Skip to main content

Acetic Acid Bacteria in Fermented Food and Beverage Ecosystems

  • Chapter
  • First Online:
Acetic Acid Bacteria

Abstract

Acetic acid bacteria (AAB) are mainly associated with the biotechnological process of vinegar and cellulose production, and although their occurrence in natural fermentation systems has been substantiated, their role remains rather unclear. Members of the Acetobacteraceae phylogenetic group have been reported in a range of spontaneous fermentations, such as the last phase of the cocoa bean fermentation process, the manufacturing of acidic beers, and several other slightly acidic beverages (e.g., kombucha, milk kefir, water kefir). In general, AAB are fastidious and obligate aerobes, although they can remain in a viable but nonculturable state when oxygen levels are low, and thus they are regarded as cumbersome to cultivate or isolate using laboratory media. Currently, with the implementation of culture-independent methods, as well as the introduction of metagenomics and high-throughput sequencing technologies, the abundance and functionalities of AAB in food commodities are being determined. Despite their sporadic isolation or incidence in fermentation ecosystems, the genera Acetobacter, Gluconobacter, Gluconacetobacter, and Komagataeibacter constitute the most frequently encountered taxa. The complete genome sequencing of strains of representative AAB species has elucidated the gene repertoires related to interesting metabolic features, facilitating the understanding of the key role of AAB in natural fermentation ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adler P, Bolten CJ, Dohnt K, Hansen CE, Wittmann C (2013) Core fluxome and metafluxome of lactic acid bacteria under simulated cocoa pulp fermentation conditions. Appl Environ Microbiol 79:5670–5681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adler P, Frey LJ, Berger A, Bolten CJ, Hansen CE, Wittmann C (2014) The key to acetate: metabolic fluxes of acetic acid bacteria under cocoa pulp fermentation simulating conditions. Appl Environ Microbiol 80:4702–4716

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ahmed Z, Wang YP, Ahmad A, Khan ST, Nisa M, Ahmad H, Afreen A (2013) Kefir and health: a contemporary perspective. Crit Rev Food Sci Nutr 53:422–434

    Article  PubMed  Google Scholar 

  • Andrés-Barrao C, Falquet L, Calderon-Copete SP, Descombes P, Pérez RO, Barja F (2011) Genome sequences of the high-acetic acid-resistant bacteria Gluconacetobacter europaeus LMG 18890T and G. europaeus LMG 18494 (reference strains), G. europaeus 5P3, and Gluconacetobacter oboediens 174Bp2 (isolated from vinegar). J Bacteriol 193:2670–2671

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ardhana MM, Fleet GH (2003) The microbial ecology of cocoa bean fermentations in Indonesia. Int J Food Microbiol 86:87–99

    Article  CAS  PubMed  Google Scholar 

  • Azuma Y, Hosoyama A, Matsutani M, Furuya N, Horikawa H, Harada T, Hirakawa H, Kuhara S, Matsushita K, Fujita N, Shirai M (2009) Whole-genome analyses reveal genetic instability of Acetobacter pasteurianus. Nucleic Acids Res 37:5768–5783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartowsky EJ, Henschke PA (2008) Acetic acid bacteria spoilage of bottled red wine: a review. Int J Food Microbiol 125:60–70

    Article  CAS  PubMed  Google Scholar 

  • Bauer-Petrovska B, Petrushevska-Tozi L (2000) Mineral and water soluble vitamin content in the kombucha drink. Int J Food Sci Technol 35:201–205

    Article  CAS  Google Scholar 

  • Belgisch Ministerie van Economische Zaken (1993) Metrologische Reglementering. Koninklijk Besluit betreffende bier (BS 1993 06 04)

    Google Scholar 

  • Bergmann RSD, Pereira MA, Veiga SMOM, Schneedorf JM, Oliveira NDS, Fiorini JE (2010) Microbial profile of a kefir sample preparations: grains in natural and lyophilized and fermented suspension. Cien Tecnol Aliment 30:1022–1026

    Article  Google Scholar 

  • Bertalan M, Albano R, de Padua V, Rouws L, Rojas C, Hemerly A, Teixeira K, Schwab S, Araujo J, Oliveira A, Franca L, Magalhaes V, Alqueres S, Cardoso A, Almeida W, Loureiro M, Nogueira E, Cidade D, Oliveira D, Simao T, Macedo J, Valadao A, Dreschsel M, Freitas F, Vidal M, Guedes H, Rodrigues E, Meneses C, Brioso P, Pozzer L (2009) Complete genome sequence of the sugarcane nitrogen-fixing endophyte Gluconacetobacter diazotrophicus Pal5. BMC Genomics 10:450

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boesch C, Trcek J, Sievers M, Teuber M (1998) Acetobacter intermedius, sp. nov. Syst Appl Microbiol 21:220–229

    Article  CAS  PubMed  Google Scholar 

  • Bokulich NA, Bamforth CW, Mills DA (2012a) Brewhouse-resident microbiota are responsible for multi-stage fermentation of American coolship ale. PLoS One 7:e35507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bokulich NA, Joseph CM, Allen G, Benson AK, Mills DA (2012b) Next-generation sequencing reveals significant bacterial diversity of botrytized wine. PLoS One 7:e36357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bokulich NA, Thorngate JH, Richardson PM, Mills DA (2014) Microbial biogeography of wine grapes is conditioned by cultivar, vintage, and climate. Proc Natl Acad Sci USA 111:E139–E148

    Article  CAS  PubMed  Google Scholar 

  • Briggs DE, Boulton C, Brookers P, Stevens R (2004) Brewing science and practice. Woodhead, Cambridge

    Book  Google Scholar 

  • Campanaro S, Treu L, Vendramin V, Bovo B, Giacomini A, Corich V (2014) Metagenomic analysis of the microbial community in fermented grape marc reveals that Lactobacillus fabifermentans is one of the dominant species: insights into its genome structure. Appl Microbiol Biotechnol 98:6015–6037

    Article  CAS  PubMed  Google Scholar 

  • Camu N, De Winter T, Verbrugghe K, Cleenwerck I, Vandamme P, Takrama JS, Vancanneyt M, De Vuyst L (2007) Dynamics and biodiversity of populations of lactic acid bacteria and acetic acid bacteria involved in spontaneous heap fermentation of cocoa beans in Ghana. Appl Environ Microbiol 73:1809–1824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camu N, González Á, De Winter T, Van Schoor A, De Bruyne K, Vandamme P, Takrama JS, Addo SK, De Vuyst L (2008) Influence of turning and environmental contamination on the dynamics of populations of lactic acid and acetic acid bacteria involved in spontaneous cocoa bean heap fermentation in Ghana. Appl Environ Microbiol 74:86–98

    Article  CAS  PubMed  Google Scholar 

  • Chen HC, Wang SY, Chen MJ (2008) Microbiological study of lactic acid bacteria in kefir grains by culture-dependent and culture-independent methods. Food Microbiol 25:492–501

    Article  CAS  PubMed  Google Scholar 

  • Chen YP, Hsiao PJ, Hong WS, Dai TY, Chen MJ (2012) Lactobacillus kefiranofaciens M1 isolated from milk kefir grains ameliorates experimental colitis in vitro and in vivo. J Dairy Sci 95:63–74

    Article  CAS  PubMed  Google Scholar 

  • Chouaia B, Gaiarsa S, Crotti E, Comandatore F, Degli Esposti M, Ricci I, Alma A, Favia G, Bandi C, Daffonchio D (2014) Acetic acid bacteria genomes reveal functional traits for adaptation to life in insect guts. Genome Biol Evol 6:912–920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chu SC, Chen CS (2006) Effects of origins and fermentation time on the antioxidant activities of kombucha. Food Chem 98:502–507

    Article  CAS  Google Scholar 

  • Crafack M, Mikkelsen MB, Saerens S, Knudsen M, Blennow A, Lowor S, Takrama J, Swiegers JH, Petersen GB, Heimdal H, Nielsen DS (2013) Influencing cocoa flavour using Pichia kluyveri and Kluyveromyces marxianus in a defined mixed starter culture for cocoa fermentation. Int J Food Microbiol 167:103–116

    Article  CAS  PubMed  Google Scholar 

  • Crotti E, Rizzi A, Chouaia B, Ricci I, Favia G, Alma A, Sacchi L, Bourtzis K, Mandrioli M, Cherif A, Bandi C, Daffonchio D (2010) Acetic acid bacteria, newly emerging symbionts of insects. Appl Environ Microbiol 76:6963–6970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui XH, Chen SJ, Wang Y, Han JR (2013) Fermentation conditions of walnut milk beverage inoculated with kefir grains. Food Sci Technol 50:349–352

    CAS  Google Scholar 

  • Currier RW, Goddard J, Buechler K, Quinlisk MP, Wolfe SL, Spencer, Carroll TJ, Bennett T, Stokes J (1996) Unexplained severe illness possibly associated with consumption of kombucha tea. J Am Med Assoc 275:96–98

    Article  Google Scholar 

  • Daniel H-M, Vrancken G, Takrama JF, Camu N, De Vos P, De Vuyst L (2009) Yeast diversity of Ghanaian cocoa bean heap fermentations. FEMS Yeast Res 9:774–783

    Article  CAS  PubMed  Google Scholar 

  • De Keersmaecker J (1996) The mystery of lambic beer. Sci Am 275:74–81

    Article  CAS  Google Scholar 

  • de Melo Pereira GV, Miguel MGCP, Ramos CL, Schwan RF (2012) Microbiological and physicochemical characterization of small-scale cocoa fermentations and screening of yeast and bacterial strains to develop a defined starter culture. Appl Environ Microbiol 78:5395–5405

    Article  CAS  Google Scholar 

  • de Melo Pereira GV, Magalhães KT, de Almeida EG, da Silva Coelho I, Schwan RF (2013) Spontaneous cocoa bean fermentation carried out in a novel-design stainless steel tank: influence on the dynamics of microbial populations and physical-chemical properties. Int J Food Microbiol 161:121–133

    Article  PubMed  CAS  Google Scholar 

  • De Vuyst L, Lefeber T, Papalexandratou Z, Camu N (2010) The functional role of lactic acid bacteria in cocoa bean fermentation. In: Mozzi F, Raya RR, Vignolo GM (eds) Biotechnology of lactic acid bacteria: novel applications. Wiley-Blackwell, Ames, pp 301–325

    Chapter  Google Scholar 

  • Deppenmeier U, Ehrenreich A (2009) Physiology of acetic acid bacteria in light of the genome sequence of Gluconobacter oxydans. J Mol Microbiol Biotechnol 16:69–80

    Article  CAS  PubMed  Google Scholar 

  • Dobson A, O’Sullivan O, Cotter PD, Ross P, Hill C (2011) High-throughput sequence-based analysis of the bacterial composition of kefir and an associated kefir grain. FEMS Microbiol Lett 320:56–62

    Article  CAS  PubMed  Google Scholar 

  • Dufresne C, Farnworth E (2000) Tea, kombucha, and health: a review. Food Res Int 33:409–421

    Article  CAS  Google Scholar 

  • Dutta D, Gachhui R (2006) Novel nitrogen-fixing Acetobacter nitrogenifigens sp. nov., isolated from kombucha tea. Int J Syst Evol Microbiol 56:1899–1903

    Article  CAS  PubMed  Google Scholar 

  • Dutta D, Gachhui R (2007) Nitrogen-fixing and cellulose-producing Gluconacetobacter kombuchae sp. nov., isolated from kombucha tea. Int J Syst Evol Microbiol 57:353–357

    Article  CAS  PubMed  Google Scholar 

  • Ercolini D (2013) High-throughput sequencing and metagenomics: moving forward in the culture-independent analysis of food microbial ecology. Appl Environ Microbiol 79:3148–3155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ercolini D, Ferrocino I, Nasi A, Ndagijimana M, Vernocchi P, La Storia A, Laghi L, Mauriello G, Guerzoni ME, Villani F (2011) Monitoring of microbial metabolites and bacterial diversity in beef stored under different packaging conditions. Appl Environ Microbiol 77:7372–7381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ercolini D, De Filippis F, La Storia A, Iacono M (2012) “Remake” by high-throughput sequencing of the microbiota involved in the production of water buffalo mozzarella cheese. Appl Environ Microbiol 78:8142–8145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Escalante A, Elena Rodríguez M, Martínez A, López-Munguía A, Bolívar F, Gosset G (2004) Characterization of bacterial diversity in Pulque, a traditional Mexican alcoholic fermented beverage, as determined by 16S rDNA analysis. FEMS Microbiol Lett 235:273–279

    Article  CAS  PubMed  Google Scholar 

  • Esposito A, Kirschberg M (2014) How many 16S-based studies should be included in a metagenomic conference? It may be a matter of etymology. FEMS Microbiol Lett 351:145–146

    Article  CAS  PubMed  Google Scholar 

  • Farnworth ER (1999) Kefir: from folklore to regulatory approval. J Nutraceuticals Funct Med Foods 1:57–68

    Article  Google Scholar 

  • Garcia-Armisen T, Papalexandratou Z, Hendryckx H, Camu N, Vrancken G, De Vuyst L, Cornelis P (2010) Diversity of the total bacterial community associated with Ghanaian and Brazilian cocoa bean fermentation samples as revealed by a 16S rRNA gene clone library. Appl Microbiol Biotechnol 87:2281–2292

    Article  CAS  PubMed  Google Scholar 

  • Garrote GL, Abraham AG, De Antoni GL (2001) Chemical and microbiological characterisation of kefir grains. J Dairy Res 68:639–652

    Article  CAS  PubMed  Google Scholar 

  • Ge X, Zhao Y, Hou W, Zhang W, Chen W, Wang J, Zhao N, Lin J, Wang W, Chen M, Wang Q, Jiao Y, Yuan Z, Xiong X (2013) Complete genome sequence of the industrial strain Gluconobacter oxydans H24. Genome Announc 1:3–13

    Article  Google Scholar 

  • Gulitz A, Stadie J, Wenning M, Ehrmann MA, Vogel RF (2011) The microbial diversity of water kefir. Int J Food Microbiol 151:284–288

    Article  CAS  PubMed  Google Scholar 

  • Gulitz A, Stadie J, Ehrmann MA, Ludwig W, Vogel RF (2013) Comparative phylobiomic analysis of the bacterial community of water kefir by 16S rRNA gene amplicon sequencing and ARDRA analysis. J Appl Microbiol 114:1082–1091

    Article  CAS  PubMed  Google Scholar 

  • Güzel-Seydim ZB, Seydim AC, Greene AK, Bodine AB (2000) Determination of organic acids and volatile flavor substances in kefir during fermentation. J Food Compos Anal 13:35–43

    Article  CAS  Google Scholar 

  • Hamdouche Y, Guehi T, Durand N, Kedjebo KBD, Montet D, Meile JC (2015) Dynamics of microbial ecology during cocoa fermentation and drying: towards the identification of molecular markers. Food Control 48:117–122

    Article  CAS  Google Scholar 

  • Hartmann AM, Burleson LE, Holmes AK, Geist CR (2000) Effects of chronic kombucha ingestion on open-field behaviors, longevity, appetitive behaviors, and organs in C57-BL/6 mice: a pilot study. Nutrition 16:755–761

    Article  CAS  PubMed  Google Scholar 

  • Hermann S (1928) Uber die sogenannte “Kombucha.”. I Biochem Z 192:176–187

    CAS  Google Scholar 

  • Ho VTT, Zhao J, Fleet G (2013) Yeasts are essential for cocoa bean fermentation. Int J Food Microbiol 174:72–87

    Article  PubMed  CAS  Google Scholar 

  • Holzapfel WM, Wood BJB (eds) (2014) Lactic acid bacteria: biodiversity and taxonomy. Wiley-Blackwell, Chichester

    Google Scholar 

  • Hoon LY, Choo C, Watawana MI, Jayawardena N, Waisundara VY (2014) Kombucha ‘tea fungus’ enhances the tea polyphenol contents, antioxidant activity and alpha-amylase inhibitory activity of five commonly consumed teas. J Funct Foods. doi:10.1016/j.jff.2014.07.010

  • Illeghems K, De Vuyst L, Papalexandratou Z, Weckx S (2012) Phylogenetic analysis of a spontaneous cocoa bean fermentation metagenome reveals new insights into its bacterial and fungal community diversity. PLoS One 7:e38040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Illeghems K, Weckx S, De Vuyst L (2015) Applying meta-pathway analyses through metagenomics to identify the functional properties of the major bacterial communities of a single spontaneous cocoa bean fermentation process sample. Food Microbiol 50:54–63

    Google Scholar 

  • Illeghems K, De Vuyst L, Weckx S (2013) Complete genome sequence and comparative analysis of Acetobacter pasteurianus 386B, a strain well-adapted to the cocoa bean fermentation ecosystem. BMC Genomics 14:526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Irigoyen A, Arana I, Castiella M, Torre P, Ibanez FC (2005) Microbiological, physicochemical, and sensory characteristics of kefir during storage. Food Chem 90:613–620

    Article  CAS  Google Scholar 

  • Jarrell J, Cal T, Bennet JW (2000) The kombucha consortia of yeasts and bacteria. Mycologist 14:166–170

    Article  Google Scholar 

  • Jayabalan R, Subathradevi P, Marimuthu S, Sathishkumar M, Swaminathan K (2008) Changes in free-radical scavenging ability of kombucha tea during fermentation. Food Chem 109:227–234

    Article  CAS  PubMed  Google Scholar 

  • Jayabalan R, Malbasa RV, Loncar ES, Vitas JS, Sathishkumar M (2014) A review on kombucha tea: microbiology, composition, fermentation, beneficial effects, toxicity, and tea fungus. Compr Rev Food Sci Food 13:538–550

    Article  Google Scholar 

  • Jespersen L, Nielsen DS, Hønholt S, Jakobsen M (2005) Occurrence and diversity of yeasts involved in fermentation of West African cocoa beans. FEMS Yeast Res 5:441–453

    Article  CAS  PubMed  Google Scholar 

  • Jung JY, Lee SH, Kim JM, Park MS, Bae J-W, Hahn Y, Madsen EL, Jeon CO (2011) Metagenomic analysis of kimchi, a traditional Korean fermented food. Appl Environ Microbiol 77:2264–2274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung M-J, Nam Y-D, Roh SW, Bae J-W (2012) Unexpected convergence of fungal and bacterial communities during fermentation of traditional Korean alcoholic beverages inoculated with various natural starters. Food Microbiol 30:112–123

    Article  PubMed  Google Scholar 

  • Kebler LF (1921) California bees. J Am Pharm Assoc 10:939–943

    CAS  Google Scholar 

  • Kesenkas H, Dinkci N, Seckin K et al (2011) Antioxidant properties of kefir produced from different cow and soy milk mixtures. J Agric Sci 17:253–259

    Google Scholar 

  • Kesmen Z, Kacmaz N (2011) Determination of lactic microflora of kefir grains and kefir beverage by using culture-dependent and culture-independent methods. J Food Sci 76:276–283

    Article  CAS  Google Scholar 

  • Kim M-S, Park E-J (2014) Bacterial communities of traditional salted and fermented seafoods from Jeju Island of Korea using 16S rRNA gene clone library analysis. J Food Sci 79:927–934

    Article  CAS  Google Scholar 

  • Kostinek M, Ban-Koffi L, Ottah-Atikpo M, Teniola D, Schillinger U, Holzapfel W, Franz C (2008) Diversity of predominant lactic acid bacteria associated with cocoa fermentation in Nigeria. Curr Microbiol 56:306–314

    Article  CAS  PubMed  Google Scholar 

  • Kozaki M, Kitahara K, Koizumi A (1972) Microorganisms of zoogloeal mats formed in tea decoction. Food Hyg Safety Sci 13:89–96

    Article  Google Scholar 

  • Lagunes-Gálvez S, Loiseau G, Paredes JL, Barel M, Guiraud J-P (2007) Study on the microflora and biochemistry of cocoa fermentation in the Dominican Republic. Int J Food Microbiol 114:124–130

    Article  PubMed  CAS  Google Scholar 

  • Laureys D, De Vuyst L (2014) Microbial species diversity, community dynamics, and metabolite kinetics of water kefir fermentation. Appl Environ Microbiol 80:2564–2572

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lefeber T, Janssens M, Camu N, De Vuyst L (2010) Kinetic analysis of strains of lactic acid bacteria and acetic acid bacteria in cocoa pulp simulation media toward development of a starter culture for cocoa bean fermentation. Appl Environ Microbiol 76:7708–7716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lefeber T, Gobert W, Vrancken G, Camu N, De Vuyst L (2011a) Dynamics and species diversity of communities of lactic acid bacteria and acetic acid bacteria during spontaneous cocoa bean fermentation in vessels. Food Microbiol 28:457–464

    Article  CAS  PubMed  Google Scholar 

  • Lefeber T, Janssens M, Moens F, Gobert W, De Vuyst L (2011b) Interesting starter culture strains for controlled cocoa bean fermentation revealed by simulated cocoa pulp fermentations of cocoa-specific lactic acid bacteria. Appl Environ Microbiol 77:6694–6698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leite AMO, Mayo B, Rachid CTCC, Peixoto RS, Silva JT, Paschoalin VMF, Delgado S (2012) Assessment of the microbial diversity of Brazilian kefir grains by PCR-DGGE and pyrosequencing analysis. Food Microbiol 31:215–221

    Article  CAS  PubMed  Google Scholar 

  • Li L, Wieme A, Spitaels F, Balzarini T, Nunes OC, Manaia CM, Van Landschoot A, De Vuyst L, Cleenwerck I, Vandamme P (2014) Acetobacter sicerae sp. nov., isolated from cider and kefir, and identification of species of the genus Acetobacter by dnaK, groEL and rpoB sequence analysis. Int J Syst Evol Microbiol 64:2407–2415

    Article  CAS  PubMed  Google Scholar 

  • Liu JR, Lin CW (2000) Production of kefir from soymilk with or without added glucose, lactose, or sucrose. J Food Sci 65:716–719

    Article  CAS  Google Scholar 

  • Liu CH, Hsu WH, Lee FL, Liao CC (1996) The isolation and identification of microbes from a fermented tea beverage, Haipao, and their interactions during Haipao fermentation. Food Microbiol 13:407–415

    Article  Google Scholar 

  • Liu JR, Wang SY, Lin YY, Lin CW (2002) Antitumor activity of milk kefir and soy milk kefir in tumor-bearing mice. Nutr Cancer 44:182–187

    Article  Google Scholar 

  • Liu WJ, Sun ZH, Zhang YB, Zhang CL, Menghebilige, Yang M, Sun TS, Bao QH, Chen W, Zhang HP (2012) A survey of the bacterial composition of kurut from Tibet using a culture-independent approach. J Dairy Sci 95:1064–1072

    Article  CAS  PubMed  Google Scholar 

  • Lutz ML (1899) Recherches biologiques sur la constitution du Tibi. Bull Soc Mycol France 15:68–72

    Google Scholar 

  • Lyu C, Chen C, Ge F, Liu D, Zhao S, Chen D (2013) A preliminary metagenomic study of puer tea during pile fermentation. J Sci Food Agric 93:3165–3174

    Article  CAS  PubMed  Google Scholar 

  • Maeda H, Zhu X, Omura K, Suzuki S, Kitamura S (2004) Effects of an exopolysaccharide (kefiran) on lipids, blood pressure, blood glucose, and constipation. Biofactors 22:197–200

    Article  CAS  PubMed  Google Scholar 

  • Magalhaes KT, Pereira GVD, Dias DR, Schwan RF (2010) Microbial communities and chemical changes during fermentation of sugary Brazilian kefir. World J Microbiol Biotechnol 26:1241–1250

    Article  CAS  PubMed  Google Scholar 

  • Magalhaes KT, Pereira GVD, Campos CR, Dragone G, Schwan RF (2011) Brazilian kefir: structure, microbial communities and chemical composition. Braz J Microbiol 42:693–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malbasa R, Loncar E, Djuric M, Klasnja M, Kolarov LJ, Markov S (2006) Scale-up of black tea batch fermentation by kombucha. Food Bioprod Process 84:193–199

    Article  Google Scholar 

  • Malbasa RV, Loncar ES, Vitas JS, Canadanovic-Brunet JM (2011) Influence of starter cultures on the antioxidant activity of kombucha beverage. Food Chem 127:1727–1731

    Article  CAS  Google Scholar 

  • Marsh AJ, O’Sullivan O, Hill C, Ross RP, Cotter PD (2013) Sequence-based analysis of the microbial composition of water kefir from multiple sources. FEMS Microbiol Lett 348:79–85

    Article  CAS  PubMed  Google Scholar 

  • Marsh AJ, Hill C, Ross RP, Cotter PD (2014a) Fermented beverages with health-promoting potential: past and future perspectives. Trends Food Sci Technol 38:113–124

    Article  CAS  Google Scholar 

  • Marsh AJ, O’Sullivan O, Hill C, Ross RP, Cotter PD (2014b) Sequence-based analysis of the bacterial and fungal compositions of multiple kombucha (tea fungus) samples. Food Microbiol 38:171–178

    Article  CAS  PubMed  Google Scholar 

  • Martens H, Dawoud E, Verachtert H (1991) Wort enterobacteria and other microbial populations involved during the first month of lambic fermentation. J Inst Brew 97:435–439

    Article  Google Scholar 

  • Martens H, Dawoud E, Verachtert H (1992) Synthesis of aroma compounds by wort enterobacteria during the first stage of lambic fermentation. J Inst Brew 98:421–425

    Article  CAS  Google Scholar 

  • Masoud W, Takamiya M, Vogensen FK, Lillevang S, Abu Al-Soud W, Sørensen SJ, Jakobsen M (2011) Characterization of bacterial populations in Danish raw milk cheeses made with different starter cultures by denaturating gradient gel electrophoresis and pyrosequencing. Int Dairy J 21:142–148

    Article  CAS  Google Scholar 

  • Masoud W, Vogensen FK, Lillevang S, Abu Al-Soud W, Sørensen SJ, Jakobsen M (2012) The fate of indigenous microbiota, starter cultures, Escherichia coli, Listeria innocua and Staphylococcus aureus in Danish raw milk and cheeses determined by pyrosequencing and quantitative real time (qRT)-PCR. Int J Food Microbiol 153:192–202

    Article  CAS  PubMed  Google Scholar 

  • Matsutani M, Hirakawa H, Nishikura M, Soemphol W, Ali IAI, Yakushi T, Matsushita K (2011a) Increased number of arginine-based salt bridges contributes to the thermotolerance of thermotolerant acetic acid bacteria, Acetobacter tropicalis SKU1100. Biochem Biophys Res Commun 409:120–124

    Article  CAS  PubMed  Google Scholar 

  • Matsutani M, Hirakawa H, Yakushi T, Matsushita K (2011b) Genome-wide phylogenetic analysis of Gluconobacter, Acetobacter, and Gluconacetobacter. FEMS Microbiol Lett 315:122–128

    Article  CAS  PubMed  Google Scholar 

  • Matsutani M, Hirakawa H, Saichana N, Soemphol W, Yakushi T, Matsushita K (2012) Genome-wide phylogenetic analysis of differences in thermotolerance among closely related Acetobacter pasteurianus strains. Microbiology 158:229–239

    Article  CAS  PubMed  Google Scholar 

  • Matsutani M, Nishikura M, Saichana N, Hatano T, Masud-Tippayasak U, Theergool G, Yakushi T, Matsushita K (2013) Adaptive mutation of Acetobacter pasteurianus SKU1108 enhances acetic acid fermentation ability at high temperature. J Biotechnol 165:109–119

    Article  CAS  PubMed  Google Scholar 

  • Mayser P, Fromme S, Leitzmann C, Grunder K (1995) The yeast spectrum of the ‘tea fungus kombucha’. Mycoses 38:289–295

    Article  CAS  PubMed  Google Scholar 

  • Meersman E, Steensels J, Mathawan M, Wittocx P-J, Saels V, Struyf N, Bernaert H, Vrancken G, Verstrepen KJ (2013) Detailed analysis of the microbial population in Malaysian spontaneous cocoa pulp fermentations reveals a core and variable microbiota. PLoS One 8:e81559

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miguel MGDP, Cardoso PG, Lago LD, Schwan RF (2010) Diversity of bacteria present in milk kefir grains using culture-dependent and culture-independent methods. Food Res Int 43:1523–1528

    Article  Google Scholar 

  • Miguel MGDP, Cardoso PG, Magalhaes KT, Schwan RF (2011) Profile of microbial communities present in Tibico (sugary kefir) grains from different Brazilian states. World J Microbiol Biotechnol 27:1875–1884

    Article  Google Scholar 

  • Mikkelsen D, Flanagan BM, Dykes GA, Gidley MJ (2009) Influence of different carbon sources on bacterial cellulose production by Gluconacetobacter xylinus strain ATCC 53524. J Appl Microbiol 107:576–583

    Article  CAS  PubMed  Google Scholar 

  • Moens F, Lefeber T, De Vuyst L (2014) Oxidation of metabolites highlights the microbial interactions and role of Acetobacter pasteurianus during cocoa bean fermentation. Appl Environ Microbiol 80:1848–1857

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moinas M, Horisberger M, Bauer H (1980) The structural organization of the Tibi grain as revealed by light, scanning and transmission microscopy. Arch Microbiol 128:157–161

    Article  Google Scholar 

  • Moreira ME, Dos Santos MH, Zolini GP, Wouters AT, Carvalho JC, Schneedorf JM (2008) Anti-inflammatory and cicatrizing activities of a carbohydrate fraction isolated from sugary kefir. J Med Food 11:356–361

    Article  CAS  PubMed  Google Scholar 

  • Motaghi M, Mazaheri M, Moazami N, Farkhondeh A, Fooladi MH, Goltapeh EM (1997) Kefir production in Iran. World J Microbiol Biotechnol 13:579–581

    Article  Google Scholar 

  • Nguyen VT, Flanagan B, Gidley MJ, Dykes GA (2008) Characterization of cellulose production by a Gluconacetobacter xylinus strain from kombucha. Curr Microbiol 57:449–453

    Article  CAS  PubMed  Google Scholar 

  • Nielsen DS, Hønholt S, Tano-Debrah K, Jespersen L (2005) Yeast populations associated with Ghanaian cocoa fermentations analysed using denaturing gradient gel electrophoresis (DGGE). Yeast 22:271–284

    Article  CAS  PubMed  Google Scholar 

  • Nielsen DS, Teniola OD, Ban-Koffi L, Owusu M, Andersson TS, Holzapfel WH (2007) The microbiology of Ghanaian cocoa fermentations analysed using culture-dependent and culture-independent methods. Int J Food Microbiol 114:168–186

    Article  CAS  PubMed  Google Scholar 

  • Nielsen DS, Jakobsen M, Jespersen L (2010) Candida halmiae sp. nov., Geotrichum ghanense sp. nov. and Candida awuaii sp. nov., isolated from Ghanaian cocoa fermentations. Int J Syst Evol Microbiol 60:1460–1465

    Article  CAS  PubMed  Google Scholar 

  • Nielsen B, Gurakan GC, Unlu G (2014) Kefir: a multifaceted fermented dairy product. Probiotics Antimicrob Prot 6:123–135

    Article  CAS  Google Scholar 

  • Nieminen TT, Välitalo H, Säde E, Paloranta A, Koskinen K, Björkroth J (2012) The effect of marination on lactic acid bacteria communities in raw broiler fillet strips. Front Microbiol 3:1–8

    Article  Google Scholar 

  • Ogino H, Azuma Y, Hosoyama A, Nakazawa H, Matsutani M, Hasegawa A, Otsuyama K-I, Matsushita K, Fujita N, Shirai M (2011) Complete genome sequence of NBRC 3288, a unique cellulose-nonproducing strain of Gluconacetobacter xylinus isolated from vinegar. J Bacteriol 193:6997–6998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papalexandratou Z, De Vuyst L (2011) Assessment of the yeast species composition of cocoa bean fermentations in different cocoa-producing regions using denaturing gradient gel electrophoresis. FEMS Yeast Res 11:564–574

    Article  CAS  PubMed  Google Scholar 

  • Papalexandratou Z, Camu N, Falony G, De Vuyst L (2011a) Comparison of the bacterial species diversity of spontaneous cocoa bean fermentations carried out at selected farms in Ivory Coast and Brazil. Food Microbiol 28:964–973

    Article  CAS  PubMed  Google Scholar 

  • Papalexandratou Z, Falony G, Romanens E, Jimenez JC, Amores F, Daniel H-M, De Vuyst L (2011b) Species diversity, community dynamics, and metabolite kinetics of the microbiota associated with traditional Ecuadorian spontaneous cocoa bean fermentations. Appl Environ Microbiol 77:7698–7714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papalexandratou Z, Vrancken G, De Bruyne K, Vandamme P, De Vuyst L (2011c) Spontaneous organic cocoa bean box fermentations in Brazil are characterized by a restricted species diversity of lactic acid bacteria and acetic acid bacteria. Food Microbiol 28:1326–1338

    Article  CAS  PubMed  Google Scholar 

  • Papalexandratou Z, Lefeber T, Bahrim B, Lee OS, Daniel H-M, De Vuyst L (2013) Hanseniaspora opuntiae, Saccharomyces cerevisiae, Lactobacillus fermentum, and Acetobacter pasteurianus predominate during well-performed Malaysian cocoa bean box fermentations, underlining the importance of these microbial species for a successful cocoa bean fermentation process. Food Microbiol 35:73–85

    Article  CAS  PubMed  Google Scholar 

  • Perron AD, Patterson JA, Yanofsky NN (1995) Kombucha mushroom hepatotoxicity. Ann Emerg Med 26:660–661

    CAS  PubMed  Google Scholar 

  • Peters B, Junker A, Brauer K, Mühlthaler B, Kostner D, Mientus M, Liebl W, Ehrenreich A (2013) Deletion of pyruvate decarboxylase by a new method for efficient markerless gene deletions in Gluconobacter oxydans. Appl Microbiol Biotechnol 97:2521–2530

    Article  CAS  PubMed  Google Scholar 

  • Pidoux M (1989) The microbial flora of sugary kefir grain (the gingerbeer plant) – biosynthesis of the grain from Lactobacillus hilgardii producing a polysaccharide gel. J Appl Microbiol 5:223–238

    Google Scholar 

  • Pidoux M, Brillouet JM, Quemener B (1988) Characterization of the polysaccharides from a Lactobacillus brevis and from sugary kefir grains. Biotechnol Lett 10:415–420

    Article  CAS  Google Scholar 

  • Pogacic T, Sinko S, Zamberlin S, Samarzija D (2013) Microbiota of kefir grains. Mljekarstvo 63:3–14

    Google Scholar 

  • Prust C, Hoffmeister M, Liesegang H, Wiezer A, Fricke WF, Ehrenreich A, Gottschalk G, Deppenmeier U (2005) Complete genome sequence of the acetic acid bacterium Gluconobacter oxydans. Nat Biotechnol 23:195–200

    Article  CAS  PubMed  Google Scholar 

  • Puerari C, Magalhaes KT, Schwan RF (2012) New cocoa pulp-based kefir beverages: microbiological, chemical composition and sensory analysis. Food Res Int 48:634–640

    Article  CAS  Google Scholar 

  • Raspor P, Goranovič D (2008) Biotechnological applications of acetic acid bacteria. Crit Rev Biotechnol 28:101–124

    Article  CAS  PubMed  Google Scholar 

  • Rauch B, Pahlke J, Schweiger P, Deppenmeier U (2010) Characterization of enzymes involved in the central metabolism of Gluconobacter oxydans. Appl Microbiol Biotechnol 88:711–718

    Article  CAS  PubMed  Google Scholar 

  • Rea MC, Lennartsson T, Dillon P, Drinan FD, Reville WJ, Heapes M, Cogan TM (1996) Irish kefir-like grains: their structure, microbial composition, and fermentation kinetics. J Appl Bacteriol 81:83–94

    Article  Google Scholar 

  • Rodriguez AV, Denadra MCM (1995) Mixed culture of Lactobacillus hilgardii and Leuconostoc oenos isolated from Argentine wine. J Appl Bacteriol 78:521–525

    Article  CAS  Google Scholar 

  • Sakurai K, Arai H, Ishii M, Igarashi Y (2011) Transcriptome response to different carbon sources in Acetobacter aceti. Microbiology 157:899–910

    Article  CAS  PubMed  Google Scholar 

  • Sakurai K, Arai H, Ishii M, Igarashi Y (2012) Changes in the gene expression profile of Acetobacter aceti during growth on ethanol. J Biosci Bioeng 113:343–348

    Article  CAS  PubMed  Google Scholar 

  • Sakurai K, Yamazaki S, Ishii M, Igarashi Y, Arai H (2013) Role of the glyoxylate pathway in acetic acid production by Acetobacter aceti. J Biosci Bioeng 115:32–36

    Article  CAS  PubMed  Google Scholar 

  • Schwan RF, Wheals AE (2004) The microbiology of cocoa fermentation and its role in chocolate quality. Crit Rev Food Sci Nutr 44:205–221

    Article  CAS  PubMed  Google Scholar 

  • Schwan RF, Rose AH, Board RG (1995) Microbial fermentation of cocoa beans, with emphasis on enzymatic degradation of the pulp. J Appl Bacteriol (Symp Suppl) 79:96–107

    Google Scholar 

  • Schwan RF, Cooper RM, Wheals AE (1997) Endopolygalacturonase secretion by Kluyveromyces marxianus and other cocoa pulp-degrading yeasts. Enzyme Microb Technol 21:234–244

    Article  CAS  Google Scholar 

  • Shantha Kumara HMC, Verachtert H (1991) Identification of lambic super-attenuating microorganisms by the use of selective antibiotics. J Inst Brew 97:181–185

    Article  Google Scholar 

  • Shantha Kumara HMC, De Cort S, Verachtert H (1993) Localization and characterization of α-glucosidase activity in Brettanomyces lambicus. Appl Environ Microbiol 59:2352–2358

    Google Scholar 

  • Shin SC, Kim S-H, You H, Kim B, Kim AC, Lee K-A, Yoon J-H, Ryu J-H, Lee W-J (2011) Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling. Science 334:670–674

    Article  CAS  PubMed  Google Scholar 

  • Sievers M, Lanini C, Weber A, SchulerSchmid U, Teuber M (1996) Microbiology and fermentation balance in a kombucha beverage obtained from a tea fungus fermentation. Syst Appl Microbiol 18:590–594

    Article  Google Scholar 

  • Silva KR, Rodrigues SA, Xavier L, Lima AS (2009) Antimicrobial activity of broth fermented with kefir grains. Appl Biochem Biotechnol 152:316–325

    Article  CAS  PubMed  Google Scholar 

  • Soemphol W, Deeraksa A, Matsutani M, Yakushi T, Toyama H, Adachi O, Yamada M, Matsushita K (2011) Global analysis of the genes involved in the thermotolerance mechanism of thermotolerant Acetobacter tropicalis SKU1100. Biosci Biotechnol Biochem 75:1921–1928

    Article  CAS  PubMed  Google Scholar 

  • Spaepen M, Verachtert H (1982) Esterase activity in the genus Brettanomyces. J Inst Brew 88:11–17

    Article  CAS  Google Scholar 

  • Spaepen M, Van Oevelen D, Verachtert H (1978) Fatty acids and esters produced during the sponatneous fermentation of lambic and gueuze. J Inst Brew 84:278–282

    Article  CAS  Google Scholar 

  • Spitaels F, Wieme AD, Janssens M, Aerts M, Daniel H-M, Van Landschoot A, De Vuyst L, Vandamme P (2014a) The microbial diversity of traditional spontaneously fermented lambic beer. PLoS One 9:e95384

    Article  PubMed  PubMed Central  Google Scholar 

  • Spitaels F, Li L, Wieme A, Balzarini T, Cleenwerck I, Van Landschoot A, De Vuyst L, Vandamme P (2014b) Acetobacter lambici sp. nov., isolated from fermenting lambic beer. Int J Syst Evol Microbiol 64:1083–1089

    Article  CAS  PubMed  Google Scholar 

  • Spitaels F, Li L, Wieme A, Balzarini T, Cleenwerck I, Van Landschoot A, De Vuyst L, Vandamme P (2014c) Gluconobacter cerevisiae sp. nov., isolated from the brewery environment. Int J Syst Evol Microbiol 64:1134–1141

    Article  CAS  PubMed  Google Scholar 

  • Spitaels F, Van Kerrebroeck S, Wieme AD, Snauwaert I, Aerts M, Van Landschoot A, De Vuyst L, Vandamme P (2015a) Microbiota and metabolites of aged bottled gueuze beers converge to the same composition. Food Microbiol 47:1–11

    Article  CAS  PubMed  Google Scholar 

  • Spitaels F, Wieme A, Janssens M, Aerts M, Van Landschoot A, De Vuyst L, Vandamme P (2015b) The microbial diversity of an industrially produced lambic beer shares members of a traditionally produced lambic beer and reveals a core microbiota for lambic beer fermentation. Food Microbiol 49:23–32

    Article  CAS  PubMed  Google Scholar 

  • Stadie J, Gulitz A, Ehrmann MA, Vogel RF (2013) Metabolic activity and symbiotic interactions of lactic acid bacteria and yeasts isolated from water kefir. Food Microbiol 35:92–98

    Article  CAS  PubMed  Google Scholar 

  • Takizawa S, Kojima S, Tamura S, Fujinaga S, Benno Y, Nakase T (1998) The composition of the Lactobacillus flora in kefir grains. Syst Appl Microbiol 21:121–127

    Article  CAS  Google Scholar 

  • Tan LL, Ren L, Cao YY, Chen XL, Tang XY (2012) Bacterial cellulose synthesis in kombucha by Gluconacetobacter sp. and Saccharomyces sp. Adv Mater Res 554–556:1000–1003

    Article  CAS  Google Scholar 

  • Thompson SS, Miller KB, Lopez AS (2007) Cocoa and coffee. In: Doyle MP, Beuchat LR (eds) Food microbiology: fundamentals and frontiers, 3rd edn. American Society for Microbiology, Washington, DC, pp 837–849

    Google Scholar 

  • Ünal BÜ, Arslanoglu A (2013) Phylogenetic identification of bacteria within kefir by both culture-dependent and culture-independent methods. Afr J Microbiol Res 7:4533–4538

    Google Scholar 

  • Van Oevelen D, Spaepen M, Timmermans P, Verachtert H (1977) Microbiological aspects of spontaneous wort fermentation in the production of lambic and gueuze. J Inst Brew 83:356–360

    Article  Google Scholar 

  • Verachtert H (1983) De spontane geuzegisting – La fermentation spontanée de la gueuze. Cerevisia Belg J Brew Biotechnol 8:41–48

    Google Scholar 

  • Verachtert H, Dawoud E (1984) Microbiology of lambic-type beers. J Appl Bacteriol 57:R11–R12

    Google Scholar 

  • Verachtert H, Derdelinckx G (2005) Acidic beers: enjoyable reminiscences of the past. Cerevisia Belg J Brew Biotechnol 3:38–47

    Google Scholar 

  • Verachtert H, Iserentant D (1995) Properties of Belgian acid beers and their microflora. Part I. The production of gueuze and related refreshing acid beers. Cerevisia Belg J Brew Biotechnol 20:37–41

    Google Scholar 

  • Vitas JS, Malbasa RV, Grahovac JA, Loncar ES (2013) The antioxidant activity of kombucha fermented milk products with stinging nettle and winter savory. Chem Ind Chem Eng Q 19:129–139

    Article  CAS  Google Scholar 

  • Waldherr FW, Doll VM, Meissner D, Vogel RF (2010) Identification and characterization of a glucan-producing enzyme from Lactobacillus hilgardii TMW 1.828 involved in granule formation of water kefir. Food Microbiol 27:672–678

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Ji BP, Wu W, Wang RJ, Yang ZW, Zhang D, Tian WL (2014) Hepatoprotective effects of kombucha tea: identification of functional strains and quantification of functional components. J Sci Food Agric 94:265–272

    Article  CAS  PubMed  Google Scholar 

  • Ward HM (1892) The ginger-beer plant and the organisms composing it; a contribution to the study of fermentation: yeasts and bacteria. Philos Trans R Soc Lond 183:125–197

    Article  Google Scholar 

  • Wei L, Zhu D, Zhou J, Zhang J, Zhu K, Du L, Hua Q (2013) Revealing in vivo glucose utilization of Gluconobacter oxydans 621H Δmgdh strain by mutagenesis. Microbiol Res 169:469–475

    Article  PubMed  CAS  Google Scholar 

  • Witthuhn RC, Schoeman T, Britz TJ (2004) Isolation and characterization of the microbial population of different South African kefir grains. Int J Dairy Technol 57:33–37

    Article  Google Scholar 

  • Witthuhn RC, Schoeman T, Britz TJ (2005) Characterisation of the microbial population at different stages of kefir production and kefir grain mass cultivation. Int Dairy J 15:383–389

    Article  CAS  Google Scholar 

  • Wood GAR, Lass RA (2001) Cocoa, 4th edn. Blackwell Science, Oxford

    Book  Google Scholar 

  • Yamada Y, Yukphan P (2008) Genera and species in acetic acid bacteria. Int J Food Microbiol 125:15–24

    Article  CAS  PubMed  Google Scholar 

  • Yang ZW, Zhou F, Ji BP, Li B, Luo YC, Yang L, Li T (2010) Symbiosis between microorganisms from kombucha and kefir: potential significance to the enhancement of kombucha function. Appl Biochem Biotechnol 160:446–455

    Article  CAS  PubMed  Google Scholar 

  • Yoshino T, Asakura T, Toda K (1996) Cellulose production by Acetobacter pasteurianus on silicone membrane. J Ferment Bioeng 81:32–36

    Article  CAS  Google Scholar 

  • Zeynep G-S, Tugba K-T, Annel KG (2009) Kefir and koumiss. In: Yildiz F (ed) Development and manufacture of yogurt and other functional dairy products. CRC Press, Boca Raton, pp 143–163

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luc De Vuyst .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Pothakos, V., Illeghems, K., Laureys, D., Spitaels, F., Vandamme, P., De Vuyst, L. (2016). Acetic Acid Bacteria in Fermented Food and Beverage Ecosystems. In: Matsushita, K., Toyama, H., Tonouchi, N., Okamoto-Kainuma, A. (eds) Acetic Acid Bacteria. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55933-7_3

Download citation

Publish with us

Policies and ethics