Skip to main content

DrosophilaAcetobacter as a Model System for Understanding Animal–Microbiota Interactions

  • Chapter
  • First Online:
Acetic Acid Bacteria

Abstract

All metazoans harbor a high number of microorganisms in the gut. It is generally accepted that these gut–microbe interactions modulate a diverse range of host physiology, including immunity, development, and metabolism. Analyses using genetically amenable model animals such as Drosophila have provided a key framework to understand the molecular mechanisms underlying gut–microbe interactions. Recent investigations revealed that the acetic acid bacterium is one of the major naturally occurring commensal bacteria in the gut of the Drosophila host. The genetic tools available on both the microbial side and the host side provide a unique opportunity to dissect the complex interactions between gut microbes and their hosts. In this chapter, the role of the Acetobacter microbiome in animal physiology is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amcheslavsky A, Jiang J, Ip YT (2009) Tissue damage-induced intestinal stem cell division in Drosophila. Cell Stem Cell 4(1):49–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buchon N, Broderick NA, Poidevin M, Pradervand S, Lemaitre B (2009a) Drosophila intestinal response to bacterial infection: activation of host defense and stem cell proliferation. Cell Host Microbe 5(2):200–211

    Article  CAS  PubMed  Google Scholar 

  • Buchon N, Broderick NA, Chakrabarti S, Lemaitre B (2009b) Invasive and indigenous microbiota impact intestinal stem cell activity through multiple pathways in Drosophila. Genes Dev 23(19):2333–2344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buchon N, Broderick NA, Kuraishi T, Lemaitre B (2010) Drosophila EGFR pathway coordinates stem cell proliferation and gut remodeling following infection. BMC Biol 8:152. doi:1741-7007-8-152 [pii] 10.1186/1741-7007-8-152

  • Cani PD, Bibiloni R, Knauf C, Neyrinck AM, Neyrinck AM, Delzenne NM, Burcelin R (2008) Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57(6):1470–1481. doi:10.2337/Db07-1403

    Article  CAS  PubMed  Google Scholar 

  • Caricilli AM, Picardi PK, de Abreu LL, Ueno M, Prada PO, Ropelle ER, Hirabara SM, Castoldi A, Vieira P, Camara NO, Curi R, Carvalheira JB, Saad MJ (2011) Gut microbiota is a key modulator of insulin resistance in TLR 2 knockout mice. PLoS Biol 9(12):e1001212. doi:10.1371/journal.pbio.1001212 PBIOLOGY-D-11-01483 [pii]

  • Chandler JA, Lang JM, Bhatnagar S, Eisen JA, Kopp A (2011) Bacterial communities of diverse Drosophila species: ecological context of a host-microbe model system. PLoS Genet 7(9):e1002272. doi:10.1371/journal.pgen.1002272 PGENETICS-D-11-00559 [pii]

  • Clemente JC, Ursell LK, Parfrey LW, Knight R (2012) The impact of the gut microbiota on human health: an integrative view. Cell 148(6):1258–1270. doi:S0092-8674(12)00104-3 [pii] 10.1016/j.cell.2012.01.035

  • Cox CR, Gilmore MS (2007) Native microbial colonization of Drosophila melanogaster and its use as a model of Enterococcus faecalis pathogenesis. Infect Immun 75(4):1565–1576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cronin SJ, Nehme NT, Limmer S, Liegeois S, Pospisilik JA, Schramek D, Leibbrandt A, Simoes Rde M, Gruber S, Puc U, Ebersberger I, Zoranovic T, Neely GG, von Haeseler A, Ferrandon D, Penninger JM (2009) Genome-wide RNAi screen identifies genes involved in intestinal pathogenic bacterial infection. Science 325(5938):340–343. doi:1173164 [pii] 10.1126/science.1173164

  • Deeraksa A, Moonmangmee S, Toyama H, Yamada M, Adachi O, Matsushita K (2005) Characterization and spontaneous mutation of a novel gene, polE, involved in pellicle formation in Acetobacter tropicalis SKU1100. Microbiology 151(pt 12):4111–4120. doi:10.1099/mic.0.28350-0

    Article  CAS  PubMed  Google Scholar 

  • Dietzl G, Chen D, Schnorrer F, Su KC, Barinova Y, Fellner M, Gasser B, Kinsey K, Oppel S, Scheiblauer S, Couto A, Marra V, Keleman K, Dickson BJ (2007) A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature (Lond) 448(7150):151–156

    Article  CAS  Google Scholar 

  • Drysdale R (2008) FlyBase: a database for the Drosophila research community. Methods Mol Biol 420:45–59. doi:10.1007/978-1-59745-583-1_3

    Article  CAS  PubMed  Google Scholar 

  • Garrett WS, Gordon JI, Glimcher LH (2010) Homeostasis and inflammation in the intestine. Cell 140(6):859–870. doi:S0092-8674(10)00024-3 [pii] 10.1016/j.cell.2010.01.023

  • Ha EM, Oh CT, Bae YS, Lee WJ (2005) A direct role for dual oxidase in Drosophila gut immunity. Science 310(5749):847–850. doi:10.1126/science.1117311

    Article  CAS  PubMed  Google Scholar 

  • Ha EM, Lee KA, Park SH, Kim SH, Nam HJ, Lee HY, Kang D, Lee WJ (2009a) Regulation of DUOX by the Galphaq-phospholipase Cbeta-Ca2+ pathway in Drosophila gut immunity. Dev Cell 16(3):386–397. doi:10.1016/j.devcel.2008.12.015

    Article  CAS  PubMed  Google Scholar 

  • Ha EM, Lee KA, Seo YY, Kim SH, Lim JH, Oh BH, Kim J, Lee WJ (2009b) Coordination of multiple dual oxidase-regulatory pathways in responses to commensal and infectious microbes in drosophila gut. Nat Immunol 10(9):949–957. doi:ni.1765 [pii] 10.1038/ni.1765

  • Henao-Mejia J, Elinav E, Jin C, Hao L, Mehal WZ, Strowig T, Thaiss CA, Kau AL, Eisenbarth SC, Jurczak MJ, Camporez JP, Shulman GI, Gordon JI, Hoffman HM, Flavell RA (2012) Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482(7384):179–185. doi:nature10809 [pii] 10.1038/nature10809

  • Hsiao EY, McBride SW, Hsien S, Sharon G, Hyde ER, McCue T, Codelli JA, Chow J, Reisman SE, Petrosino JF, Patterson PH, Mazmanian SK (2013) Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 155(7):1451–1463. doi:10.1016/j.cell.2013.11.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang H, Edgar BA (2009) EGFR signaling regulates the proliferation of Drosophila adult midgut progenitors. Development 136(3):483–493. doi:136/3/483 [pii] 10.1242/dev.026955

  • Jiang H, Patel PH, Kohlmaier A, Grenley MO, McEwen DG, Edgar BA (2009) Cytokine/Jak/Stat signaling mediates regeneration and homeostasis in the Drosophila midgut. Cell 137(7):1343–1355

    Article  PubMed  PubMed Central  Google Scholar 

  • Kapuria S, Karpac J, Biteau B, Hwangbo D, Jasper H (2012) Notch-mediated suppression of TSC2 expression regulates cell differentiation in the Drosophila intestinal stem cell lineage. PLoS Genet 8(11):e1003045. doi:10.1371/journal.pgen.1003045 PGENETICS-D-12-00651 [pii]

  • Kim SH, Lee WJ (2014) Role of DUOX in gut inflammation: lessons from Drosophila model of gut–microbiota interactions. Front Cell Infect Microbiol 3:116. doi:10.3389/fcimb.2013.00116

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee WJ, Brey PT (2013) How microbiomes influence metazoan development: insights from history and Drosophila modeling of gut–microbe interactions. Annu Rev Cell Dev Biol 29:571–592. doi:10.1146/annurev-cellbio-101512-122333

    Article  CAS  PubMed  Google Scholar 

  • Lee KA, Lee WJ (2013) Drosophila as a model for intestinal dysbiosis and chronic inflammatory diseases. Dev Comp Immunol. doi:10.1016/j.dci.2013.05.005

    Google Scholar 

  • Lee KA, Kim SH, Kim EK, Ha EM, You H, Kim B, Kim MJ, Kwon Y, Ryu JH, Lee WJ (2013) Bacterial-derived uracil as a modulator of mucosal immunity and gut-microbe homeostasis in Drosophila. Cell 153(4):797–811. doi:10.1016/j.cell.2013.04.009

    Article  CAS  PubMed  Google Scholar 

  • Lemaitre B, Hoffmann J (2007) The host defense of Drosophila melanogaster. Annu Rev Immunol 25:697–743

    Article  CAS  PubMed  Google Scholar 

  • Macpherson AJ, Harris NL (2004) Interactions between commensal intestinal bacteria and the immune system. Nat Rev Immunol 4(6):478–485

    Article  CAS  PubMed  Google Scholar 

  • Maslowski KM, Mackay CR (2011) Diet, gut microbiota and immune responses. Nat Immunol 12(1):5–9. doi:10.1038/Ni0111-5

    Article  CAS  PubMed  Google Scholar 

  • Mazmanian SK, Round JL, Kasper DL (2008) A microbial symbiosis factor prevents intestinal inflammatory disease. Nature (Lond) 453(7195):620–625. doi:10.1038/Nature07008

    Article  CAS  Google Scholar 

  • Micchelli CA, Perrimon N (2006) Evidence that stem cells reside in the adult Drosophila midgut epithelium. Nature (Lond) 439(7075):475–479

    Article  CAS  Google Scholar 

  • Mindell DP (1992) Phylogenetic consequences of symbioses: Eukarya and Eubacteria are not monophyletic taxa. Biosystems 27(1):53–62

    Article  CAS  PubMed  Google Scholar 

  • O’Hara AM, Shanahan F (2006) The gut flora as a forgotten organ. EMBO Rep 7(7):688–693. doi:7400731 [pii] 10.1038/sj.embor.7400731

  • Ohlstein B, Spradling A (2006) The adult Drosophila posterior midgut is maintained by pluripotent stem cells. Nature (Lond) 439(7075):470–474. doi:10.1038/nature04333

    Article  CAS  Google Scholar 

  • Ohlstein B, Spradling A (2007) Multipotent Drosophila intestinal stem cells specify daughter cell fates by differential notch signaling. Science 315(5814):988–992. doi:315/5814/988 [pii] 10.1126/science.1136606

  • Perrimon N (1998) New advances in Drosophila provide opportunities to study gene functions. Proc Natl Acad Sci USA 95(17):9716–9717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rulifson EJ, Kim SK, Nusse R (2002) Ablation of insulin-producing neurons in flies: growth and diabetic phenotypes. Science 296(5570):1118–1120. doi:10.1126/science.1070058296/5570/1118 [pii]

    Article  CAS  PubMed  Google Scholar 

  • Ryu JH, Kim SH, Lee HY, Bai JY, Nam YD, Bae JW, Lee DG, Shin SC, Ha EM, Lee WJ (2008) Innate immune homeostasis by the homeobox gene caudal and commensal-gut mutualism in Drosophila. Science 319(5864):777–782. doi:10.1126/science.1149357

    Article  CAS  PubMed  Google Scholar 

  • Shin SC, Kim SH, You H, Kim B, Kim AC, Lee KA, Yoon JH, Ryu JH, Lee WJ (2011) Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling. Science 334(6056):670-674. doi:334/6056/670 [pii] 10.1126/science.1212782

  • Silventoinen K, Sammalisto S, Perola M, Boomsma DI, Cornes BK, Davis C, Dunkel L, De Lange M, Harris JR, Hjelmborg JV, Luciano M, Martin NG, Mortensen J, Nistico L, Pedersen NL, Skytthe A, Spector TD, Stazi MA, Willemsen G, Kaprio J (2003) Heritability of adult body height: a comparative study of twin cohorts in eight countries. Twin Res 6(5):399–408. doi:10.1375/136905203770326402

    Article  PubMed  Google Scholar 

  • Storelli G, Defaye A, Erkosar B, Hols P, Royet J, Leulier F (2011) Lactobacillus plantarum promotes Drosophila systemic growth by modulating hormonal signals through TOR-dependent nutrient sensing. Cell Metab 14(3):403–414. doi:10.1016/j.cmet.2011.07.012

    Article  CAS  PubMed  Google Scholar 

  • Thissen JP, Ketelslegers JM, Underwood LE (1994) Nutritional regulation of the insulin-like growth factors. Endocr Rev 15(1):80–101. doi:10.1210/edrv-15-1-80

    CAS  PubMed  Google Scholar 

  • Tlaskalova-Hogenova H, Stepankova R, Kozakova H, Hudcovic T, Vannucci L, Tuckova L, Rossmann P, Hrncir T, Kverka M, Zakostelska Z, Klimesova K, Pribylova J, Bartova J, Sanchez D, Fundova P, Borovska D, Srutkova D, Zidek Z, Schwarzer M, Drastich P, Funda DP (2011) The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of inflammatory and autoimmune diseases and cancer: contribution of germ-free and gnotobiotic animal models of human diseases. Cell Mol Immunol 8(2):110–120. doi:10.1038/Cmi.2010.67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444(7122):1027–1031. doi:nature05414 [pii] 10.1038/nature05414

  • Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP, Egholm M, Henrissat B, Heath AC, Knight R, Gordon JI (2009) A core gut microbiome in obese and lean twins. Nature 457(7228):480–484. doi:nature07540 [pii] 10.1038/nature07540

  • Vijay-Kumar M, Aitken JD, Carvalho FA, Cullender TC, Mwangi S, Srinivasan S, Sitaraman SV, Knight R, Ley RE, Gewirtz AT (2010) Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science 328(5975):228–231. doi:science.1179721 [pii] 10.1126/science.1179721

  • Wong CN, Ng P, Douglas AE (2011) Low-diversity bacterial community in the gut of the fruitfly Drosophila melanogaster. Environ Microbiol. doi:10.1111/j.1462-2920.2011.02511.x

    PubMed  PubMed Central  Google Scholar 

  • Xu N, Wang SQ, Tan D, Gao Y, Lin G, Xi R (2011) EGFR, Wingless and JAK/STAT signaling cooperatively maintain Drosophila intestinal stem cells. Dev Biol 354(1):31–43. doi:S0012-1606(11)00182-5 [pii] 10.1016/j.ydbio.2011.03.018

  • You H, Lee WJ, Lee WJ (2014) Homeostasis between gut-associated microorganisms and the immune system in Drosophila. Curr Opin Immunol 30:48–53. doi:10.1016/j.coi.2014.06.006

    Article  CAS  PubMed  Google Scholar 

  • Zilber-Rosenberg I, Rosenberg E (2008) Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol Rev 32(5):723–735. doi:FMR123 [pii] 10.1111/j.1574-6976.2008.00123.x

Download references

Acknowledgments

The authors are supported by grants (NRF-2015R1A3A2033475 to W.-J.L. and NRF-2013R1A1A2013250 to S.-H.K) from National Research Foundation of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Won-Jae Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Kim, SH., Lee, KA., Park, DY., Jang, IH., Lee, WJ. (2016). DrosophilaAcetobacter as a Model System for Understanding Animal–Microbiota Interactions. In: Matsushita, K., Toyama, H., Tonouchi, N., Okamoto-Kainuma, A. (eds) Acetic Acid Bacteria. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55933-7_6

Download citation

Publish with us

Policies and ethics