Skip to main content

Part of the book series: Cultural Heritage Science ((CUHESC))

Abstract

Electromagnetic waves from microwaves to X-ray are widely used in heritage science. The operating frequency region determines the role of the waves, because the responses of materials depend on the frequency. The frequency range of terahertz waves typically refers to the 0.1–10 THz range, which lies the photonics and electronic ranges, and has recently been in the focus of attention in applied optics. Characteristics and examples of THz imaging applications are introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Keck, Appl. Opt. 8, 41 (1969)

    Article  Google Scholar 

  2. C. Gaffney, J. Gater, Revealing the Buried Past: Geophysics for Archaeologists (Tempus, Stroud, 2003)

    Google Scholar 

  3. D. Pinna, M. Galeotti, A. Mazzeo, Scientific Examination for the Investigation of Paintings. A Handbook for Conservator-Restorers (Centro Di, Firenze, 2009)

    Google Scholar 

  4. M. Leona, R.V. Duyne, Chemistry and Materials Research at the Interface Between Science and Art. Report of a NSF and A.W. (Mellon Foundation, 2009)

    Google Scholar 

  5. J.R. Wiseman, F. El-Baz, Remote Sensing in Archaeology (Springer, Heidelberg, 2007)

    Book  Google Scholar 

  6. M. Bacci, R. Bellucci, C. Cucci, C. Frosinini, M. Picollo, S. Porcinai, B. Radicati, Fiber optics reflectance spectroscopy in the entire VIS-IR range: A powerful tool for the non-invasive characterization of paintings. MRS Proceedings, 852 (2004)

    Google Scholar 

  7. F. Casadio, L. Toniolo, J. Cult. Herit. 2, 71 (2001)

    Article  Google Scholar 

  8. R.J.H. Clark, Appl. Phys. A. 89, 833 (2007)

    Article  Google Scholar 

  9. A. Anitha, A. Brasoveanu, M. Duarte, S. Hughes, I. Daubechies, J. Dik, K. Janssens, M. Alfeld, Signal Process. 93, 592 (2013)

    Article  Google Scholar 

  10. INSIDDE project. http://insidde-fp7.eu

  11. Charisma Project. http://www.charismaproject.eu

  12. M. Alfeld, J.A. Broekaert, Spectrochim. Acta. B. 88, 211 (2013)

    Article  Google Scholar 

  13. A. Pelagotti, A. Del Mastio, A. De Rosa, A. Pica, IEEE Signal Process. Mag. 25, 27 (2008)

    Article  Google Scholar 

  14. P.H. Siegel, IEEE Trans. Anntenas Propag. 55, 2957 (2007)

    Article  Google Scholar 

  15. K.L. Nguyen, T. Friscic, G.M. Day, L.F. Gladden, W. Jones, Nat. Mater. 6, 206 (2007)

    Article  Google Scholar 

  16. J. Pearce, D.M. Mittleman, Phys. Med. Biol. 47, 3823 (2002)

    Article  Google Scholar 

  17. P.F. Taday, I.V. Bradley, D.D. Arnone, M. Pepper, J. Pharm. Sci. 92, 831 (2003)

    Article  Google Scholar 

  18. P. Taday, Philos. Trans. A. 362, 351 (2004)

    Article  Google Scholar 

  19. C.J. Strachan, P.F. Taday, D.A. Newnham, K.C. Gordon, J.A. Zeitler, M. Pepper, T. Rades, J. Pharm. Sci. 94, 837 (2005)

    Article  Google Scholar 

  20. Y. Ohki, M. Okada, N. Fuse, K. Iwai, M. Mizuno, K. Fukunaga, Appl. Phys. Express 1, 122401 (2008)

    Article  Google Scholar 

  21. M. Scheller, S. Wietzke, C. Jansen, M. Koch, J. Phys. D Appl. Phys. 42, 065415 (2009)

    Article  Google Scholar 

  22. B.B. Hu, M.C. Nuss, Opt. Lett. 20, 1716 (1995)

    Article  Google Scholar 

  23. D.M. Mittleman, R.H. Jacobsen, M.C. Nuss, IEEE Sel. Top. Quants Electron. 2, 679 (1996)

    Article  Google Scholar 

  24. D.M. Mittleman, M. Gupta, R. Neelamani, R.G. Baraniuk, J.V. Rudd, M. Koch, Appl. Phys. B. 68, 1085 (1999)

    Article  Google Scholar 

  25. D.M. Mittleman, Sensing with terahertz radiation (Springer, Berlin, 2003)

    Book  Google Scholar 

  26. D.L. Woolard, E.R. Brown, M. Pepper, M. Kemp, Proc. IEEE 93, 1722 (2005)

    Article  Google Scholar 

  27. W.L. Chan, J. Deibel, D.M. Mittleman, Rep. Prog. Phys. 70, 1325 (2007)

    Article  Google Scholar 

  28. R.A. Cheville, Terahertz time-domain spectroscopy with photoconductive antennas, in Terahertz Spectroscopy. Principles and Applications, ed. by S.L. Dexheimer (CRC Press, Taylor and Francis Group, Boca Raston, 2008), pp. 1–39

    Google Scholar 

  29. M. Tonouchi, IEEE Terahertz Sci. Tech. 2, 90 (2009)

    Google Scholar 

  30. C. Jansen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Jördens, T. Hochrein, M. Koch, Appl. Opt. 49, 48 (2010)

    Article  Google Scholar 

  31. J.A. Zeitlerm, Y. Chun Shen, “Industrial applications of teraherts imaging”, chapter 18 of Kai-Erik Peiponen, Makoto Kuwata-Gonokami, in Terahertz Spectroscopy and Imaging, ed. by J. Axel Zeitler (Springer-Verlag, Berlin, 2013), pp. 451–489

    Google Scholar 

  32. N. Fuse, T. Fukuchi, T. Takahashi, M. Mizuno, K. Fukunaga, IEEE Trans. THz Sci. Tech. 2, 242 (2012)

    Article  Google Scholar 

  33. A. Moriguchi, T. Tanaka, T. Sakagami, M. Hangyo, Proc. 13th Intern. Symp. on Nondestructive Characterization of Materials, 44 (2013)

    Google Scholar 

  34. J.B. Jackson, J. Labaune, G.A. Mourou, L. D’Alessandro, A. Whyte, M. Menu, Proc. 36th Intern. Conf. IRMMW-THz and Terahertz Waves, (2011)

    Google Scholar 

  35. S. Wietzke, C. Jördens, N. Krumbholz, B. Baudrit, M. Bastian, M. Koch, J. Eur. Opt. Soc. Rapid Publ. 2, 07013 (2007)

    Article  Google Scholar 

  36. J.-W. Park, K.-H. Im, D.K. Hsu, C.-P. Chiou, D.J. Barnard, Adv. Mater. Res. 123–125, 839 (2010)

    Article  Google Scholar 

  37. C.-C. Chen, D.-J. Lee, T. Pollock, J.F. Whitaker, Opt. Express 18, 3477 (2010)

    Article  Google Scholar 

  38. G. Pastorelli, T. Trafela, P.F. Taday, A. Portieri, D. Lowe, K. Fukunaga, M. Strlič, Analy. Bioanal. Chem. 403, 1405 (2012)

    Article  Google Scholar 

  39. W. Köhler, M. Panzner, U. Klotzbach, E. Beyer, S. S. Winnerl, M. Helm, F. Rutz, C. Jördens, M. Koch, H. Leitner, Proceedings of the 9th ECNDT, 181 (2006)

    Google Scholar 

  40. K. Fukunaga, Y. Ogawa, S. Hayashi, I. Hosako, IEICE Electron. Express 4, 258 (2007)

    Article  Google Scholar 

  41. J.B. Jackson, M. Mourou, J.F. Whitaker, I.N. Duling, S.L. Williamson, M. Menu, G.A. Mourou, Opt. Commun. 281, 527 (2008)

    Article  Google Scholar 

  42. E. Abraham, A. Younus, J.C. Delagnes, P. Mounaix, Appl. Phys. A. 100, 585 (2010)

    Article  Google Scholar 

  43. K. Fukunaga, Non-destructive THz pulsed TDI of Giotto masterpiece. News Conserv. 10, 2 (2009)

    Google Scholar 

  44. K. Fukunaga, M. Picollo, Appl. Phys. A. 100, 591 (2010)

    Article  Google Scholar 

  45. J.B. Jackson, J. Bowen, G. Walker, J. Labaune, G. Mourou, M. Menu, K. Fukunaga, IEEE Trans. Terahertz Sci. Tech. 1, 220 (2011)

    Article  Google Scholar 

  46. K. Fukunaga, M. Picollo, Characterisation of works of art, in K. E. Peiponen et al. eds. Terahertz Spectroscopy and Imaging, Springer Series in Optical Sciences, vol. 171, (Springer, Berlin, 2013), pp. 521–538

    Google Scholar 

  47. E. Abraham, K. Fukunaga, Stud. Conserv. 60, 343 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Fukunaga, K. (2016). Introduction. In: THz Technology Applied to Cultural Heritage in Practice. Cultural Heritage Science. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55885-9_1

Download citation

Publish with us

Policies and ethics