Skip to main content

Regulation of Growth Factor Receptors by Glycosphingolipids

  • Chapter
  • First Online:
Glycosignals in Cancer: Mechanisms of Malignant Phenotypes

Abstract

Complex glycosphingolipids (GSLs) are ubiquitous components of animal cell plasma membranes, and many have been structurally characterized. GSLs, including gangliosides, are involved in crucial biological processes such as cell growth, differentiation, and motility. Certain GSLs have been identified as tumor-associated antigens in various types of cancer cells. Early studies of inhibitory effects of gangliosides on cell growth led to the discovery that GSLs modulate (inhibit or enhance) the activation of growth factor (GF) receptor-associated tyrosine kinase, which is triggered by the binding between a GF and its specific receptor. GSLs are localized as clusters at unique microdomains of the plasma membrane, termed glycolipid-enriched microdomains, lipid rafts, or glycosynapses. Various GF receptors (GFRs), including epidermal GFR and hepatocyte GFR, are localized in such membrane microdomains. There is increasing evidence that GSLs modulate the activation of GFR kinases in such microdomains, in which other signaling molecules and regulatory molecules such as integrins and tetraspanins are also localized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abercrombie M, Heaysman JE (1954) Observations on the social behaviour of cells in tissue culture. II. Monolayering of fibroblasts. Exp Cell Res 6(2):293–306

    Article  PubMed  CAS  Google Scholar 

  • Bladt F, Riethmacher D, Isenmann S, Aguzzi A, Birchmeier C (1995) Essential role for the c-met receptor in the migration of myogenic precursor cells into the limb bud. Nature 376(6543):768–771. doi:10.1038/376768a0

    Article  PubMed  CAS  Google Scholar 

  • Bottaro DP, Rubin JS, Faletto DL, Chan AM, Kmiecik TE, Vande Woude GF, Aaronson SA (1991) Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product. Science 251(4995):802–804

    Article  PubMed  CAS  Google Scholar 

  • Brady RO, Borek C, Bradley RM (1969) Composition and synthesis of gangliosides in rat hepatocyte and hepatoma cell lines. J Biol Chem 244(23):6552–6554

    PubMed  CAS  Google Scholar 

  • Bremer EG, Hakomori S (1982) GM3 ganglioside induces hamster fibroblast growth inhibition in chemically-defined medium: ganglioside may regulate growth factor receptor function. Biochem Biophys Res Commun 106(3):711–718

    Article  PubMed  CAS  Google Scholar 

  • Bremer EG, Hakomori S (1984) Gangliosides as receptor modulators. Adv Exp Med Biol 174:381–394

    Article  PubMed  CAS  Google Scholar 

  • Bremer EG, Hakomori S, Bowen-Pope DF, Raines E, Ross R (1984) Ganglioside-mediated modulation of cell growth, growth factor binding, and receptor phosphorylation. J Biol Chem 259(11):6818–6825

    PubMed  CAS  Google Scholar 

  • Bremer EG, Schlessinger J, Hakomori S (1986) Ganglioside-mediated modulation of cell growth. Specific effects of GM3 on tyrosine phosphorylation of the epidermal growth factor receptor. J Biol Chem 261(5):2434–2440

    PubMed  CAS  Google Scholar 

  • Brown DA, London E (1997) Structure of detergent-resistant membrane domains: does phase separation occur in biological membranes? Biochem Biophys Res Commun 240(1):1–7. doi:10.1006/bbrc.1997.7575

    Article  PubMed  CAS  Google Scholar 

  • Brown DA, London E (2000) Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J Biol Chem 275(23):17221–17224. doi:10.1074/jbc.R000005200

    Article  PubMed  CAS  Google Scholar 

  • Cohen S (1965) The stimulation of epidermal proliferation by a specific protein (EGF). Dev Biol 12:394–407

    Article  PubMed  CAS  Google Scholar 

  • Dohi T, Nores G, Hakomori S (1988) An IgG3 monoclonal antibody established after immunization with GM3 lactone: immunochemical specificity and inhibition of melanoma cell growth in vitro and in vivo. Cancer Res 48(20):5680–5685

    PubMed  CAS  Google Scholar 

  • Furukawa K, Ohmi Y, Ohkawa Y, Tokuda N, Kondo Y, Tajima O, Furukawa K (2011) Regulatory mechanisms of nervous systems with glycosphingolipids. Neurochem Res 36(9):1578–1586. doi:10.1007/s11064-011-0494-2

    Article  PubMed  CAS  Google Scholar 

  • Gherardi E, Gray J, Stoker M, Perryman M, Furlong R (1989) Purification of scatter factor, a fibroblast-derived basic protein that modulates epithelial interactions and movement. Proc Natl Acad Sci USA 86(15):5844–5848

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gospodarowicz D (1974) Localisation of a fibroblast growth factor and its effect alone and with hydrocortisone on 3T3 cell growth. Nature 249(453):123–127

    Article  PubMed  CAS  Google Scholar 

  • Greene LA, Tischler AS (1976) Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci USA 73(7):2424–2428

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hakomori S (1970) Cell density-dependent changes of glycolipid concentrations in fibroblasts, and loss of this response in virus-transformed cells. Proc Natl Acad Sci USA 67(4):1741–1747

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hakomori S (1981) Glycosphingolipids in cellular interaction, differentiation, and oncogenesis. Annu Rev Biochem 50:733–764. doi:10.1146/annurev.bi.50.070181.003505

    Article  PubMed  CAS  Google Scholar 

  • Hakomori S-i (1983) Sphingolipid biochemistry, vol 3, Handbook of lipid research. Springer, New York. doi:10.1007/978-1-4757-0396-2_1

    Google Scholar 

  • Hakomori S (2002) Glycosylation defining cancer malignancy: new wine in an old bottle. Proc Natl Acad Sci USA 99(16):10231–10233. doi:10.1073/pnas.172380699

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hakomori S (2003) Structure, organization, and function of glycosphingolipids in membrane. Curr Opin Hematol 10(1):16–24

    Article  PubMed  CAS  Google Scholar 

  • Hakomori S (2004) Glycosynapses: microdomains controlling carbohydrate-dependent cell adhesion and signaling. An Acad Bras Cienc 76(3):553–572, doi:/S0001-37652004000300010

    Article  PubMed  CAS  Google Scholar 

  • Hakomori SI (2008) Structure and function of glycosphingolipids and sphingolipids: recollections and future trends. Biochim Biophys Acta 1780(3):325–346. doi:10.1016/j.bbagen.2007.08.015

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hakomori S, Handa K (2002) Glycosphingolipid-dependent cross-talk between glycosynapses interfacing tumor cells with their host cells: essential basis to define tumor malignancy. FEBS Lett 531(1):88–92

    Article  PubMed  CAS  Google Scholar 

  • Hakomori SI, Murakami WT (1968) Glycolipids of hamster fibroblasts and derived malignant-transformed cell lines. Proc Natl Acad Sci USA 59(1):254–261

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hakomori S, Strycharz GD (1968) Investigations on cellular blood-group substances. I. Isolation and chemical composition of blood-group ABH and Le-b isoantigens of sphingoglycolipid nature. Biochemistry 7(4):1279–1286

    Article  PubMed  CAS  Google Scholar 

  • Hakomori SI, Siddiqui B, Li YT, Li SC, Hellerqvist CG (1971) Anomeric structure of globoside and ceramide grihexoside of human erythrocytes and hamster fibroblasts. J Biol Chem 246(7):2271–2277

    PubMed  CAS  Google Scholar 

  • Hanai N, Nores G, Torres-Mendez CR, Hakomori S (1987) Modified ganglioside as a possible modulator of transmembrane signaling mechanism through growth factor receptors: a preliminary note. Biochem Biophys Res Commun 147(1):127–134

    Article  PubMed  CAS  Google Scholar 

  • Hanai N, Dohi T, Nores GA, Hakomori S (1988a) A novel ganglioside, de-N-acetyl-GM3 (II3NeuNH2LacCer), acting as a strong promoter for epidermal growth factor receptor kinase and as a stimulator for cell growth. J Biol Chem 263(13):6296–6301

    PubMed  CAS  Google Scholar 

  • Hanai N, Nores GA, MacLeod C, Torres-Mendez CR, Hakomori S (1988b) Ganglioside-mediated modulation of cell growth. Specific effects of GM3 and lyso-GM3 in tyrosine phosphorylation of the epidermal growth factor receptor. J Biol Chem 263(22):10915–10921

    PubMed  CAS  Google Scholar 

  • Handa K, Hakomori SI (2012) Carbohydrate to carbohydrate interaction in development process and cancer progression. Glycoconj J 29(8–9):627–637. doi:10.1007/s10719-012-9380-7

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa T, Yamaguchi K, Wada T, Takeda A, Itoyama Y, Miyagi T (2000) Molecular cloning of mouse ganglioside sialidase and its increased expression in Neuro2a cell differentiation. J Biol Chem 275(11):8007–8015

    Article  PubMed  CAS  Google Scholar 

  • Ito J, Kato T, Okumura-Noji K, Miyatani Y, Tanaka R, Tsuji S, Nagai Y (1989) Induction of astroglial growth inhibition and differentiation by sialosyl cholesterol. Brain Res 481(2):335–343

    Article  PubMed  CAS  Google Scholar 

  • Ito H, Tashiro K, Stroud MR, Orntoft TF, Meldgaard P, Singhal AK, Hakomori S (1992) Specificity and immunobiological properties of monoclonal antibody IMH2, established after immunization with Le(b)/Le(a) glycosphingolipid, a novel extended type 1 chain antigen. Cancer Res 52(13):3739–3745

    PubMed  CAS  Google Scholar 

  • Kabayama K, Sato T, Saito K, Loberto N, Prinetti A, Sonnino S, Kinjo M, Igarashi Y, Inokuchi J (2007) Dissociation of the insulin receptor and caveolin-1 complex by ganglioside GM3 in the state of insulin resistance. Proc Natl Acad Sci USA 104(34):13678–13683

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kannagi R, Nudelman E, Levery SB, Hakomori S (1982) A series of human erythrocyte glycosphingolipids reacting to the monoclonal antibody directed to a developmentally regulated antigen SSEA-1. J Biol Chem 257(24):14865–14874

    PubMed  CAS  Google Scholar 

  • Kannagi R, Cochran NA, Ishigami F, Hakomori S, Andrews PW, Knowles BB, Solter D (1983a) Stage-specific embryonic antigens (SSEA-3 and −4) are epitopes of a unique globo-series ganglioside isolated from human teratocarcinoma cells. EMBO J 2(12):2355–2361

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kannagi R, Levery SB, Ishigami F, Hakomori S, Shevinsky LH, Knowles BB, Solter D (1983b) New globoseries glycosphingolipids in human teratocarcinoma reactive with the monoclonal antibody directed to a developmentally regulated antigen, stage-specific embryonic antigen 3. J Biol Chem 258(14):8934–8942

    PubMed  CAS  Google Scholar 

  • Kaucic K, Liu Y, Ladisch S (2006) Modulation of growth factor signaling by gangliosides: positive or negative? Methods Enzymol 417:168–185

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kawashima N, Yoon SJ, Itoh K, Nakayama K (2009) Tyrosine kinase activity of epidermal growth factor receptor is regulated by GM3 binding through carbohydrate to carbohydrate interactions. J Biol Chem 284(10):6147–6155. doi:10.1074/jbc.M808171200

    Article  PubMed  CAS  Google Scholar 

  • Kohler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256(5517):495–497

    Article  PubMed  CAS  Google Scholar 

  • Lee L, Abe A, Shayman JA (1999) Improved inhibitors of glucosylceramide synthase. J Biol Chem 274(21):14662–14669

    Article  PubMed  CAS  Google Scholar 

  • Levi-Montalcini R (1987) The nerve growth factor 35 years later. Science 237(4819):1154–1162

    Article  PubMed  CAS  Google Scholar 

  • Levi-Montalcini R, Cohen S (1956) In vitro and in vivo effects of a nerve growth-stimulating agent isolated from snake venom. Proc Natl Acad Sci USA 42(9):695–699

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Liang YJ, Ding Y, Levery SB, Lobaton M, Handa K, Hakomori SI (2013) Differential expression profiles of glycosphingolipids in human breast cancer stem cells vs. cancer non-stem cells. Proc Natl Acad Sci USA 110(13):4968–4973. doi:10.1073/pnas.1302825110

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lingwood CA, Hakomori S (1977) Selective inhibition of cell growth and associated changes in glycolipid metabolism induced by monovalent antibodies to glycolipids. Exp Cell Res 108(2):385–391

    Article  PubMed  CAS  Google Scholar 

  • Liu JW, Sun P, Yan Q, Paller AS, Gerami P, Ho N, Vashi N, Le Poole IC, Wang XQ (2009) De-N-acetyl GM3 promotes melanoma cell migration and invasion through urokinase plasminogen activator receptor signaling-dependent MMP-2 activation. Cancer Res 69(22):8662–8669. doi:10.1158/0008-5472.CAN-09-1099

    Article  PubMed  CAS  Google Scholar 

  • Meuillet EJ, Kroes R, Yamamoto H, Warner TG, Ferrari J, Mania-Farnell B, George D, Rebbaa A, Moskal JR, Bremer EG (1999) Sialidase gene transfection enhances epidermal growth factor receptor activity in an epidermoid carcinoma cell line, A431. Cancer Res 59(1):234–240

    PubMed  CAS  Google Scholar 

  • Miljan EA, Meuillet EJ, Mania-Farnell B, George D, Yamamoto H, Simon HG, Bremer EG (2002) Interaction of the extracellular domain of the epidermal growth factor receptor with gangliosides. J Biol Chem 277(12):10108–10113. doi:10.1074/jbc.M111669200

    Article  PubMed  CAS  Google Scholar 

  • Mitsuda T, Furukawa K, Fukumoto S, Miyazaki H, Urano T, Furukawa K (2002) Overexpression of ganglioside GM1 results in the dispersion of platelet-derived growth factor receptor from glycolipid-enriched microdomains and in the suppression of cell growth signals. J Biol Chem 277(13):11239–11246

    Article  PubMed  CAS  Google Scholar 

  • Mitsuzuka K, Handa K, Satoh M, Arai Y, Hakomori S (2005) A specific microdomain (“glycosynapse 3”) controls phenotypic conversion and reversion of bladder cancer cells through GM3-mediated interaction of alpha3beta1 integrin with CD9. J Biol Chem 280(42):35545–35553. doi:10.1074/jbc.M505630200

    Article  PubMed  CAS  Google Scholar 

  • Miura Y, Kainuma M, Jiang H, Velasco H, Vogt PK, Hakomori S (2004) Reversion of the Jun-induced oncogenic phenotype by enhanced synthesis of sialosyllactosylceramide (GM3 ganglioside). Proc Natl Acad Sci USA 101(46):16204–16209. doi:10.1073/pnas.0407297101

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Miyata M, Kambe M, Tajima O, Moriya S, Sawaki H, Hotta H, Kondo Y, Narimatsu H, Miyagi T, Furukawa K, Furukawa K (2011) Membrane sialidase NEU3 is highly expressed in human melanoma cells promoting cell growth with minimal changes in the composition of gangliosides. Cancer Sci 102(12):2139–2149. doi:10.1111/j.1349-7006.2011.02086.x

    Article  PubMed  CAS  Google Scholar 

  • Mora PT, Brady RO, Bradley RM, McFarland VW (1969) Gangliosides in DNA virus-transformed and spontaneously transformed tumorigenic mouse cell lines. Proc Natl Acad Sci USA 63(4):1290–1296

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mutoh T, Tokuda A, Guroff G, Fujiki N (1993) The effect of the B subunit of cholera toxin on the action of nerve growth factor on PC12 cells. J Neurochem 60(4):1540–1547

    Article  PubMed  CAS  Google Scholar 

  • Mutoh T, Tokuda A, Miyadai T, Hamaguchi M, Fujiki N (1995) Ganglioside GM1 binds to the Trk protein and regulates receptor function. Proc Natl Acad Sci USA 92(11):5087–5091

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Nakamura T, Nishizawa T, Hagiya M, Seki T, Shimonishi M, Sugimura A, Tashiro K, Shimizu S (1989) Molecular cloning and expression of human hepatocyte growth factor. Nature 342(6248):440–443. doi:10.1038/342440a0

    Article  PubMed  CAS  Google Scholar 

  • Nojiri H, Takaku F, Terui Y, Miura Y, Saito M (1986) Ganglioside GM3: an acidic membrane component that increases during macrophage-like cell differentiation can induce monocytic differentiation of human myeloid and monocytoid leukemic cell lines HL-60 and U937. Proc Natl Acad Sci USA 83(3):782–786

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Nojiri H, Kitagawa S, Nakamura M, Kirito K, Enomoto Y, Saito M (1988) Neolacto-series gangliosides induce granulocytic differentiation of human promyelocytic leukemia cell line HL-60. J Biol Chem 263(16):7443–7446

    PubMed  CAS  Google Scholar 

  • Nores GA, Hanai N, Levery SB, Eaton HL, Salyan EK, Hakomori S (1988) Synthesis and characterization of lyso-GM3 (II3Neu5Ac Lactosyl sphingosine), de-N-acetyl-GM3 (II3NeuNH2 lactosyl Cer), and related compounds. Carbohydr Res 179:393–410

    Article  PubMed  CAS  Google Scholar 

  • Nores GA, Hanai N, Levery SB, Eaton HL, Salyan ME, Hakomori S (1989) Synthesis and characterization of ganglioside GM3 derivatives: lyso-GM3, de-N-acetyl-GM3, and other compounds. Methods Enzymol 179:242–253

    Article  PubMed  CAS  Google Scholar 

  • Nudelman ED, Levery SB, Igarashi Y, Hakomori S (1992) Plasmalopsychosine, a novel plasmal (fatty aldehyde) conjugate of psychosine with cyclic acetal linkage. Isolation and characterization from human brain white matter. J Biol Chem 267(16):11007–11016

    PubMed  CAS  Google Scholar 

  • Ono M, Handa K, Sonnino S, Withers DA, Nagai H, Hakomori S (2001) GM3 ganglioside inhibits CD9-facilitated haptotactic cell motility: coexpression of GM3 and CD9 is essential in the downregulation of tumor cell motility and malignancy. Biochemistry 40(21):6414–6421

    Article  PubMed  CAS  Google Scholar 

  • Papini N, Anastasia L, Tringali C, Croci G, Bresciani R, Yamaguchi K, Miyagi T, Preti A, Prinetti A, Prioni S, Sonnino S, Tettamanti G, Venerando B, Monti E (2004) The plasma membrane-associated sialidase MmNEU3 modifies the ganglioside pattern of adjacent cells supporting its involvement in cell-to-cell interactions. J Biol Chem 279(17):16989–16995. doi:10.1074/jbc.M400881200

    Article  PubMed  CAS  Google Scholar 

  • Park M, Dean M, Kaul K, Braun MJ, Gonda MA, Vande Woude G (1987) Sequence of MET protooncogene cDNA has features characteristic of the tyrosine kinase family of growth-factor receptors. Proc Natl Acad Sci USA 84(18):6379–6383

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Paul D, Lipton A, Klinger I (1971) Serum factor requirements of normal and simian virus 40-transformed 3T3 mouse fibroplasts. Proc Natl Acad Sci USA 68(3):645–652

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Proia RL (2003) Glycosphingolipid functions: insights from engineered mouse models. Philos Trans R Soc Lond B Biol Sci 358(1433):879–883. doi:10.1098/rstb.2003.1268

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Radin NS, Shayman JA, Inokuchi J (1993) Metabolic effects of inhibiting glucosylceramide synthesis with PDMP and other substances. Adv Lipid Res 26:183–213

    PubMed  CAS  Google Scholar 

  • Robbins PW, Macpherson I (1971) Control of glycolipid synthesis in a cultured hamster cell line. Nature 229(5286):569–570

    Article  PubMed  CAS  Google Scholar 

  • Rong S, Segal S, Anver M, Resau JH, Vande Woude GF (1994) Invasiveness and metastasis of NIH 3T3 cells induced by Met-hepatocyte growth factor/scatter factor autocrine stimulation. Proc Natl Acad Sci USA 91(11):4731–4735

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sakakura C, Igarashi Y, Anand JK, Sadozai KK, Hakomori S (1996) Plasmalopsychosine of human brain mimics the effect of nerve growth factor by activating its receptor kinase and mitogen-activated protein kinase in PC12 cells. Induction of neurite outgrowth and prevention of apoptosis. J Biol Chem 271(2):946–952

    Article  PubMed  CAS  Google Scholar 

  • Sakiyama H, Gross SK, Robbins PW (1972) Glycolipid synthesis in normal and virus-transformed hamster cell lines. Proc Natl Acad Sci USA 69(4):872–876

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Shiozaki K, Yamaguchi K, Sato I, Miyagi T (2009) Plasma membrane-associated sialidase (NEU3) promotes formation of colonic aberrant crypt foci in azoxymethane-treated transgenic mice. Cancer Sci 100(4):588–594. doi:10.1111/j.1349-7006.2008.01080.x

    Article  PubMed  CAS  Google Scholar 

  • Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387(6633):569–572. doi:10.1038/42408

    Article  PubMed  CAS  Google Scholar 

  • Sonnino S, Prinetti A (2010) Gangliosides as regulators of cell membrane organization and functions. Adv Exp Med Biol 688:165–184

    Article  PubMed  CAS  Google Scholar 

  • Stan RV, Roberts WG, Predescu D, Ihida K, Saucan L, Ghitescu L, Palade GE (1997) Immunoisolation and partial characterization of endothelial plasmalemmal vesicles (caveolae). Mol Biol Cell 8(4):595–605

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Stroud MR, Levery SB, Nudelman ED, Salyan ME, Towell JA, Roberts CE, Watanabe M, Hakomori S (1991) Extended type 1 chain glycosphingolipids: dimeric Lea (III4V4Fuc2Lc6) as human tumor-associated antigen. J Biol Chem 266(13):8439–8446

    PubMed  CAS  Google Scholar 

  • Stroud MR, Levery SB, Salyan ME, Roberts CE, Hakomori S (1992) Extended type-1 chain glycosphingolipid antigens. Isolation and characterization of trifucosyl-Leb antigen (III4V4VI2Fuc3Lc6). Eur J Biochem/FEBS 203(3):577–586

    Article  CAS  Google Scholar 

  • Taniguchi N, Honke K, Fukuda M (2002) Handbook of glycosyltransferases and related genes. Springer, Tokyo/New York

    Book  Google Scholar 

  • Tettamanti G, Bonali F, Marchesini S, Zambotti V (1973) A new procedure for the extraction, purification and fractionation of brain gangliosides. Biochim Biophys Acta 296(1):160–170

    Article  PubMed  CAS  Google Scholar 

  • Todeschini AR, Dos Santos JN, Handa K, Hakomori SI (2007) Ganglioside GM2-tetraspanin CD82 complex inhibits met and its cross-talk with integrins, providing a basis for control of cell motility through glycosynapse. J Biol Chem 282(11):8123–8133. doi:10.1074/jbc.M611407200

    Article  PubMed  CAS  Google Scholar 

  • Todeschini AR, Dos Santos JN, Handa K, Hakomori SI (2008) Ganglioside GM2/GM3 complex affixed on silica nanospheres strongly inhibits cell motility through CD82/cMet-mediated pathway. Proc Natl Acad Sci USA 105(6):1925–1930. doi:10.1073/pnas.0709619104

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Toledo MS, Suzuki E, Handa K, Hakomori S (2004) Cell growth regulation through GM3-enriched microdomain (glycosynapse) in human lung embryonal fibroblast WI38 and its oncogenic transformant VA13. J Biol Chem 279(33):34655–34664. doi:10.1074/jbc.M403857200

    Article  PubMed  CAS  Google Scholar 

  • Toledo MS, Suzuki E, Handa K, Hakomori S (2005) Effect of ganglioside and tetraspanins in microdomains on interaction of integrins with fibroblast growth factor receptor. J Biol Chem 280(16):16227–16234. doi:10.1074/jbc.M413713200

    Article  PubMed  CAS  Google Scholar 

  • Ullrich A, Schlessinger J (1990) Signal transduction by receptors with tyrosine kinase activity. Cell 61(2):203–212

    Article  PubMed  CAS  Google Scholar 

  • Veracini L, Simon V, Richard V, Schraven B, Horejsi V, Roche S, Benistant C (2008) The Csk-binding protein PAG regulates PDGF-induced Src mitogenic signaling via GM1. J Cell Biol 182(3):603–614

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wada T, Hata K, Yamaguchi K, Shiozaki K, Koseki K, Moriya S, Miyagi T (2007) A crucial role of plasma membrane-associated sialidase in the survival of human cancer cells. Oncogene 26(17):2483–2490. doi:10.1038/sj.onc.1210341

    Article  PubMed  CAS  Google Scholar 

  • Watanabe M, Ohishi T, Kuzuoka M, Nudelman ED, Stroud MR, Kubota T, Kodairo S, Abe O, Hirohashi S, Shimosato Y et al (1991) In vitro and in vivo antitumor effects of murine monoclonal antibody NCC-ST-421 reacting with dimeric Le(a) (Le(a)/Le(a)) epitope. Cancer Res 51(8):2199–2204

    PubMed  CAS  Google Scholar 

  • Weis FM, Davis RJ (1990) Regulation of epidermal growth factor receptor signal transduction. Role of gangliosides. J Biol Chem 265(20):12059–12066

    PubMed  CAS  Google Scholar 

  • Wiegandt H (1985) Glycolipids. New comprehensive biochemistry, vol 10. Elsevier, Amsterdam/New York

    Google Scholar 

  • Yang HJ, Hakomori SI (1971) A sphingolipid having a novel type of ceramide and lacto-N-fucopentaose 3. J Biol Chem 246(5):1192–1200

    PubMed  CAS  Google Scholar 

  • Yarden Y, Ullrich A (1988) Growth factor receptor tyrosine kinases. Annu Rev Biochem 57:443–478. doi:10.1146/annurev.bi.57.070188.002303

    Article  PubMed  CAS  Google Scholar 

  • Yates AJ, Rampersaud A (1998) Sphingolipids as receptor modulators. An overview. Ann NY Acad Sci 845:57–71

    Article  PubMed  CAS  Google Scholar 

  • Yoon SJ, Nakayama K, Hikita T, Handa K, Hakomori SI (2006) Epidermal growth factor receptor tyrosine kinase is modulated by GM3 interaction with N-linked GlcNAc termini of the receptor. Proc Natl Acad Sci USA 103(50):18987–18991. doi:10.1073/pnas.0609281103

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yu RK, Tsai YT, Ariga T (2012) Functional roles of gangliosides in neurodevelopment: an overview of recent advances. Neurochem Res 37(6):1230–1244. doi:10.1007/s11064-012-0744-y

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhou Q, Hakomori S, Kitamura K, Igarashi Y (1994) GM3 directly inhibits tyrosine phosphorylation and de-N-acetyl-GM3 directly enhances serine phosphorylation of epidermal growth factor receptor, independently of receptor-receptor interaction. J Biol Chem 269(3):1959–1965

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sen-itiroh Hakomori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Hakomori, Si., Handa, K. (2016). Regulation of Growth Factor Receptors by Glycosphingolipids. In: Furukawa, K., Fukuda, M. (eds) Glycosignals in Cancer: Mechanisms of Malignant Phenotypes . Springer, Tokyo. https://doi.org/10.1007/978-4-431-55939-9_5

Download citation

Publish with us

Policies and ethics