Skip to main content

Part of the book series: Cultural Heritage Science ((CUHESC))

Abstract

Various instruments that use THz technologies are commercially available. THz instruments are introduced in terms of two main application categories: spectroscopy and imaging. For spectroscopy, Fourier transform THz system covers the frequency range approximately from 1 to 20 THz. On the other hand, THz TDS is useful for imaging to observe internal structure of opaque objects. Some laboratory made systems, including a THz CT system are also introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P.R. Griffiths, J.A. De Haseth, Fourier Transform Infrared Spectrometry (John Wiley & Sons, New Jersey, 2007), pp. 112–118

    Google Scholar 

  2. M. Quack, F. Merkt (Eds.), Handbook of High-resolution Spectroscopy (John Wiley & Sons, New Jersey, 2011)

    Google Scholar 

  3. C.C. Homes, G.L. Carr, R.P.S.M. Lobo, J.D. LaVeigne, D.B. Tanner, Appl. Opt. 46, 7884 (2007)

    Article  Google Scholar 

  4. K. Abe, S. Hayashi, N. Doki, C. Otani, K. Kawase, T. Miyazawa, Y. Ogawa, Measurement of hydrated water in D-glucose powder using THz-wave spectroscopy. Bunseki Kagaku 56, 851–856 (2007)

    Article  Google Scholar 

  5. Bruker Optics, VERTEX Series technical note, available from www.bruker.com/optics

  6. D.M. Slocum, E.J. Slingerland, R.H. Giles, T.M. Goyette, Atmospheric absorption of terahertz radiation and water vapor continuum effects. J. Quant. Spectrosc. Radiat. Transf. 127, 49–63 (2013)

    Article  Google Scholar 

  7. P. Kühne, C. M. Herzinger, M. Schubert, J. A. Woollam, T. Hofmann, An integrated mid-infrared, far-infrared, and terahertz optical Hall effect instrument. Rev. Sci. Instrum. 85, 071301 (2014)

    Google Scholar 

  8. M. Tonouchi, Galore new applications of terahertz science and technology. Terahertz Sci. Technol. 2, 90–101 (2009)

    Google Scholar 

  9. K.-E. Peiponen, M. Kuwata-Gonokami, J. Axel Zeitler (eds.), Terahertz Spectroscopy and Imaging (Springer-Verlag, Berlin, 2013), pp. 451–489

    Google Scholar 

  10. D Saeedkia (Eds), Handbook of Terahertz Technology for Imaging, Sensing and Communications (Woodhead Publishing, Cambridge, 2013)

    Google Scholar 

  11. H-J. Song, T. Nagatsuma, (Eds), Handbook of Terahertz Technologies; Devices and Applications (Pan Stanford, 2015)

    Google Scholar 

  12. D. Suhandy, M. Yulia, Y. Ogawa, N. Kondo, L-Ascorbic acid prediction in aqueous solution based on FTIR-ATR terahertz spectroscopy. Eng. Agric. Environ. Food 5, 152–158 (2012)

    Article  Google Scholar 

  13. L. Werner, H.-W. Hübers, P. Meindl, R. Müller, H. Richter, A. Steiger, Towards traceable radiometry in the terahertz region. Metrologia 46, 160–164 (2009)

    Article  Google Scholar 

  14. A. Steiger, M. Kehrt, C. Monte, R. Müllwe, Traceable terahertz power measurement from 1 THz to 5 THz. Opt. Express 21(12), 14466–14473 (2013)

    Article  Google Scholar 

  15. M. Mizuno, (Ed.), Practical Users Guide of THz TDS system. in Japanese, available from http://www.nict.go.jp/out-promotion/data-provided/thz_practice_guide.html (2015)

  16. D. Zimdars, J.S. White, G. Stuk, A. Chernovsky, G. Fichter, S. Williamson, Large area terahertz imaging and non-destructive evaluation applications. Insight 48, 537–539 (2006)

    Article  Google Scholar 

  17. J. Labaune, J.B. Jackson, K. Fukunaga, J. White, L. dÁlessandro, A. Whyte, M. Menu, G. Mourou, Investigation of Terra Cotta artefacts with terahertz. Appl. Phys. A 105, 5–9 (2011)

    Article  Google Scholar 

  18. I.N. Duling, D. Zimdars, Terahertz imaging: revealing hidden defects. Nat. Photonics 3, 630–632 (2009)

    Article  Google Scholar 

  19. A. Keil, T. Hoyer, J. Peuser, H. Quest, T. Loeffler, All-Electronic 3D THz Synthetic Reconstruction Imaging System, Proc. 35th IRMMW-THz (2011)

    Google Scholar 

  20. T. Hoyer, T. Loffler, T. Saito, N. Yukihira, A. Deninger, K. Fukunaga, A Portable All-Electronic THz Scanner for the Inspection of Structural Earthquake Damage in Japanese Buildings, Proc. 37th IRMMW-THz (2013)

    Google Scholar 

  21. A. Doria, E. Giovenale, G. P. Gallerano, M. Picollo, K. Fukunaga, A Millimeter Wave/Terahertz 3D Scanner for Wall Painting Investigation, Proc. 38th IRMMW-THz (2014)

    Google Scholar 

  22. B. Recur, A. Younus, S. Salort, P. Mounaix, B. Chassagne, P. Desbarats, J.-P. Caumes, E. Abraham, Investigation on reconstruction methods applied to 3D terahertz computed tomography. Opt. Express 19, 5105–5117 (2011)

    Article  Google Scholar 

  23. J.-P. Caumes, A. Younus, S. Salort, B. Chassagne, B. Recur, A. Ziéglé, A. Dautant, E. Abraham, Terahertz tomographic imaging of XVIIIth Dynasty Egyptian sealed pottery. Appl. Opt. 50, 3604–3608 (2011)

    Article  Google Scholar 

  24. K. Fukunaga, N. Sekine, I. Hosako, N. Oda, H. Yoneyama, T. Sudoh, Real-time terahertz imaging for art conservation science. J. Eur. Opt. Soc.: Rapid Publ. 3, 08027 (2008)

    Google Scholar 

  25. N. Oda, T. Ishi, S. Kurashima, T. Sudou, M. Miyoshi, T. Morimoto, T. Yamazaki, T. Tsuboi, T. Sasaki, Palm-size and real-time terahertz imager; and its application to development of terahertz sources, Proc. SPIE Vol. 8716, No. 871603 (2013)

    Google Scholar 

  26. A.W.M. Lee, T.-Y. Kao, D. Burghoff, Q. Hu, J.L. Reno, Terahertz tomography using quantum-cascade lasers. Opt. Lett. 37, 217–219 (2012)

    Article  Google Scholar 

  27. R.U. Siciliani de Cumis, J.-H. Xu, L. Masini, R. Degl’Innocenti, P. Pingue, F. Beltram, A. Tredicucci, M.S. Vitiello, P.A. Benedetti, H.E. Beere, D.A. Ritchie, Terahertz confocal microscpy with a quantum cascade laser source. Opt. Express 20, 21924–21931 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Fukunaga, K. (2016). THz Instruments. In: THz Technology Applied to Cultural Heritage in Practice. Cultural Heritage Science. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55885-9_2

Download citation

Publish with us

Policies and ethics