Comparison of THz Pulsed TDI with Classic Methods

  • Kaori Fukunaga
Part of the Cultural Heritage Science book series (CUHESC)


Results of THz pulsed TDI are compared with images obtained via other nondestructive methods that use electromagnetic waves, which operate at frequencies ranging from microwaves to X-rays. The results provide useful information about the potential and the limitations of THz technology for heritage science applications.


Terahertz pulsed time domain imaging Nuclear magnetic resonance Radar imaging Infrared imaging X-ray radiography 


  1. 1.
    S. Legrand, F. Vanmeert, G Van der Snickt, M. Alfeld, W. De Nolf, J. Dik, K. Janssens, Herit. Sci. 2(13) (2014)Google Scholar
  2. 2.
    B. Blümich, F. Casanova, J. Perlo, F. Preciutti, C. Anselmi, B. Doherty, Noninvasive testing of art and cultural heritage by mobile NMR. Acc. Chem. Res. 43, 761–770 (2010)CrossRefGoogle Scholar
  3. 3.
    A. Haber, B. Bluemich, D. Souvorova, E. Del Federico, Ancient roman walls mapped non-destructively by portable NMR. Anal. Bioanal. Chem. 401, 1441–1452 (2011)CrossRefGoogle Scholar
  4. 4.
    K. Fukunaga, T. Meldrum, W. Zia, M. Ohno, T. Fuchida, B. Blümich, Nondestructive investigation of the internal structure of fresco paintings. Proc. Digit. Herit. 1, 81–88 (2013)Google Scholar
  5. 5.
    M. Vitruvius Pollio, De Architecture (29–23 BCE), ed. L. Cherubini, P. Giardini (1975)Google Scholar
  6. 6.
    J.R. Wiseman, F. El-Baz (eds.), Remote Sensing in Archaeology (Springer, Berlin, 2007)Google Scholar
  7. 7.
    H. Togo, T. Kojima, S. Mochizuki, N. Kukutsu, Millimeter-wave imaging for detecting surface cracks on concrete pole covered with bill-posting prevention sheet. NTT Tech. Rev. 10, 1–6 (2012)Google Scholar
  8. 8.
    G.G. Diamond et al., Remote detection of corrosion under paint (CUP) from distances greater than 5 metres, Proceedings of the 11th ECNDT (2014)Google Scholar
  9. 9.
    FP7 Project, Innovative non-destructive corrosion under paint integrated detection system,
  10. 10.
    N.B. Teteriatnikov, Mosaics of Hagia Sophia, Istanbul (Dumbarton Oaks Research Library and Collection, Washington, DC, 1998)Google Scholar
  11. 11.
    H. Takanezawa, K. Hidaka, Consideration of the plaster-covered mosaic on the south wall of east bay in the South Gallery of Hagia Sophia in Istanbul. Proceedings of the Architectual Institute of Japan Annual Convention, (2014), pp. 797–798Google Scholar
  12. 12.
    L. Cséfalvayová, M. Strlič, H. Karjalaine, Quantitative NIR chemical imaging in heritage science. Anal. Chem. 83, 5101–5106 (2011)CrossRefGoogle Scholar
  13. 13.
    R. Hedjam, M. Cheriet, Historical document image restoration using multi spectral imaging system. Pattern Recog. 46, 2297–2312 (2013)CrossRefGoogle Scholar
  14. 14.
    R.J.H. Clark, The scientific investigation of artwork and archaeological artefacts: Raman microscopy as a structural, analytical and forensic tool. Appl. Phys. A 89, 833–840 (2007)CrossRefGoogle Scholar
  15. 15.
    J.M. Madariaga, D. Bersani (eds.), Special issue: Raman spectroscopy in art and archaeology. J. Raman Spectrosc. 43, 1523–1844 (2012)Google Scholar
  16. 16.
    P. Targowski, B. Rouba, M. Wojtkowski, A. Kowalczyk, The application of optical coherence tomography to non-destructive examination of museum objects. Stud. Conserv. 49, 107–114 (2004)Google Scholar
  17. 17.
    D.C. Adler, J. Stenger, I. Gorczynska, H. Lie, T. Hensick, R. Spronk, S. Wolohojian, N. Khandekar, J.Y. Jiang, S. Barry, A.E. Cable, R. Huber, J.G. Fujimoto, Comparison of three-dimensional optical coherence tomography and high resolution photography for art conservation studies. Opt. Express 15, 15972–15986 (2007)CrossRefGoogle Scholar
  18. 18.
    C.S. Cheung, M. Spring, H. Liang, Ultra-high resolution Fourier domain optical coherence tomography for old master paintings. Opt. Express 23(8), 10145–10157 (2015)CrossRefGoogle Scholar
  19. 19.
    FP7 project: OCT4ART (optical coherence tomography for examination of works of art,
  20. 20.
    A. Tartuferi (ed.), Giotto, Il Restauro del Polittico di Badia (Mandoragora, Firenze, 2012)Google Scholar
  21. 21.
    E. Abraham, M. Bessou, A. Ziéglé, M.-C. Hervé, L. Szentmiklósi, Z. Kasztovszky, Z. Kis, M. Menu, Terahertz, X-ray and neutron computed tomography of an eighteenth dynasty Egyptian sealed pottery. Appl. Phys. A 117, 963–972 (2014)CrossRefGoogle Scholar
  22. 22.
    J.B. Jackson, J. Labaune, R. Bailleul-Lesuer, L. D’Alessandro, A. Whyte, J.W. Bowen, M. Menu, G. Mourou, Terahertz pulse imaging in archaeology. Front. Optoelectron. 8(1), 81–92 (2015)CrossRefGoogle Scholar
  23. 23.
    K. Fukunaga, I. Hosako, Y. Kohdzuma, T. Koezuka, M.-J. Kim, T. Ikari, X. Du, Terahertz analysis of an East Asian historical mural painting, J. Eur. Opt. Soc. Rapid. Publ. 5(10024) (2010)Google Scholar
  24. 24.
    A.M. Siddiolo, L. D’Acquisto, A.R. Maeva, R.G. Maev, Wooden panel paintings investigation: an air-coupled ultrasonic imaging approach. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 836–846 (2007)CrossRefGoogle Scholar
  25. 25.
    J.M. Bravo, J.V. Sánchez-Pérez, M. Ferri, J. Redondo, R. Picó1, Application of ultrasound phase-shift analysis to authenticate wooden panel paintings. Sensors 14, 7992–8002 (2014)Google Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  • Kaori Fukunaga
    • 1
  1. 1.National Institute of Information and Communications TechnologyTokyoJapan

Personalised recommendations