Skip to main content

Metabolic Features of Acetobacter aceti

  • Chapter
  • First Online:

Abstract

Acetobacter aceti temporarily accumulates acetate as an incomplete oxidation product when cultured in the presence of ethanol. The accumulated acetate is utilized as a carbon and energy source via the tricarboxylic acid (TCA) cycle after the depletion of ethanol by the phenomenon termed acetate overoxidation. In this chapter, we provide an overview of the genomic features and whole-genome transcriptional profiles of A. aceti NBRC 14818 when cultured under various growth conditions to understand the molecular genetic basis for the metabolic switching from incomplete ethanol oxidation to acetate overoxidation. The genes encoding enzymes of the TCA cycle and glyoxylate pathway and components of the branched electron transport chain exhibit dynamic changes in expression according to the carbon sources and growth phases. In particular, the TCA cycle genes of A. aceti are significantly repressed in the presence of ethanol. The low activity of the TCA cycle in the presence of ethanol may slow the metabolism of acetyl-CoA and lead to the accumulation of acetate. The presence or absence of glyoxylate pathway genes in the genome of acetic acid bacteria is also predicted to affect acetate productivity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Arai H (2011) Regulation and function of versatile aerobic and anaerobic respiratory metabolism in Pseudomonas aeruginosa. Front Microbiol 2:103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arai H, Kawakami T, Osamura T, Hirai T, Sakai Y, Ishii M (2014) Enzymatic characterization and in vivo function of five terminal oxidases in Pseudomonas aeruginosa. J Bacteriol 196:4206–4215

    Article  PubMed  PubMed Central  Google Scholar 

  • Asai T (1968) Acetic acid bacteria: classification and biochemical activities. University of Tokyo Press, Tokyo

    Google Scholar 

  • Azuma Y, Hosoyama A, Matsutani M, Furuya N, Horikawa H, Harada T, Hirakawa H, Kuhara S, Matsushita K, Fujita N, Shirai M (2009) Whole-genome analyses reveal genetic instability of Acetobacter pasteurianus. Nucleic Acids Res 37:5768–5783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bekker M, de Vries S, Ter Beek A, Hellingwerf KJ, Teixeira de Mattos MJ (2009) Respiration of Escherichia coli can be fully uncoupled via the nonelectrogenic terminal cytochrome bd-II oxidase. J Bacteriol 191:5510–5517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertalan M, Albano R, de Pádua V, Rouws L, Rojas C, Hemerly A, Teixeira K, Schwab S, Araujo J, Oliveira A et al (2009) Complete genome sequence of the sugarcane nitrogen-fixing endophyte Gluconacetobacter diazotrophicus Pal5. BMC Genomics 10:450

    Article  PubMed  PubMed Central  Google Scholar 

  • Calhoun MW, Oden KL, Gennis RB, Teixeira de Mattos MJ, Neijssel OM (1993) Energetic efficiency of Escherichia coli: effects of mutations in components of the aerobic respiratory chain. J Bacteriol 175:3020–3025

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chinnawirotpisan P, Matsushita K, Toyama H, Adachi O, Limtong S, Theeragool G (2003) Purification and characterization of two NAD-dependent alcohol dehydrogenases (ADHs) induced in the quinoprotein ADH-deficient mutant of Acetobacter pasteurianus SKU1108. Biosci Biotechnol Biochem 67:958–965

    Article  CAS  PubMed  Google Scholar 

  • Cunningham L, Pitt M, Williams HD (1997) The cioAB genes from Pseudomonas aeruginosa code for a novel cyanide-insensitive terminal oxidase related to the cytochrome bd quinol oxidases. Mol Microbiol 24:579–591

    Article  CAS  PubMed  Google Scholar 

  • El-Mansi EM, Holms WH (1989) Control of carbon flux to acetate excretion during growth of Escherichia coli in batch and continuous cultures. J Gen Microbiol 135:2875–2883

    CAS  PubMed  Google Scholar 

  • Flückiger J, Ettlinger L (1977) Glucose metabolism in Acetobacter aceti. Arch Microbiol 114:183–187

    Article  PubMed  Google Scholar 

  • Greenberg DE, Porcella SF, Zelazny AM, Virtaneva K, Sturdevant DE, Kupko JJ 3rd, Barbian KD, Babar A, Dorward DW, Holland SM (2007) Genome sequence analysis of the emerging human pathogenic acetic acid bacterium Granulibacter bethesdensis. J Bacteriol 189:8727–8736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gunsalus RP, Park SJ (1994) Aerobic-anaerobic gene regulation in Escherichia coli: control by the ArcAB and Fnr regulons. Res Microbiol 145:437–450

    Article  CAS  PubMed  Google Scholar 

  • Hung JE, Mill CP, Clifton SW, Magrini V, Bhide K, Francois JA, Ransome AE, Fulton L, Thimmapuram J, Wilson RK, Kappock TJ (2014) Draft genome sequence of Acetobacter aceti strain 1023, a vinegar factory isolate. Genome Announc 2:e00550–00514

    Article  PubMed  PubMed Central  Google Scholar 

  • Ishikawa M, Okamoto-Kainuma A, Jochi T, Suzuki I, Matsui K, Kaga T, Koizumi Y (2010a) Cloning and characterization of grpE in Acetobacter pasteurianus NBRC 3283. J Biosci Bioeng 109:25–31

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa M, Okamoto-Kainuma A, Matsui K, Takigishi A, Kaga T, Koizumi Y (2010b) Cloning and characterization of clpB in Acetobacter pasteurianus NBRC 3283. J Biosci Bioeng 110:69–71

    Article  CAS  PubMed  Google Scholar 

  • Jackson RJ, Elvers KT, Lee LJ, Gidley MD, Wainwright LM, Lightfoot J, Park SF, Poole RK (2007) Oxygen reactivity of both respiratory oxidases in Campylobacter jejuni: the cydAB genes encode a cyanide-resistant, low-affinity oxidase that is not of the cytochrome bd type. J Bacteriol 189:1604–1615

    Article  CAS  PubMed  Google Scholar 

  • Jucker W, Ettlinger L (1985) The inhibition of acetate oxidation by ethanol in Acetobacter aceti. Arch Microbiol 143:283–289

    Article  CAS  Google Scholar 

  • Kita K, Konishi K, Anraku Y (1984) Terminal oxidases of Escherichia coli aerobic respiratory chain. II. Purification and properties of cytochrome b 558-d complex from cells grown with limited oxygen and evidence of branched electron-carrying systems. J Biol Chem 259:3375–3381

    CAS  PubMed  Google Scholar 

  • Kornmann H, Duboc P, Niederberger P, Marison I, von Stockar U (2003) Influence of residual ethanol concentration on the growth of Gluconacetobacter xylinus I 2281. Appl Microbiol Biotechnol 62:168–173

    Article  CAS  PubMed  Google Scholar 

  • Krajewski V, Simic P, Mouncey NJ, Bringer S, Sahm H, Bott M (2010) Metabolic engineering of Gluconobacter oxydans for improved growth rate and growth yield on glucose by elimination of gluconate formation. Appl Environ Microbiol 76:4369–4376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leif H, Sled VD, Ohnishi T, Weiss H, Friedrich T (1995) Isolation and characterization of the proton-translocating NADH: ubiquinone oxidoreductase from Escherichia coli. Eur J Biochem 230:538–548

    Article  CAS  PubMed  Google Scholar 

  • Miura H, Mogi T, Ano Y, Migita CT, Matsutani M, Yakushi T, Kita K, Matsushita K (2013) Cyanide-insensitive quinol oxidase (CIO) from Gluconobacter oxydans is a unique terminal oxidase subfamily of cytochrome bd. J Biochem (Tokyo) 153:535–545

    Article  CAS  Google Scholar 

  • Mogi T, Ano Y, Nakatsuka T, Toyama H, Muroi A, Miyoshi H, Migita CT, Ui H, Shiomi K, Omura S, Kita K, Matsushita K (2009) Biochemical and spectroscopic properties of cyanide-insensitive quinol oxidase from Gluconobacter oxydans. J Biochem (Tokyo) 146:263–271

    Article  CAS  Google Scholar 

  • Mullins EA, Francois JA, Kappock TJ (2008) A specialized citric acid cycle requiring succinyl-coenzyme A (CoA): acetate CoA-transferase (AarC) confers acetic acid resistance on the acidophile Acetobacter aceti. J Bacteriol 190:4933–4940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okamoto-Kainuma A, Yan W, Fukaya M, Tukamoto Y, Ishikawa M, Koizumi Y (2004) Cloning and characterization of the dnaKJ operon in Acetobacter aceti. J Biosci Bioeng 97:339–342

    Article  CAS  PubMed  Google Scholar 

  • Prust C, Hoffmeister M, Liesegang H, Wiezer A, Fricke WF, Ehrenreich A, Gottschalk G, Deppenmeier U (2005) Complete genome sequence of the acetic acid bacterium Gluconobacter oxydans. Nat Biotechnol 23:195–200

    Article  CAS  PubMed  Google Scholar 

  • Saeki A, Taniguchi M, Matsushita K, Toyama H, Theeragool G, Lotong N, Adachi O (1997) Microbiological aspects of acetate oxidation by acetic acid bacteria, unfavorable phenomena in vinegar fermentation. Biosci Biotechnol Biochem 61:317–323

    Article  CAS  Google Scholar 

  • Saeki A, Matsushita K, Takeno S, Taniguchi M, Toyama H, Theeragool G, Lotong N, Adachi O (1999) Enzymes responsible for acetate oxidation by acetic acid bacteria. Biosci Biotechnol Biochem 63:2102–2109

    Article  CAS  Google Scholar 

  • Sakurai K, Arai H, Ishii M, Igarashi Y (2011) Transcriptome response to different carbon sources in Acetobacter aceti. Microbiology 157:899–910

    Article  CAS  PubMed  Google Scholar 

  • Sakurai K, Arai H, Ishii M, Igarashi Y (2012) Changes in the gene expression profile of Acetobacter aceti during growth on ethanol. J Biosci Bioeng 113:343–348

    Article  CAS  PubMed  Google Scholar 

  • Sakurai K, Yamazaki S, Ishii M, Igarashi Y, Arai H (2013) Role of the glyoxylate pathway in acetic acid production by Acetobacter aceti. J Biosci Bioeng 115:32–36

    Article  CAS  PubMed  Google Scholar 

  • Yakushi T, Matsushita K (2010) Alcohol dehydrogenase of acetic acid bacteria: structure, mode of action, and applications in biotechnology. Appl Microbiol Biotechnol 86:1257–1265

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Arai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Arai, H., Sakurai, K., Ishii, M. (2016). Metabolic Features of Acetobacter aceti . In: Matsushita, K., Toyama, H., Tonouchi, N., Okamoto-Kainuma, A. (eds) Acetic Acid Bacteria. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55933-7_12

Download citation

Publish with us

Policies and ethics