclercq G, Langerak AW, Kerre T, Plum J, Vandekerckhove B (2009) Generation of T cells from human embryonic stem cell-derived hematopoietic zones. J Immunol 182(11):6879–6888

    Article  CAS  PubMed  Google Scholar 

  • Tulpule A, Kelley JM, Lensch MW, McPherson J, Park IH, Hartung O, Nakamura T, Schlaeger TM, Shimamura A, Daley GQ (2013) Pluripotent stem cell models of Shwachman-Diamond syndrome reveal a common mechanism for pancreatic and hematopoietic dysfunction. Cell Stem Cell 12(6):727–736. doi:10.1016/j.stem.2013.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Umeda K, Heike T, Yoshimoto M, Shiota M, Suemori H, Luo HY, Chui DH, Torii R, Shibuya M, Nakatsuji N, Nakahata T (2004) Development of primitive and definitive hematopoiesis from nonhuman primate embryonic stem cells in vitro. Development 131(8):1869–1879

    Article  CAS  PubMed  Google Scholar 

  • Umeda K, Heike T, Yoshimoto M, Shinoda G, Shiota M, Suemori H, Luo HY, Chui DH, Torii R, Shibuya M, Nakatsuji N, Nakahata T (2006) Identification and characterization of hemoangiogenic progenitors during cynomolgus monkey embryonic stem cell differentiation. Stem Cells 24(5):1348–1358

    Article  CAS  PubMed  Google Scholar 

  • Vodyanik MA, Bork JA, Thomson JA, Slukvin II (2005) Human embryonic stem cell-derived CD34+ cells: efficient production in the coculture with OP9 stromal cells and analysis of lymphohematopoietic potential. Blood 105(2):617–626

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Jiang Y, Liu S, Sun X, Gao S (2009) Generation of induced pluripotent stem cells from human beta-thalassemia fibroblast cells. Cell Res 19(9):1120–1123

    Article  PubMed  Google Scholar 

  • Wang Y, Zheng CG, Jiang Y, Zhang J, Chen J, Yao C, Zhao Q, Liu S, Chen K, Du J, Yang Z, Gao S (2012) Genetic correction of beta-thalassemia patient-specific iPS cells and its use in improving hemoglobin production in irradiated SCID mice. Cell Res 22(4):637–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warren L, Manos PD, Ahfeldt T, Loh YH, Li H, Lau F, Ebina W, Mandal PK, Smith ZD, Meissner A, Daley GQ, Brack AS, Collins JJ, Cowan C, Schlaeger TM, Rossi DJ (2010) Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7(5):618–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weatherall D, Clegg J (2001) The thalassaemia syndromes, 2nd edn. Wiley-Blackwell, Hoboken

    Book  Google Scholar 

  • Webb D, Roberts I, Vyas P (2007) Haematology of Down syndrome. Arch Dis Child Fetal Neonatal Ed 92(6):F503–F507. doi:10.1136/adc.2006.104638

    Article  PubMed  PubMed Central  Google Scholar 

  • Weick JP, Held DL, Bonadurer GF 3rd, Doers ME, Liu Y, Maguire C, Clark A, Knackert JA, Molinarolo K, Musser M, Yao L, Yin Y, Lu J, Zhang X, Zhang SC, Bhattacharyya A (2013) Deficits in human trisomy 21 iPSCs and neurons. Proc Natl Acad Sci U S A 110(24):9962–9967. doi:10.1073/pnas.1216575110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winkelstein JA, Marino MC, Johnston RBJ, Boyle J, Curnutte J, Gallin JI, Malech HL, Holland SM, Ochs H, Quie P, Buckley RH, Foster CB, Chanock SJ, Dickler H (2000) Chronic granulomatous disease. Report on a national registry of 368 patients. Medicine (Baltimore) 79(3):155–169

    Article  CAS  Google Scholar 

  • Woltjen K, Michael IP, Mohseni P, Desai R, Mileikovsky M, Hamalainen R, Cowling R, Wang W, Liu P, Gertsenstein M, Kaji K, Sung HK, Nagy A (2009) piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 458(7239):766–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yanagimachi MD, Niwa A, Tanaka T, Honda-Ozaki F, Nishimoto S, Murata Y, Yasumi T, Ito J, Tomida S, Oshima K, Asaka I, Goto H, Heike T, Nakahata T, Saito MK (2013) Robust and highly-efficient differentiation of functional monocytic cells from human pluripotent stem cells under serum- and feeder cell-free conditions. PLoS One 8(4), e59243. doi:10.1371/journal.pone.0059243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yung SK, Tilgner K, Ledran MH, Habibollah S, Neganova I, Singhapol C, Saretzki G, Stojkovic M, Armstrong L, Przyborski S, Lako M (2013) Brief report: human pluripotent stem cell models of fanconi anemia deficiency reveal an important role for fanconi anemia proteins in cellular reprogramming and survival of hematopoietic progenitors. Stem Cells 31(5):1022–1029. doi:10.1002/stem.1308

    Article  CAS  PubMed  Google Scholar 

  • Zou J, Mali P, Huang X, Dowey SN, Cheng L (2011a) Site-specific gene correction of a point mutation in human iPS cells derived from an adult patient with sickle cell disease. Blood 118(17):4599–4608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou J, Sweeney CL, Chou BK, Choi U, Pan J, Wang H, Dowey SN, Cheng L, Malech HL (2011b) Oxidase-deficient neutrophils from X-linked chronic granulomatous disease iPS cells: functional correction by zinc finger nuclease-mediated safe harbor targeting. Blood 117(21):5561–5572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was partly supported from a grant from the Ministry of Education, Culture, Sports, Science and Technology (MEXT).

Conflicts of Interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Megumu K. Saito .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Saito, M.K., Niwa, A. (2016). Hematological Disorders. In: Fukuda, K. (eds) Human iPS Cells in Disease Modelling. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55966-5_6

Download citation

Publish with us

Policies and ethics