Skip to main content

Large-Scale Electrical Energy Storage Systems

  • Chapter
  • First Online:
Energy Technology Roadmaps of Japan

Abstract

Large-scale electrical energy storage systems with electrochemical batteries offer the promise for better utilization of electricity with load leveling and the massive introduction of renewable energy from solar and wind power. In this chapter, an overview of large-scale energy storage systems is presented, together with the current and future states of electricity demand in Japan. The present status and perspectives of NaS batteries and redox flow batteries are discussed as massive electrical energy storage systems. The technical challenges that remain to further achieving high energy efficiency and cost reduction are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. International Energy Agency (2014) Technology roadmap: energy storage

    Google Scholar 

  2. Ministry of Economy, Trade and Industry in Japan (2009) Long-term energy demand perspectives

    Google Scholar 

  3. Agency for Natural Resources and Energy in Japan (2012) Energy supply in 2030 on strategic energy plan

    Google Scholar 

  4. Agency for Natural Resources and Energy in Japan (2015) Energy white paper 2014

    Google Scholar 

  5. Ministry of Economy, Trade and Industry in Japan (2012) Report on Energy demand and supply

    Google Scholar 

  6. Ministry of Economy, Trade and Industry in Japan (2012) Storage battery strategy

    Google Scholar 

  7. Electric Power Research Institute (2010) Electric energy storage technology options: a white paper primer on applications, costs, and benefits, 1020676

    Google Scholar 

  8. Akhil AA, Huff G, Currier AB, Kaun BC, Rastler DM, Chen SB, Cotter AL, Bradshaw DT, Gauntlett WD (2013) DOE/EPRI 2013 Electricity storage handbook in collaboration with NRECA, Sandia Report SAND2013-5131

    Google Scholar 

  9. Oshima T, Kajita M, Okuno A (2005) Development of sodium-sulfur batteries. Int J Appl Ceram Tech 1(3):269–276. doi:10.1111/j.1744-7402.2004.tb00179.x

    Article  Google Scholar 

  10. Lu X, Xia G, Lemmon JP, Yang Z (2010) Advanced materials for sodium-beta alumina batteries: status, challenges and perspectives. J Power Sources 195:2431–2442. doi:10.1016/j.jpowsour.2009.11.120

    Article  Google Scholar 

  11. NGK Insulators, Ltd (2004) Development of NAS battery cells and modules. NGK Rev 60:10

    Google Scholar 

  12. Mizutani T (2009) Innovative technological developments in electricity storage, Hannover messes – World energy dialogue

    Google Scholar 

  13. Alotto P, Guarnieri M, Moro F (2014) Redox flow batteries for the storage of renewable energy: a review. Renew Sustain Energy Rev 29:325–335. doi:10.1016/j.rser.2013.08.001

    Article  Google Scholar 

  14. Shigematsu T (2011) Redox flow battery for energy storage. SEI Tech Rev 73:4–13

    Google Scholar 

  15. Shibata T, Kumamoto T, Nagaoka Y, Kawase K, Yano K (2013) Redox flow batteries for the stable supply of renewable energy. SEI Tech Rev 76:14–22

    Google Scholar 

  16. Steward D, Saur G, Penev M, Ramsden T (2009) Lifecycle cost analysis of hydrogen versus other technologies for electrical energy storage, NREL/TP-560-46719

    Google Scholar 

  17. NGK Insulators, Ltd (2004) Development of solid electrolyte. NGK Rev 60:4–9

    Google Scholar 

  18. Sudworth JL (2001) The sodium/nickel chloride (ZEBRA) battery. J Power Sources 100:149. doi:10.1016/S0378-7753(01)00891-6

    Article  Google Scholar 

  19. Ellis BL, Nazar LF (2012) Sodium and sodium-ion energy storage batteries. Curr Opin Solid St M 16:168–177. doi:10.1016/j.cossms.2012.04.002

    Article  Google Scholar 

  20. Fergus JW (2012) Ion transport in sodium ion conducting solid electrolytes. Solid State Ion 227:102–112. doi:10.1016/j.ssi.2012.09.019

    Article  Google Scholar 

  21. Lalère F, Leriche JB, Courty M, Boulineau S, Viallet V, Masquelier C (2014) An all-solid state NASICON sodium battery operating at 200°C. J Power Sources 247:975–980. doi:10.1016/j.jpowsour.2013.09.051

    Article  Google Scholar 

  22. Hayashi A, Noi K, Sakuda A, Tatsumisago M (2012) Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries. Nat Commun 3:856. doi:10.1038/ncomms1843

    Article  Google Scholar 

  23. Aaron DS, Liu Q, Tang Z, Grim GM, Papandrew AB, Turhan A, Zawodzinski TA, Mench MM (2012) Dramatic performance gains in vanadium redox flow batteries through modified cell architecture. J Power Sources 206:450–453. doi:10.1016/j.jpowsour.2011.12.026

    Article  Google Scholar 

  24. Tsushima S, Kondo F, Sasaki S, Hirai S (2014) Efficient utilization of the electrodes in a redox flow battery by modifying flow field and electrode morphology. Proc 15th Int Heat Transfer Conf. doi:10.1615/IHTC15.ecs.009326, IHTC15-9326

    Google Scholar 

  25. Carnegie R, Gotham D, Nderitu D, Preckel PV (2013) Utility scale energy storage systems. State Utility Forecasting Group, Purdue University, West Lafayette

    Google Scholar 

  26. Brian H, Marshak MP, Suh C, Er S, Gerhardt MR, Galvin CJ, Chen X, Aspuru-Guzik A, Gordon RG, Aziz MJ (2014) A metal-free organic–inorganic aqueous flow battery. Nature 505:195–198. doi:10.1038/nature12909

    Article  Google Scholar 

  27. Imamura E, Nagano K (2010) Evaluation of life cycle CO2 emissions of power generation technologies: update for state-of-the-art plant, CRIEPI Research Report: Y09027

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shohji Tsushima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Tsushima, S. (2016). Large-Scale Electrical Energy Storage Systems. In: Kato, Y., Koyama, M., Fukushima, Y., Nakagaki, T. (eds) Energy Technology Roadmaps of Japan. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55951-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55951-1_7

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55949-8

  • Online ISBN: 978-4-431-55951-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics