Skip to main content

Theory of Optomechanics

  • Chapter
  • First Online:
  • 594 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

In this chapter, we describe the basic aspects of optical cavities, mechanical resonators, and cavity optomechanical systems, e.g. optical response of the cavity, mechanical dissipation (thermal decoherence), dilution technique, the (double) optical spring, quantum back-action, phase-induce back-action noise, and Raman decoherence. Especially, the dilution technique due to the gravitational and optical potential is explained in detail, because it is one of the most important technical features in our experiment. This chapter also presents the basic concepts and mathematical tools for understanding later chapters.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    optomechanical single-photon coupling strength \(g_0\) (e.g. in Ref. [8, 20]), which gives \(\hat{\mathscr {H}}=\hbar g_0 \hat{a}^\dagger \hat{a}(\hat{b}+\hat{b}^\dagger )\)), is \(x_\mathrm{zpf}\)-times lager than g.

References

  1. Heisenberg, W.: Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z. Phys. 43, 172–198 (1927)

    Article  ADS  Google Scholar 

  2. Rüdiger, A., et al.: A mode selector to suppress fluctuations in laser beam geometry. Optica Acta 28, 641 (1981)

    Article  ADS  Google Scholar 

  3. Walls, D.F., Milburn, G.J.: Quantum Optics. Springer, New York (1994)

    Book  MATH  Google Scholar 

  4. White, A.G.: Classical and quantum dynamics of optical frequency conversion. Ph.D. thesis, Physics Department, The Australian National University, Canberra, Australia (1995)

    Google Scholar 

  5. McKenzie, K.: Squeezing in the audio gravitational wave detection band, Ph.D. thesis, Physics Department, The Australian National University, Canberra, Australia (2008)

    Google Scholar 

  6. Callen, H.B., Welton, T.A.: Irreversibility and generalized noise. Phys. Rev. 83, 34 (1951)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Gonzalez, G.I., Saulson, P.R.: Brownian motion of a mass suspended by an anelastic wire. J. Acoust. Soc. Am. 96, 1 (1994)

    Article  Google Scholar 

  8. Aspelmeyer, M., Kippenberg, T.J., Marquardt, F.: Cavity optomechanics. Rev. Mod. Phys. 86, 1391 (2014)

    Article  ADS  Google Scholar 

  9. Saulson, P.R.: Fundamentals of Interferometric Gravitational Wave Detectors. World Scientific, Singapore (1994)

    Book  Google Scholar 

  10. Numata, K., et al.: Measurement of the intrinsic mechanical loss of low-loss samples using a nodal support. Phys. Rev. A. 276, 37 (2000)

    Google Scholar 

  11. Numata, K., et al.: Measurement of the mechanical loss of crystalline samples using a nodal support. Phys. Rev. A. 284, 162 (2001)

    Google Scholar 

  12. Cole, G.D., Wilson-Rae, I., Werbach, K., Vanner, M.R., Aspelmeyer, M.: Phonon-tunnelling dissipation in mechanical resonators. Nat. Commun. 2, 231 (2011)

    Article  ADS  Google Scholar 

  13. Gonzalez, G., Saulson, P.R.: Brownian motion of a torsion pendulum with internal friction. Phys. Rev. A. 201, 1 (1995)

    Google Scholar 

  14. Saulson, P.R.: Thermal noise in mechanical experiments. Phys. Rev. D. 42, 8 (1990)

    Article  Google Scholar 

  15. Corbitt, T., et al.: Optical dilution and feedback cooling of a Gram-Scale Oscillator to 6.9 mK. Phys. Rev. Lett. 99, 160801 (2007)

    Article  ADS  Google Scholar 

  16. Chang, D.E., Ni, K.-K., Painter, O., Kimble, H.J.: Ultrahigh-Q mechanical oscillators through optical trapping. New J. of Phys. 14, 045002 (2012)

    Article  ADS  Google Scholar 

  17. Ni, K.-K., et al.: Enhancement of mechanical Q factors by optical trapping. Phys. Rev. Lett. 108, 214302 (2012)

    Article  ADS  Google Scholar 

  18. Corbitt, T., et al.: An all-optical trap for a gram-scale mirror. Phys. Rev. Lett. 98, 150802 (2007)

    Article  ADS  Google Scholar 

  19. Law, C.K.: Interaction between a moving mirror and radiation pressure: a Hamiltonian formulation. Phys. Rev. A. 51, 3 (1995)

    Article  Google Scholar 

  20. Purdy, T.P., Peterson, R.W., Regal, C.A.: Observation of radiation pressure shot noise on a macroscopic object. Science 339, 801 (2013)

    Article  ADS  Google Scholar 

  21. Genes, C., Vitali, D., Gigan, S., Aspelmeyer, M.: Ground-state cooling of a micromechanical oscillator: comparing cold damping and cavity-assisted cooling schemes. Phys. Rev. A. 77, 033804 (2008)

    Article  ADS  Google Scholar 

  22. Wilson-Rae, L., Nooshi, N., Zwerger, W., Kippenberg, T.J.: Theory of ground state cooling of a mechanical Oscillator using dynamical back-action. Phys. Rev. Lett. 99, 093901 (2007)

    Article  ADS  Google Scholar 

  23. Marquardt, F., Chen, J.P., Clerk, A.A., Girvin, S.M.: Quantum theory of cavity-assisted sideband cooling of mechanical motion. Phys. Rev. Lett. 99, 093902 (2007)

    Article  ADS  Google Scholar 

  24. Rabl, P., Genes, C., Hammerer, K., Aspelmeyer, M.: Phase-noise induced limitations on cooling and coherent evolution in optomechanical systems. Phys. Rev. A. 80, 063819 (2009)

    Article  ADS  Google Scholar 

  25. Schliesser, A., Rivière, R., Anetsberger, G., Arcizet, O., Kippenberg, T.J.: Resolved sideband cooling of a micromechanical Oscillator. Nat. Phys. 4, 415–419 (2008)

    Article  Google Scholar 

  26. Braginsky, V.B., Gorodetsky, M.L., Vyatchanin, S.P.: Thermodynamical fluctuations and photo-thermal shot noise in gravitational wave antennae. Phys. Lett. A 264, 1–10 (1999)

    Article  ADS  Google Scholar 

  27. Restrepo, J., Gabelli, J., Ciuti, C., Favero, I.: Classical and quantum theory of photothermal cavity cooling of a mechanical oscillator. Comptes Rendus Physique 12, 860–870 (2011)

    Article  ADS  Google Scholar 

  28. Chang, C.E., Ni, K.-K., Painter, O., Kimble, H.J.: Ultrahigh-Qmechanical oscillators through optical trapping. New J. Phys. 14, 045002 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuyuki Matsumoto .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Matsumoto, N. (2016). Theory of Optomechanics. In: Classical Pendulum Feels Quantum Back-Action. Springer Theses. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55882-8_2

Download citation

Publish with us

Policies and ethics