Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 574 Accesses

Abstract

In recent years, significant improvements in optical and mechanical elements have led to the development of the field of optomechanics, where mechanical oscillators couple optical fields via the radiation pressure of light. In this chapter, we provide a short history of study about optomechanical effects, and explain briefly about a part of optomechanical effects, e.g., cavity-assisted cooling, instability, measurement limit for continuous measurement, ponderomotive squeezing, and entanglement. Especially, the measurement limit for continuous measurement is explained in detail, because the quantum back-action was inferred from the noise analysis in our estimation. This chapter presents the historical and physical background of this research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This experiment was introduced in the novel entitled as “Sanshir\({\bar{\mathrm{{o}}}}\)”, which was written by the Japanese famous writer Natsume S\({\bar{\mathrm{{o}}}}\)seki in 1908. In the novel, Nonomiya-sensei performed the Nichols’s experiment in the basement of the University of Tokyo. Our experiment was also performed in the basement of the University of Tokyo to measure the pressure of light, similarly to that written in Sanshir\({\bar{\mathrm{{o}}}}\). The difference is that Nonomiya-sensei’s target was the stationary pressure of the light but our target was the fluctuated pressure of the light.

References

  1. Kepler, J.: De Cometis (1619)

    Google Scholar 

  2. Bartoli, A.G.: Sopra i movimenti prodotti dalla luce e dal calore (1876)

    Google Scholar 

  3. Lebedew, P.: Untersuchungen über die Druckkräfte des Lichtes. Ann. Phys. 311, 433 (1901)

    Article  Google Scholar 

  4. Nichols, E.F., Hull, G.F.: The pressure due to radiation. Astrophys. J. 17(5), 315–351 (1903)

    Article  ADS  Google Scholar 

  5. Einstein, A.: Entwicklung unserer Anschauungen über das Wesen und die Konstitution der Strahlung. Phys. Z. 10, 817–825 (1909)

    MATH  Google Scholar 

  6. Hirakawa, H., Hiramatsu, S., Ogawa, Y.: Damping of Brownian motion by cold load. Phys Lett. 63, 3 (1977)

    Article  Google Scholar 

  7. Ashkin, A.: Trapping of atoms by resonance radiation pressure. Phys. Rev. Lett. 40, 12 (1978)

    Article  Google Scholar 

  8. Ashkin, A., Dziedzic, J.M., Yamane, T.: Optical trapping and manipulation of single cells using infrared laser beams. Nature 330, 769–771 (1987)

    Article  ADS  Google Scholar 

  9. Tongcang, L., Kheifets, S., Medellin, D., Raizen, M.G.: Measurement of the instantaneous velocity of a Brownian particle. Science 328, 1673 (2010)

    Article  ADS  Google Scholar 

  10. O’Connell, A.D., et al.: Quantum ground state and single-phonon control of a mechanical resonator. Nature 464, 697–703 (2010)

    Article  ADS  Google Scholar 

  11. Teufel, J.D., et al.: Sideband cooling of micromechanical motion to the quantum ground state. Nature 475, 359–363 (2011)

    Article  ADS  Google Scholar 

  12. Chan, J., et al.: Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478, 89–92 (2011)

    Article  ADS  Google Scholar 

  13. Purdy, T.P., Peterson, R.W., Regal, C.A.: Observation of radiation pressure shot noise on a macroscopic object. Science 339, 801 (2013)

    Article  ADS  Google Scholar 

  14. Purdy, T.P., Yu, P.-L., Peterson, R.W., Kampel, N.S., Regal, C.A.: Strong optomechanical squeezing of light. Phys. Rev. X. 3, 031012 (2013)

    Google Scholar 

  15. Matsumoto, N., Michimura, Y., Aso, Y., Tsubono, K.: Optically trapped mirror for reaching the standard quantum limit. Opt. Express 22, 12915 (2014)

    Article  ADS  Google Scholar 

  16. Matsumoto, N., Komori, K., Michimura, Y., Hayase, G., Aso, Y., Tsubono, K.: 5-mg suspended mirror driven by measurement-induced backaction. Phys. Rev. A 92, 033825 (2015)

    Article  ADS  Google Scholar 

  17. Braginsky, V.B., Manukin, A.: Ponderomotive effects of electromagnetic radiation. Sov. Phys. JETP 25, 653 (1967)

    ADS  Google Scholar 

  18. Braginsky, V.B., Gorodetsky, M.L., Khalili, F.Y.: Optical bars in gravitational wave antennas. Phys. Lett. A. 232, 340 (1997)

    Article  ADS  Google Scholar 

  19. Braginsky, V.B., Khalili, F.Y.: Low noise rigidity in quantum measurements. Phys. Lett. A. 257, 241 (1999)

    Article  ADS  Google Scholar 

  20. Sheard, B.S., Gray, M.B., Mow-Lowry, C.M., McClelland, D.E.: Observation and characterization of an optical spring. Phys. Rev. A. 69, 051801(R) (2004)

    Article  ADS  Google Scholar 

  21. Corbitt, T., et al.: An all-optical trap for a gram-scale mirror. Phys. Rev. Lett. 98, 150802 (2007)

    Article  ADS  Google Scholar 

  22. Dorsel, A., McCullen, J.D., Meystre, P., Vignes, E., Walther, H.: Optical bistability and mirror confinement induced by radiation pressure. Phys. Rev. Lett. 51, 17 (1983)

    Article  Google Scholar 

  23. Braginsky, V.B., Vyatchanin, S.P.: Parametric oscillatory instability in Fabry-Perot interferometer. Phys. Lett. A. 287, 331–338 (2001)

    Article  ADS  Google Scholar 

  24. Carmon, T., Rokhsari, H., Yang, L., Kippenberg, J., Vahala, J.: Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode. Phys. Rev. Lett. 94, 223902 (2005)

    Article  ADS  Google Scholar 

  25. Sidles, J.A., Sigg, D.: Optical torques in suspended Fabry-perot interferometers. Phys. Lett. A. 354, 167–172 (2006)

    Article  ADS  Google Scholar 

  26. Sakata, S., Miyakawa, O., Nishizawa, A., Ishizaki, H., Kawamura, S.: Measurement of angular antispring effect in optical cavity by radiation pressure. Phys. Rev. D. 81, 064023 (2010)

    Article  ADS  Google Scholar 

  27. Heisenberg, W.: Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z. Phys. 43, 172–198 (1927)

    Article  ADS  Google Scholar 

  28. Braginsky, V.B., Khalili, T.Y.: Quantum Measurement. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  29. Braginsky, V.B., Khalili, F.Y.: Quantum Measurements. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  30. Caves, C.M.: Quantum-mechanical noise in an interferometer. Phys. Rev. D. 23, 8 (1981)

    Article  Google Scholar 

  31. Kimble, H.J., Levin, Y., Matsko, A.B., Thorne, K.S., Vyatchanin, S.P.: Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics. Phys. Rev. D. 65, 022002 (2001)

    Article  ADS  Google Scholar 

  32. Goda, K., et al.: A quantum-enhanced prototype gravitational-wave detector. Nature Phys. 4, 472–476 (2008)

    Article  ADS  Google Scholar 

  33. Buonanno, A., Chen, Y.: Optical noise correlations and beating the standard quantum limit in advanced gravitational-wave detectors. Class. Quant. Grav. 18, L95–L101 (2001)

    Article  ADS  MATH  Google Scholar 

  34. Buonanno, A., Chen, Y.: Quantum noise in second generation, signal-recycled laser interferometric gravitational-wave detectors. Phys. Rev. D. 64, 042006 (2001)

    Article  ADS  Google Scholar 

  35. Buonanno, A., Chen, Y.: Signal recycled laser-interferometer gravitational-wave detectors as optical springs. Phys. Rev. D. 65, 042001 (2002)

    Article  ADS  Google Scholar 

  36. Braginsky, V.B., Vorontsov, Y.I., Thorne, K.S.: Quantum nondemolition measurements. Science 209, 4456 (1980)

    Article  Google Scholar 

  37. Purdue, P., Chen, Y.: Practical speed meter designs for quantum nondemolition gravitational-wave interferometers. Phys. Rev. D. 66, 122004 (2002)

    Article  ADS  Google Scholar 

  38. Chen, Y., Danilishin, S.L., Khalili, F.Y., Müller-Ebhardt, H.: QND measurements for future gravitational-wave detectors. Gen. Relativ. Gravit. 43, 671–694 (2011)

    Article  ADS  MATH  Google Scholar 

  39. Müller-Ebhardt, H., Rehbein, H., Schnabel, R., Danzmann, K., Chen, Y.: Entanglement of macroscopic test masses and the standard quantum limit in laser interferometry. Phys. Rev. Lett. 100, 013601 (2008)

    Article  ADS  Google Scholar 

  40. Mancini, S., Tombesi, P.: Quantum noise reduction by radiation pressure. Phys. Rev. A. 49, 5 (1994)

    Article  Google Scholar 

  41. Fabre, C., et al.: Quantum-noise reduction using a cavity with a movable mirror. Phys. Rev. A. 49, 2 (1994)

    Article  Google Scholar 

  42. Brooks, D.W.C., et al.: Non classical light generated by quantum-noise-driven cavity optomechanics. Nature 488, 476–480 (2012)

    Article  ADS  Google Scholar 

  43. Safavi-Naeini, A.H., et al.: Squeezed light from a Silicon micromechanical resonator. Nature 500, 185–189 (2013)

    Article  ADS  Google Scholar 

  44. Mancini, S., Giovannetti, V., Vitali, D., Tombesi, P.: Entangling macroscopic oscillators exploiting radiation pressure. Phys. Rev. Lett. 88, 12 (2002)

    Article  Google Scholar 

  45. Pinard, M., et al.: Entangling movable mirrors in a double-cavity system. Europhys. 72, 747–753 (2005)

    Article  ADS  Google Scholar 

  46. Mazzola, L., Paternostro, M.: Distributing fully optomechanical quantum correlations. Phys. Rev. A. 83, 062335 (2011)

    Article  ADS  Google Scholar 

  47. Vitali, D., et al.: Optomechanical entanglement between a movable mirror and a cavity field. Phys. Rev. Lett. 98, 030405 (2007)

    Article  ADS  Google Scholar 

  48. Paternostro, M., et al.: Creating and probing multipartite macroscopic entanglement with light. Phys. Rev. Lett. 99, 250401 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  49. Joshi, C., Larson, J., Jonson, M., Andersson, E., Öhberg, P.: Entanglement of distant optomechanical systems. Phys. Rev. A. 85, 033805 (2012)

    Article  ADS  Google Scholar 

  50. Mial, H., Danilishin, S., Chen, Y.: Universal quantum entanglement between an oscillator and continuous fields. Phys. Rev. Lett. 81, 052307 (2010)

    ADS  Google Scholar 

  51. Korneev, L.K., Tssander, F.A.: Problems of flight by jet propulsion interplanetary flights (1961)

    Google Scholar 

  52. Cole, G.D., Aspelmeyer, M.: Cavity optomechanics mechanical memory sees the light. Nat. Nanotechnol. 6, 690–691 (2011)

    Article  ADS  Google Scholar 

  53. Wang, Y.-D., Clerk, A.: A using interference for high fidelity quantum state transfer in optomechanics. Phys. Rev. Lett. 108, 153603 (2012)

    Article  ADS  Google Scholar 

  54. Stannigel, K., Rabl, P., Sørensen, A.S., Zoller, P., Lukin, M.D.: Optomechanical transducers for long-distance quantum communication. Phys. Rev. Lett. 105, 220501 (2010)

    Article  ADS  Google Scholar 

  55. Weis, S., et al.: Optomechanically induced transparency. Science 330, 1520 (2010)

    Article  ADS  Google Scholar 

  56. Zhang, J., Peng, K., Braunstein, L.: Quantum-state transfer from light to macroscopic oscillators. Phys. Rev. Lett. 68, 013808 (2003)

    ADS  Google Scholar 

  57. Palomaki, T.A., Harlow, J.W., Teuful, J.D., Simmonds, R.W., Lehnert, K.W.: Coherent state transfer between itinerant microwave fields and a mechanical oscillator. Nature 495, 14 (2013)

    Article  Google Scholar 

  58. Tsuda, Y., et al.: Achievement of IKAROS—Japanese deep space solar sail demonstration mission. Acta Astronaut. 82, 183–188 (2013)

    Article  ADS  Google Scholar 

  59. Harry, G.M., et al.: Advanced LIGO: the next generation of gravitational wave detectors. Class. Quant. Gravity 27, 084006 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  60. Somiya, K.: Detector configuration of KAGRA-the Japanese cryogenic gravitational-wave detector. Class. Quant. Grav. 29, 12 (2012). (Aso, Y. et al. Interferometer design of the KAGRA gravitational wave detector. Phys. Rev. D. 88, 043007 (2013)). http://gwcenter.icrr.u-tokyo.ac.jp/en/. Accessed 9 Mar 2015

    Google Scholar 

  61. http://www.geo600.uni-hannover.de. Accessed 9 Mar 2015

  62. http://wwwcascina.virgo.infn.it. Accessed 9 Mar 2015

  63. Giessibl, F.J.: Advances in atomic force microscopy. Rev. Mod. Phys. 75, 949–983 (2003)

    Article  ADS  Google Scholar 

  64. Westphal, T., et al.: Interferometer readout noise below the standard quantum limit of a membrane. Phys. Rev. A. 85, 063806 (2012)

    Article  ADS  Google Scholar 

  65. Khalili, F.Y., et al.: Quantum back-action in measurements of zero-point mechanical oscillations. Phys. Rev. A. 86, 033840 (2012)

    Article  ADS  Google Scholar 

  66. Braginsky, V.B., et al.: Noise in gravitational-wave detectors and other classical-force measurements is not influenced by test-mass quantization. Phys. Rev. D. 67, 082001 (2003)

    Article  ADS  Google Scholar 

  67. Braginsky, V.B., Khalili, F.Y.: Quantum nondemolition measurements: the route from toys to tools. Rev. Mod. Phys. 68, 1–11 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  68. Murch, K.W., Moore, K.L., Gupta, S., Stamper-Kurn, D.-M.: Observation of quantum-measurement backaction with an ultracold atomic gas. Nat. Phys. 4, 561–564 (2008). http://ultracold.physics.berkeley.edu/pmwiki/Main/E3. Accessed 9 Mar 2015

    Google Scholar 

  69. Safavi-Naeini, A.H., et al.: Observation of quantum motion of a nanomechanical resonator. Phys. Rev. Lett. 108, 033602 (2012)

    Article  ADS  Google Scholar 

  70. Okutomi, A., Yamamoto, K., Miyoki, S., Ohashi, M., Kuroda, K.: Development of a radiation pressure noise interferometer. J. Phys.: Conf. Ser. 32, 327–332 (2006)

    ADS  Google Scholar 

  71. Mow-Lowry, C.M., et al.: Towards the SQL: status of the direct thermal-noise measurements at the ANU. J. Phys.: Conf. Ser. 32, 362–367 (2006)

    ADS  Google Scholar 

  72. Verlot, P., et al.: Towards the experimental demonstration of quantum radiation pressure noise. C. R. Phys. 12, 826–836 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuyuki Matsumoto .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Matsumoto, N. (2016). Introduction. In: Classical Pendulum Feels Quantum Back-Action. Springer Theses. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55882-8_1

Download citation

Publish with us

Policies and ethics