Skip to main content

Establishment and Maintenance of DNA Methylation

  • Chapter
  • First Online:
Book cover DNA Replication, Recombination, and Repair

Abstract

In mammals, more than 70 % of the CpG sequences in the genome are methylated at the 5th position of cytosine bases. DNA methylation acts as a regulator of gene expression and is crucial for development, especially in higher eukaryotes. In mammals, three DNA (cytosine-5-)-methyltransferases, Dnmt1, Dnmt3a, and Dnmt3b, have been identified. Dnmt3a and Dnmt3b are mainly responsible for establishing DNA methylation patterns in the genome. For the establishment of DNA methylation patterns, interacting or associating factors that take Dnmt3a or Dnmt3b to the site of methylation, the timing of expression, and the substrate DNA with higher ordered structures (chromatin states) are the determinants. Dnmt1 favors methylation of hemi-methylated DNA, which appears just after replication or repair, and thus is responsible for maintaining the methylation patterns during replication and after repair. Recently, it was found that Uhrf1 and histone ubiquitylation are necessary factors for maintenance DNA methylation in vivo. In this chapter, the establishment and maintenance of DNA methylation by Dnmt3a, Dnmt3b, and Dnmt1 are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aapola U, Kawasaki K, Scott HS, Ollila J, Vihinen M, Heino M, Shintani A, Kawasaki K, Minoshima S, Krohn K, Antonarakis SE, Shimizu N, Kudoh J, Peterson P (2000) Isolation and initial characterization of a novel zinc finger gene, DNMT3L, on 21q22.3, related to the cytosine-5-methyltransferase 3 gene family. Genomics 65:293–298

    Article  PubMed  CAS  Google Scholar 

  • Alabert C, Bukowski-Wills JC, Lee SB, Kustatscher G, Nakamura K, de Lima AF, Menard P, Mejlvang J, Rappsilber J, Groth A (2014) Nascent chromatin capture proteomics determines chromatin dynamics during DNA replication and identifies unknown fork components. Nat Cell Biol 16:281–293

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Allan AM, Liang X, Luo Y, Pak C, Li X, Szulwach KE, Chen D, Jin P, Zhao X (2008) The loss of methyl-CpG binding protein 1 leads to autism-like behavioral deficits. Hum Mol Genet 17:2047–2057

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Aoki A, Suetake I, Miyagawa J, Fujio T, Chijiwa T, Sasaki H, Tajima S (2001) Enzymatic properties of de novo-type mouse DNA (cytosine-5) methyltransferases. Nucleic Acids Res 29:3506–3512

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Arand J, Spieler D, Karius T, Branco MR, Meilinger D, Meissner A, Jenuwein T, Xu G, Leonhardt H, Wolf V, Walter J (2012) In vivo control of CpG and non-CpG DNA methylation by DNA methyltransferases. PLoS Genet 8, e1002750

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Arita K, Ariyoshi M, Tochio H, Nakamura Y, Shirakawa M (2008) Recognition of hemi-methylated DNA by the SRA protein UHRF1 by a base-flipping mechanism. Nature 455:818–821

    Article  PubMed  CAS  Google Scholar 

  • Arita K, Isogai S, Oda T, Unoki M, Sugita K, Sekiyama N, Kuwata K, Hamamoto R, Tochio H, Sato M, Ariyoshi M, Shirakawa M (2012) Recognition of modification status on a histone H3 tail by linked histone reader modules of the epigenetic regulator UHRF1. Proc Natl Acad Sci USA 109:12950–12955

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Avvakumov GV, Walker JR, Xue S, Li Y, Duan S, Bronner C, Arrowsmith CH, Dhe-Paganon S (2008) Structural basis for recognition of hemi-methylated DNA by the SRA domain of human UHRF1. Nature 455:822–825

    Article  PubMed  CAS  Google Scholar 

  • Bell AC, Felsenfeld G (2000) Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature 405:482–485

    Article  PubMed  CAS  Google Scholar 

  • Berkyurek AC, Suetake I, Arita K, Takeshita K, Nakagawa A, Shirakawa M, Tajima S (2014) The DNA methyltransferase Dnmt1 directly interacts with the SET and RING finger associated (SRA) domain of the multifunctional protein Uhrf1 to facilitate accession of the catalytic center to hemi-methylated DNA. J Biol Chem 289:379–386

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bestor T, Laudano A, Mattaliano R, Ingram V (1988) Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells. The carboxyl-terminal domain of the mammalian enzymes is related to bacterial restriction methyltransferases. J Mol Biol 203:971–983

    Article  PubMed  CAS  Google Scholar 

  • Biniszkiewicz D, Gribnau J, Ramsahoye B, Gaudet F, Eggan K, Humpherys D, Mastrangelo MA, Jun Z, Walter J, Jaenisch R (2002) Dnmt1 overexpression causes genomic hypermethylation, loss of imprinting, and embryonic lethality. Mol Cell Biol 22:2124–2135

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bird AP (1995) Gene number, noise reduction and biological complexity. Trends Genet 11:94–100

    Article  PubMed  CAS  Google Scholar 

  • Bird AP (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16:6–21

    Article  PubMed  CAS  Google Scholar 

  • Bostick M, Kim JK, Estève PO, Clark A, Pradhan S, Jacobsen SE (2007) UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science 317:1760–1764

    Article  PubMed  CAS  Google Scholar 

  • Bourc’his D, Xu G, Lin C, Bollman B, Bestor TH (2001) Dnmt3L and establishment of maternal genomic imprints. Science 294:2536–2539

    Article  PubMed  Google Scholar 

  • Brenner C, Deplus R, Didelot C, Loriot A, Viré E, De Smet C, Gutierrez A, Danovi D, Bernard D, Boon T, Pelicci PG, Amati B, Kouzarides T, de Launoit Y, Di Croce L, Fuks F (2005) Myc represses transcription through recruitment of DNA methyltransferase corepressor. EMBO J 24:336–346

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Capuano F, Mülleder M, Kok R, Blom HJ, Ralser M (2014) Cytosine DNA methylation is found in Drosophila melanogaster but absent in Saccharomyces cerevisiae, Schizosaccharomyces pombe, and other yeast species. Anal Chem 86:3697–3702

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Catez F, Ueda T, Bustin M (2006) Determinants of histone H1 mobility and chromatin binding in living cells. Nat Struct Mol Biol 13:305–310

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chen RZ, Akbarian S, Tudor M, Jaenisch R (2001) Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice. Nat Genet 27:327–331

    Article  PubMed  CAS  Google Scholar 

  • Chen T, Ueda Y, Xie S, Li E (2002) A novel Dnmt3a isoform produced from an alternative promoter localizes to euchromatin and its expression correlates with active de novo methylation. J Biol Chem 277:38746–38754

    Article  PubMed  CAS  Google Scholar 

  • Chen T, Ueda Y, Dodge JE, Wang Z, Li E (2003) Establishment and maintenance of genomic methylation patterns in mouse embryonic stem cells by Dnmt3a and Dnmt3b. Mol Cell Biol 23:5594–5605

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chen T, Tsujimoto N, Li E (2004) The PWWP domain of Dnmt3a and Dnmt3b is required for directing DNA methylation to the major satellite repeats at pericentric heterochromatin. Mol Cell Biol 24:9048–9058

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chen ZX, Mann JR, Hsieh CL, Riggs AD, Chédin F (2005) Physical and functional interactions between the human DNMT3L protein and members of the de novo methyltransferase family. J Cell Biochem 95:902–917

    Article  PubMed  CAS  Google Scholar 

  • Christman JK, Sheikhnejad G, Marasco CJ, Sufrin JR (1995) 5-Methyl-2′-deoxycytidine in single-stranded DNA can act in cis to signal de novo DNA methylation. Proc Natl Acad Sci USA 92:7347–7351

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chuang LSH, Ian H, Koh T, Ng H, Xu G, Li BFL (1997) Human DNA-(cytosine-5) methyltransferase PCNA complex as a target for p21WAF1. Science 277:1996–2000

    Article  PubMed  CAS  Google Scholar 

  • Datta J, Majumder S, Bai S, Ghoshal K, Kutay H, Smith DS, Crabb JW, Jacob ST (2005) Physical and functional interaction of DNA methyltransferase 3A with Mbd3 and Brg1 in mouse lymphosarcoma cells. Cancer Res 65:10891–10900

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Defossez PA, Stancheva I (2011) Biological functions of methyl-CpG-binding proteins. Prog Mol Biol Transl Sci 101:377–397

    Article  PubMed  CAS  Google Scholar 

  • Dhayalan A, Rajavelu A, Rathert P, Tamas R, Jurkowska RZ, Ragozin S, Jeltsch A (2010) The Dnmt3a PWWP domain reads histone 3 lysine 36 trimethylation and guides DNA methylation. J Biol Chem 285:26114–26120

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Diez CM, Roessler K, Gaut BS (2014) Epigenetics and plant genome evolution. Curr Opin Plant Biol 18:1–8

    Article  PubMed  CAS  Google Scholar 

  • Dodge JE, Okano M, Dick F, Tsujimoto N, Chen T, Wang S, Ueda Y, Dyson N, Li E (2005) Inactivation of Dnmt3b in mouse embryonic fibroblasts results in DNA hypomethylation, chromosomal instability, and spontaneous immortalization. J Biol Chem 280:17986–17991

    Article  PubMed  CAS  Google Scholar 

  • El Gazzar M, Yoza BK, Chen X, Hu J, Hawkins GA, McCall CE (2008) G9a and HP1 couple histone and DNA methylation to TNFα transcription silencing during endotoxin tolerance. J Biol Chem 283:32198–33208

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Estève PO, Chin HG, Smallwood A, Feehery GR, Gangisetty O, Karpf AR, Carey MF, Pradhan S (2006) Direct interaction between DNMT1 and G9a coordinates DNA and histone methylation during replication. Genes Dev 20:3089–3103

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Estève PO, Chang Y, Samaranayake M, Upadhyay AK, Horton JR, Feehery GR, Cheng X, Pradhan S (2011) A methylation and phosphorylation switch between an adjacent lysine and serine determines human DNMT1 stability. Nat Struct Mol Biol 18:42–48

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Fatemi M, Hermann A, Pradhan S, Jeltsch A (2001) The activity of the murine DNA methyltransferase Dnmt1 is controlled by interaction of the catalytic domain with the N-terminal part of the enzyme leading to an allosteric activation of the enzyme after binding to methylated DNA. J Mol Biol 309:1189–1199

    Article  PubMed  CAS  Google Scholar 

  • Feng Q, Zhang Y (2001) The MeCP1 complex represses transcription through preferential binding, remodeling, and deacetylating methylated nucleosomes. Genes Dev 15:827–832

    PubMed Central  PubMed  CAS  Google Scholar 

  • Fu Y, Luo GZ, Chen K, Deng X, Yu M, Han D, Hao Z, Liu J, Lu X, Doré LC, Weng X, Ji Q, Mets L, He C (2015) N6-methyldeoxyadenosine marks active transcription start sites in chlamydomonas. Cell 161:879–889

    Article  PubMed  CAS  Google Scholar 

  • Fujita N, Watanabe S, Ichimura T, Tsuruzoe S, Shinkai Y, Tachibana M, Chiba T, Nakao M (2003) Methyl-CpG binding domain 1 (MBD1) interacts with the Suv39h1-HP1 heterochromatic complex for DNA methylation-based transcriptional repression. J Biol Chem 278:24132–24138

    Article  PubMed  CAS  Google Scholar 

  • Fuks F, Burgers WA, Godin N, Kasai M, Kouzarides T (2001) Dnmt3a binds deacetylases and is recruited by a sequence-specific repressor to silence transcription. EMBO J 20:2536–2544

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Fuks F, Hurd PJ, Deplus R, Kouzarides T (2003) The DNA methyltransferases associate with HP1 and the SUV39H1 histone methyltransferase. Nucleic Acids Res 31:2305–2312

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Garvilles RG, Hasegawa T, Kimura H, Sharif J, Muto M, Koseki H, Takahashi S, Suetake I, Tajima S (2015) Dual functions of the RFTS domain of Dnmt1 in replication-coupled DNA methylation and in protection of the genome from aberrant methylation. PLoS One 10, e0137509

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gaudet F, Talbot D, Leonhardt H, Jaenisch R (1998) A short DNA methyltransferase isoform restores methylation in vivo. J Biol Chem 273:32725–32729

    Article  PubMed  CAS  Google Scholar 

  • Ge YZ, Pu MT, Gowher H, Wu HP, Ding JP, Jeltsch A, Xu GL (2004) Chromatin targeting of de novo DNA methyltransferases by the PWWP domain. J Biol Chem 279:25447–25454

    Article  PubMed  CAS  Google Scholar 

  • Glastad KM, Hunt BG, Yi SV, Goodisman MAD (2011) DNA methylation in insects: on the brink of the epigenomic era. Insect Mol Biol 20:553–565

    Article  PubMed  CAS  Google Scholar 

  • Goll MG, Kirpekar F, Maggert KA, Yoder JA, Hsieh CL, Zhang X, Golic KG, Jacobsen SE, Bestor TH (2006) Methylation of tRNA Asp by the DNA methyltransferase homolog Dnmt2. Science 311:395–398

    Article  PubMed  CAS  Google Scholar 

  • Gopalakrishnan S, Sullivan BA, Trazzi S, Della Valle G, Robertson KD (2009) DNMT3B interacts with constitutive centromere protein CENP-C to modulate DNA methylation and the histone code at centromeric regions. Hum Mol Genet 18:3178–3193

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gordon CA, Hartono SR, Chédin F (2013) Inactive DNMT3B splice variants modulate de novo DNA methylation. PLoS One 8, e69486

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gowher H, Leismann O, Jeltsch A (2000) DNA of Drosophila melanogaster contains 5-methylcytosine. EMBO J 19:6918–6923

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Greer EL, Blanco MA, Gu L, Sendinc E, Liu J, Aristizábal-Corrales D, Hsu CH, Aravind L, He C, Shi Y (2015) DNA methylation on N6-adenine in C. elegans. Cell 161:868–878

    Article  PubMed  CAS  Google Scholar 

  • Guo JU, Su Y, Shin JH, Shin J, Li H, Xie B, Zhong C, Hu S, Le T, Fan G, Zhu H, Chang Q, Gao Y, Ming GL, Song H (2014) Distribution, recognition and regulation of non-CpG methylation in the adult mammalian brain. Nat Neurosci 17:215–222

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Guo X, Wang L, Li J, Ding Z, Xiao J, Yin X, He S, Shi P, Dong L, Li G, Tian C, Wang J, Cong Y, Xu Y (2015) Structural insight into autoinhibition and histone H3-induced activation of DNMT3A. Nature 517:640–644

    Article  PubMed  CAS  Google Scholar 

  • Handa V, Jeltsch A (2005) Profound flanking sequence preference of Dnmt3a and Dnmt3b mammalian DNA methyltransferases shape the human epigenome. J Mol Biol 348:1103–1112

    Article  PubMed  CAS  Google Scholar 

  • Hansen RS, Wijmenga C, Luo P, Stanek AM, Canfield TK, Weemaes CM, Gartler SM (1999) The DNMT3B DNA methyltransferase gene is mutated in the ICF immunodeficiency syndrome. Proc Natl Acad Sci USA 96:14412–14417

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hark AT, Schoenherr CJ, Katz DJ, Ingram RS, Levorse JM, Tilghman SM (2000) CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature 405:486–489

    Article  PubMed  CAS  Google Scholar 

  • Harrington MA, Jones PA, Imagawa M, Karin M (1988) Cytosine methylation does not affect binding of transcription factor Sp1. Proc Natl Acad Sci USA 85:2066–2070

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hashimoto H, Horton JR, Zhang X, Bostick M, Jacobsen SE, Cheng X (2008) The SRA domain of UHRF1 flips 5-methylcytosine out of the DNA helix. Nature 455:826–829

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hata K, Okano M, Lei H, Li E (2002) Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice. Development 129:1983–1993

    PubMed  CAS  Google Scholar 

  • Hendrich B, Tweedie S (2003) The methyl-CpG binding domain and the evolving role of DNA methylation. Trends Genet 19:269–277

    Article  PubMed  CAS  Google Scholar 

  • Hendrich B, Guy J, Ramsahoye B, Wilson VA, Bird A (2001) Closely related proteins MBD2 and MBD3 play distinctive but interacting roles in mouse development. Genes Dev 15:710–723

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Horii T, Suetake I, Yanagisawa E, Morita S, Kimura M, Nagao Y, Imai H, Tajima S, Hatada I (2011) The Dnmt3b splice variant is specifically expressed in in vitro-manipulated blastocysts and their derivative ES cells. J Reprod Dev 57:579–585

    Article  PubMed  CAS  Google Scholar 

  • Hotchikiss RD (1948) The quantitative separation of purines, pyrimidines, and nucleosides by paper chromatography. J Biol Chem 175:315–332

    Google Scholar 

  • Hu YG, Hirasawa R, Hu JL, Hata K, Li CL, Jin Y, Chen T, Li E, Rigolet M, Viegas-Péquignot E, Sasaki H, Xu GL (2008) Regulation of DNA methylation activity through Dnmt3L promoter methylation by Dnmt3 enzymes in embryonic development. Hum Mol Genet 17:2654–2664

    Article  PubMed  CAS  Google Scholar 

  • Hutchins AS, Mullen AC, Lee HW, Sykes KJ, High FA, Hendrich BD, Bird AP, Reiner SL (2002) Gene silencing quantitatively controls the function of a developmental trans-activator. Mol Cell 10:81–91

    Article  PubMed  CAS  Google Scholar 

  • Inano K, Suetake I, Ueda T, Miyake Y, Nakamura M, Okada M, Tajima S (2000) Maintenance-type DNA methyltransferase is highly expressed in post-mitotic neurons and localized in the cytoplasmic compartment. J Biochem 128:315–321

    Article  PubMed  CAS  Google Scholar 

  • Ito S, D’Alessio AC, Taranova OV, Hong K, Sowers LC, Zhang Y (2010) Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 466:1129–1133

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Iwano H, Nakamura M, Tajima S (2004) Xenopus MBD3 plays a crucial role in an early stage of development. Dev Biol 268:416–428

    Article  PubMed  CAS  Google Scholar 

  • Jeddeloh JA, Stokes TL, Richards EJ (1999) Maintenance of genomic methylation requires a SWI2/SNF2-like protein. Nat Genet 22:94–97

    Article  PubMed  CAS  Google Scholar 

  • Jia D, Jurkowska RZ, Zhang X, Jeltsch A, Cheng X (2007) Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation. Nature 449:248–251

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kameshita I, Sekiguchi M, Hamasaki D, Sugiyama Y, Hatano N, Suetake I, Tajima S, Sueyoshi N (2008) Cyclin-dependent kinase-like 5 binds and phosphorylates DNA methyltransferase 1. Biochem Biophys Res Commun 377:1162–1167

    Article  PubMed  CAS  Google Scholar 

  • Kaneda M, Okano M, Hata K, Sado T, Tsujimoto N, Li E, Sasaki H (2004) Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature 429:900–903

    Article  PubMed  CAS  Google Scholar 

  • Kim GD, Ni J, Kelesoglu N, Roberts RJ, Pradhan S (2002) Co-operation and communication between the human maintenance and de novo DNA (cytosine-5) methyltransferases. EMBO J 21:4183–4195

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Klein CJ, Botuyan MV, Wu Y, Ward CJ, Nicholson GA, Hammans S, Hojo K, Yamanishi H, Karpf AR, Wallace DC, Simon M, Lander C, Boardman LA, Cunningham JM, Smith GE, Litchy WJ, Boes B, Atkinson EJ, Middha S, B Dyck PJ, Parisi JE, Mer G, Smith DI, Dyck PJ (2011) Mutations in DNMT1 cause hereditary sensory neuropathy with dementia and hearing loss. Nat Genet 43:595–600

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kohli RM, Zhang Y (2013) TET enzymes, TDG and the dynamics of DNA demethylation. Nature 502:472–479

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kucharski R, Maleszka J, Foret S, Maleszka R (2008) Nutritional control of reproductive status in honeybees via DNA methylation. Science 319:1827–1830

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Cheng X, Klimasauskas S, Mi S, Posfai J, Roberts RJ, Wilson GG (1994) The DNA (cytosine-5) methyltransferases. Nucleic Acids Res 22:1–10

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lavoie G, St-Pierre Y (2011) Phosphorylation of human DNMT1: implication of cyclin-dependent kinases. Biochem Biophys Res Commun 409:187–192

    Article  PubMed  CAS  Google Scholar 

  • Lavoie G, Estève PO, Laulan NB, Pradhan S, St-Pierre Y (2011) PKC isoforms interact with and phosphorylate DNMT1. BMC Biol 9:31

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Leonhardt H, Page AW, Weier HU, Bestor TH (1992) A targeting sequence directs DNA methyltransferase to sites of DNA replication in mammalian nuclei. Cell 71:865–8873

    Article  PubMed  CAS  Google Scholar 

  • Lewis JD, Meehan RR, Henzel WJ, Maurer-Fogy I, Jeppesen P, Klein F, Bird A (1992) Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA. Cell 69:905–914

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Zhu B (2014) Acute myeloid leukemia with DNMT3A mutations. Leuk Lymphoma 55:2002–2012

    Article  PubMed  CAS  Google Scholar 

  • Li E, Bestor TH, Jaenisch R (1992) Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69:915–926

    Article  PubMed  CAS  Google Scholar 

  • Li BZ, Huang Z, Cui QY, Song XH, Du L, Jeltsch A, Chen P, Li G, Li E, Xu GL (2011) Histone tails regulate DNA methylation by allosterically activating de novo methyltransferase. Cell Res 21:1172–1181

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Liang G, Chan MF, Tomigahara Y, Tsai YC, Gonzales FA, Li E, Laird PW, Jones PA (2002) Cooperativity between DNA methyltransferases in the maintenance methylation of repetitive elements. Mol Cell Biol 22:480–491

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lienert F, Wirbelauer C, Som I, Dean A, Mohn F, Schübeler D (2011) Identification of genetic elements that autonomously determine DNA methylation states. Nat Genet 43:1091–1097

    Article  PubMed  CAS  Google Scholar 

  • Lin IG, Han L, Taghva A, O’Brien LE, Hsieh CL (2002) Murine de novo methyltransferase Dnmt3a demonstrates strand asymmetry and site preference in the methylation of DNA in vitro. Mol Cell Biol 22:704–723

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Liu Y, Sun L, Jost JP (1996) In differentiating mouse myoblasts DNA methyltransferase is posttranscriptionally and posttranslationally regulated. Nucleic Acids Res 24:2718–2722

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Liu Y, Zhang X, Blumenthal RM, Cheng X (2013) A common mode of recognition for methylated CpG. Trends Biochem Sci 38:177–183

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lorincz MC, Schübeler D, Hutchinson SR, Dickerson DR, Groudine M (2002) DNA methylation density influences the stability of an epigenetic imprint and Dnmt3a/b-independent de novo methylation. Mol Cell Biol 22:7572–7580

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lyko F, Ramsahoye BH, Jaenisch R (2000) DNA methylation in Drosophila melanogaster. Nature 408:538–540

    Article  PubMed  CAS  Google Scholar 

  • Meissner A, Gnirke A, Bell GW, Ramsahoye B, Lander ES, Jaenisch R (2005) Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic Acids Res 33:5868–5877

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mertineit C, Yoder JA, Taketo T, Laird DW, Trasler JM, Bestor TH (1998) Sex-specific exons control DNA methyltransferase in mammalian germ cells. Development 125:889–897

    PubMed  CAS  Google Scholar 

  • Morales-Ruiz T, Ortega-Galisteo AP, Ponferrada-Marin MI, Martinez-Macıas MI, Ariza RR, Roldan-Arjona T (2006) DEMETER and REPRESSOR OF SILENCING 1 encode 5-methylcytosine DNA glycosylases. Proc Natl Acad Sci USA 103:6853–6858

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Neri F, Krepelova A, Incarnato D, Maldotti M, Parlato C, Galvagni F, Matarese F, Stunnenberg HG, Oliviero S (2013) Dnmt3L antagonizes DNA methylation at bivalent promoters and favors DNA methylation at gene bodies in ESCs. Cell 155:121–134

    Article  PubMed  CAS  Google Scholar 

  • Ng HH, Zhang Y, Hendrich B, Johnson CA, Turner BM, Erdjument-Bromage H, Tempst P, Reinberg D, Bird A (1999) MBD2 is a transcriptional repressor belonging to the MeCP1 histone deacetylase complex. Nat Genet 23:58–61

    PubMed  CAS  Google Scholar 

  • Nishiyama A, Yamaguchi L, Sharif J, Johmura Y, Kawamura T, Nakanishi K, Shimamura S, Arita K, Kodama T, Ishikawa F, Koseki H, Nakanishi M (2013) Uhrf1-dependent H3K23 ubiquitylation couples maintenance DNA methylation and replication. Nature 502:249–253

    Article  PubMed  CAS  Google Scholar 

  • Noyer-Weidner M, Trautner TA (1993) Methylation of DNA in prokaryote. In: Jost JP, Saluz HP (eds) DNA methylation: molecular biology and biological significance. BirkHauser Verlag, Basel, pp 39–108

    Chapter  Google Scholar 

  • Ohki I, Shimotake N, Fujita N, Jee J, Ikegami T, Nakao M, Shirakawa M (2001) Solution structure of the methyl-CpG binding domain of human MBD1 in complex with methylated DNA. Cell 105:487–497

    Article  PubMed  CAS  Google Scholar 

  • Okano M, Xie S, Li E (1998) Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat Genet 19:219–220

    Article  PubMed  CAS  Google Scholar 

  • Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99:247–257

    Article  PubMed  CAS  Google Scholar 

  • Ooi SK, Qiu C, Bernstein E, Li K, Jia D, Yang Z, Erdjument-Bromage H, Tempst P, Lin SP, Allis CD, Cheng X, Bestor TH (2007) DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature 448:714–717

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ostler KR, Davis EM, Payne SL, Gosalia BB, Exposito-Cespedes J, Le Beau MM, Godley LA (2007) Cancer cells express aberrant DNMT3B transcripts encoding truncated proteins. Oncogene 26:5553–5563

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Otani J, Nankumo T, Arita K, Inamoto S, Ariyoshi M, Shirakawa M (2009) Structural basis for recognition of H3K4 methylation status by the DNA methyltransferase 3A ATRX-DNMT3-DNMT3L domain. EMBO Rep 10:1235–1241

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Otani J, Arita K, Kato T, Kinoshita M, Kimura H, Suetake I, Tajima S, Ariyoshi M, Shirakawa M (2013a) Structural basis of the versatile DNA recognition ability of the methyl-CpG binding domain of methyl-CpG binding domain protein 4. J Biol Chem 288:6351–6362

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Otani J, Kimura H, Sharif J, Endo TA, Mishima Y, Kawakami T, Koseki H, Shirakawa M, Suetake I, Tajima S (2013b) Cell cycle-dependent turnover of 5-hydroxymethyl cytosine in mouse embryonic stem cells. PLoS One 8, e82961

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Pedroso JL, Povoas Barsottini OG, Lin L, Melberg A, Oliveira ASB, Mignot E (2013) A novel de novo exon 21 DNMT1 mutation causes cerebellar ataxia, deafness, and narcolepsy in a Brazilian patient. Sleep 36:1257–1259

    PubMed Central  PubMed  Google Scholar 

  • Prendergast GC, Ziff EB (1991) Methylation-sensitive sequence-specific DNA binding by the c-Myc basic region. Science 251:186–189

    Article  PubMed  CAS  Google Scholar 

  • Purdy MM, Holz-Schietinger C, Reich NO (2010) Identification of a second DNA binding site in human DNA methyltransferase 3A by substrate inhibition and domain deletion. Arch Biochem Biophys 498:13–22

    Article  PubMed  CAS  Google Scholar 

  • Qin W, Wolf P, Liu N, Link S, Smets M, Mastra FL, Forné I, Pichler G, Hörl D, Fellinger K, Spada F, Bonapace IM, Imhof A, Harz H, Leonhardt H (2015) DNA methylation requires a DNMT1 ubiquitin interacting motif (UIM) and histone ubiquitination. Cell Res 25:911–929

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Qiu C, Sawada K, Zhang X, Cheng X (2002) The PWWP domain of mammalian DNA methyltrasnferase Dnmt3b defines a new family of DNA-binding fold. Nat Struct Biol 9:217–224

    PubMed Central  PubMed  CAS  Google Scholar 

  • Quenneville S, Verde G, Corsinotti A, Kapopoulou A, Jakobsson J, Offner S, Baglivo I, Pedone PV, Grimaldi G, Riccio A, Trono D (2011) In embryonic stem cells, ZFP57/KAP1 recognize a methylated hexanucleotide to affect chromatin and DNA methylation of imprinting control regions. Mol Cell 44:361–372

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Quenneville S, Turelli P, Bojkowska K, Raclot C, Offner S, Kapopoulou A, Trono D (2012) The KRAB-ZFP/KAP1 system contributes to the early embryonic establishment of site-specific DNA methylation patterns maintained during development. Cell Rep 2:766–773

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Riccio A, Aaltonen LA, Godwin AK, Loukola A, Percesepe A, Salovaara R, Masciullo V, Genuardi M, Paravatou-Petsotas M, Bassi DE, Ruggeri BA, Klein-Szanto AJ, Testa JR, Neri G, Bellacosa A (1999) The DNA repair gene MBD4 (MED1) is mutated in human carcinomas with microsatellite instability. Nat Genet 23:266–268

    Article  PubMed  CAS  Google Scholar 

  • Robertson KD, Uzvolgyi E, Liang G, Talmadge C, Sumegi J, Gonzales FA, Jones PA (1999) The human DNA methyltransferases (DNMTs) 1, 3a and 3b: coordinate mRNA expression in normal tissues and overexpression in tumors. Nucleic Acids Res 27:2291–2298

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Robertson KD, Ait-Si-Ali S, Yokochi T, Wade PA, Jones PL, Wolffe AP (2000) DNMT1 forms a complex with Rb, E2F1 and HDAC1 and represses transcription from E2F-responsive promoters. Nat Genet 25:338–342

    Article  PubMed  CAS  Google Scholar 

  • Robertson AK, Geiman TM, Sankpal UT, Hager GL, Robertson KD (2004) Effects of chromatin structure on the enzymatic and DNA binding functions of DNA methyltransferases DNMT1 and Dnmt3a in vitro. Biochem Biophys Res Commun 322:110–118

    Article  PubMed  CAS  Google Scholar 

  • Ross JP, Suetake I, Tajima S, Molloy PL (2010) Recombinant mammalian DNA methyltransferase activity on model transcriptional gene silencing short RNA-DNA heteroduplex substrates. Biochem J 432:323–332

    Article  PubMed  CAS  Google Scholar 

  • Rothbart SB, Dickson BM, Ong MS, Krajewski K, Houliston S, Kireev DB, Arrowsmith CH, Strahl BD (2013) Multivalent histone engagement by the linked tandem Tudor and PHD domains of UHRF1 is required for the epigenetic inheritance of DNA methylation. Genes Dev 27:1288–1298

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rountree MR, Bachman KE, Baylin SB (2000) DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at replication foci. Nat Genet 25:269–277

    Article  PubMed  CAS  Google Scholar 

  • Rush M, Appanah R, Lee S, Lam LL, Goyal P, Lorincz MC (2009) Targeting of EZH2 to a defined genomic site is sufficient for recruitment of Dnmt3a but not de novo DNA methylation. Epigenetics 4:404–414

    Article  PubMed  CAS  Google Scholar 

  • Sakai Y, Suetake I, Shinozaki F, Yamashina S, Tajima S (2004) Co-expression of de novo DNA methyltransferase Dnmt3a2 and Dnmt3L in gonocytes of mouse embryos. Gene Expr Patterns 5:231–237

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto Y, Watanabe S, Ichimura T, Kawasuji M, Koseki H, Baba H, Nakao M (2007) Overlapping roles of the methylated DNA-binding protein MBD1 and polycomb group proteins in transcriptional repression of HOXA genes and heterochromatin foci formation. J Biol Chem 282:16391–16400

    Article  PubMed  CAS  Google Scholar 

  • Sarraf SA, Stancheva I (2004) Methyl-CpG binding protein MBD1 couples histone H3 methylation at lysine 9 by SETDB1 to DNA replication and chromatin assembly. Mol Cell 15:595–605

    Article  PubMed  CAS  Google Scholar 

  • Sato N, Kondo M, Arai K (2006) The orphan nuclear receptor GCNF recruits DNA methyltransferase for Oct-3/4 silencing. Biochem Biophys Res Commun 344:845–851

    Article  PubMed  CAS  Google Scholar 

  • Schmitz KM, Mayer C, Postepska A, Grummt I (2010) Interaction of noncoding RNA with the rDNA promoter mediates recruitment of DNMT3b and silencing of rRNA genes. Genes Dev 24:2264–2269

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Senyuk V, Premanand K, Xu P, Qian Z, Nucifora G (2011) The oncoprotein EVI1 and the DNA methyltransferase Dnmt3 co-operate in binding and de novo methylation of target DNA. PLoS One 6, e20793

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Shamay M, Greenway M, Liao G, Ambinder RF, Hayward SD (2010) De novo DNA methyltransferase DNMT3b interacts with NEDD8-modified proteins. J Biol Chem 285:36377–36386

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sharif J, Muto M, Takebayashi S, Suetake I, Iwamatsu A, Endo TA, Shinga J, Mizutani-Koseki Y, Okamura K, Tajima S, Mitsuya K, Okano M, Koseki H (2007) The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature 450:908–912

    Article  PubMed  CAS  Google Scholar 

  • Shirane K, Toh H, Kobayashi H, Miura F, Chiba H, Ito T, Kono T, Sasaki H (2013) Mouse oocyte methylomes at base resolution reveal genome-wide accumulation of non-CpG methylation and role of DNA methyltransferases. PLoS Genet 9, e1003439

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Smallwood A, Estève PO, Pradhan S, Carey M (2007) Functional cooperation between HP1 and DNMT1 mediates gene silencing. Genes Dev 21:1169–1178

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Song J, Teplova M, Ishibe-Murakami S, Patel DJ (2012) Structure-based mechanistic insights into DNMT1-mediated maintenance DNA methylation. Science 335:709–712

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Stroud H, Do T, Du J, Zhong X, Feng S, Johnson L, Patel DJ, Jacobsen SE (2014) Non-CG methylation patterns shape the epigenetic landscape in Arabidopsis. Nat Struct Mol Biol 21:64–72

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Suetake I, Kano Y, Tajima S (1998) Effect of aphidicolin on DNA methyltransferase in the nucleus. Cell Struct Funct 23:137–142

    Article  PubMed  CAS  Google Scholar 

  • Suetake I, Miyazaki J, Murakami C, Takeshima H, Tajima S (2003) Distinct enzymatic properties of recombinant mouse DNA methyltransferases Dnmt3a and Dnmt3b. J Biochem 133:737–744

    Article  PubMed  CAS  Google Scholar 

  • Suetake I, Shinozaki F, Miyagawa J, Takeshima H, Tajima S (2004) DNMT3L stimulates DNA methylation activity of Dnmt3a and Dnmt3b through a direct interaction. J Biol Chem 279:27816–27823

    Article  PubMed  CAS  Google Scholar 

  • Suetake I, Hayata D, Tajima S (2006a) The amino-terminus of mouse DNA methyltransferase 1 forms an independent domain and binds to DNA with the sequence involving PCNA binding motif. J Biochem 140:763–777

    Article  PubMed  CAS  Google Scholar 

  • Suetake I, Morimoto Y, Fuchikami T, Abe K, Tajima S (2006b) Stimulation effect of Dnmt3L on the DNA methylation activity of Dnmt3a2. J Biochem 140:553–559

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama Y, Hatano N, Sueyoshi N, Suetake I, Tajima S, Kinoshita E, Kinoshita-Kikuta E, Koike T, Kameshita I (2010) The DNA-binding activity of mouse DNA methyltransferase 1 is regulated by phosphorylation with casein kinase 1δ/ε. Biochem J 427:489–497

    Article  PubMed  CAS  Google Scholar 

  • Suzuki MM, Kerr AR, De Sousa D, Bird A (2007) CpG methylation is targeted to transcription units in an invertebrate genome. Genome Res 17:625–631

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Takagi H, Tajima S, Asano A (1995) Overexpression of DNA methyltransferase in myoblast cells accelerates myotube formation. Eur J Biochem 231:282–291

    Article  PubMed  CAS  Google Scholar 

  • Takeshima H, Suetake I, Shimahara H, Tate S, Ura K, Tajima S (2006) Distinct DNA methylation activity of DNA methyltransferases Dnmt3a and Dnmt3b towards the DNA in nucleosome. J Biochem 139:503–515

    Article  PubMed  CAS  Google Scholar 

  • Takeshima H, Suetake I, Tajima S (2008) Mouse Dnmt3a preferentially methylates linker DNA, and is inhibited by histone H1. J Mol Biol 383:810–821

    Article  PubMed  CAS  Google Scholar 

  • Takeshita K, Suetake I, Yamashita E, Suga M, Narita H, Nakagawa A, Tajima S (2011) Structural insight into maintenance methylation by mouse DNA methyltransferase 1 (Dnmt1). Proc Natl Acad Sci USA 108:9055–9059

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tamaru H, Selker EU (2001) A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature 414:277–283

    Article  PubMed  CAS  Google Scholar 

  • Umezawa A, Yamamoto H, Rhodes K, Klemsz MJ, Maki RA, Oshima RG (1997) Methylation of an ETS site in the intron enhancer of the keratin 18 gene participates in tissue-specific repression. Mol Cell Biol 17:4885–4894

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ushijima T, Watanabe N, Okochi E, Kaneda A, Sugimura T, Miyamoto K (2003) Fidelity of the methylation pattern and its variation in the genome. Genome Res 13:868–874

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Van Emburgh BO, Robertson KD (2011) Modulation of Dnmt3b function in vitro by interactions with Dnmt3L, Dnmt3a and Dnmt3b splice variants. Nucleic Acids Res 39:4984–5002

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Vertino PM, Yen RW, Gao J, Baylin SB (1996) De novo methylation of CpG island sequences in human fibroblasts overexpressing DNA (cytosine-5-)-methyltransferase. Mol Cell Biol 16:4555–4565

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Vilkaitis G, Suetake I, Klimasauskas S, Tajima S (2005) Processive methylation of hemimethylated CpG sites by mouse Dnmt1 DNA methyltransferase. J Biol Chem 280:63–72

    Article  CAS  Google Scholar 

  • Wang YA, Kamarova Y, Shen KC, Jiang Z, Hahn MJ, Wang Y, Brooks SC (2005) DNA methyltransferase-3a interacts with p53 and represses p53-mediated gene expression. Cancer Biol Ther 4:1138–1143

    Article  PubMed  CAS  Google Scholar 

  • Watanabe D, Suetake I, Tada T, Tajima S (2002) Stage- and cell-specific expression of Dnmt3a and Dnmt3b during embryogenesis. Mech Dev 118:187–190

    Article  PubMed  CAS  Google Scholar 

  • Watanabe D, Suetake I, Tajima S, Hanaoka K (2004) Expression of Dnmt3b in mouse hematopoietic progenitor cells and spermatogonia at specific stages. Gene Expr Patterns 5:43–49

    Article  PubMed  CAS  Google Scholar 

  • Weisenberger DJ, Velicescu M, Preciado-Lopez MA, Gonzales FA, Tsai YC, Liang G, Jones PA (2002) Identification and characterization of alternatively spliced variants of DNA methyltransferase 3a in mammalian cells. Gene 298:91–99

    Article  PubMed  CAS  Google Scholar 

  • Weisenberger DJ, Velicescu M, Cheng JC, Gonzales FA, Liang G, Jones PA (2004) Role of the DNA methyltransferase variant DNMT3b3 in DNA methylation. Mol Cancer Res 2:62–72

    PubMed  CAS  Google Scholar 

  • Winkelmann J, Lin L, Schormair B, Kornum BR, Faraco J, Plazzi G, Melberg A, Cornelio F, Urban AE, Pizza F, Poli F, Grubert F, Wieland T, Graf E, Hallmayer J, Strom TM, Mignot E (2012) Mutations in DNMT1 cause autosomal dominant cerebellar ataxia, deafness and narcolepsy. Hum Mol Genet 21:2205–2210

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Xu G, Bestor TH, Bourc'his D, Hsieh C, Tommerup N, Bugge M, Hulten M, Qu X, Russo JJ, Viegas-Pequignot E (1999) Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature 402:187–191

    Article  PubMed  CAS  Google Scholar 

  • Yoder JA, Bestor TH (1998) A candidate mammalian DNA methyltransferase related to pmt1p of fission yeast. Hum Mol Genet 7:279–284

    Article  PubMed  CAS  Google Scholar 

  • Yoder JA, Walsh CP, Bestor TH (1997) Cytosine methylation and the ecology of intragenomic parasites. Trends Genet 13:335–340

    Article  PubMed  CAS  Google Scholar 

  • Zemach A, Kim MY, Hsieh P, Coleman-Derr D, Eshed-Williams L, Thao K, Harmer SL, Zilberman D (2013) The Arabidopsis nucleosome remodeler DDM1 allows DNA methyltransferases to access H1-containing heterochromatin. Cell 153:193–205

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhang G, Huang H, Liu D, Cheng Y, Liu X, Zhang W, Yin R, Zhang D, Zhang P, Liu J, Li C, Liu B, Luo Y, Zhu Y, Zhang N, He S, He C, Wang H, Chen D (2015) N6-methyladenine DNA modification in Drosophila. Cell 161:893–906

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Jurkowska R, Soeroes S, Rajavelu A, Dhayalan A, Bock I, Rathert P, Brandt O, Reinhardt R, Fischle W, Jeltsch A (2010) Chromatin methylation activity of Dnmt3a and Dnmt3a/3L is guided by interaction of the ADD domain with the histone H3 tail. Nucleic Acids Res 38:4246–4253

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhao X, Ueba T, Christie BR, Barkho B, McConnell MJ, Nakashima K, Lein ES, Eadie BD, Willhoite AR, Muotri AR, Summers RG, Chun J, Lee KF, Gage FH (2003) Mice lacking methyl-CpG binding protein 1 have deficits in adult neurogenesis and hippocampal function. Proc Natl Acad Sci USA 100:6777–6782

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhao Q, Rank G, Tan YT, Li H, Moritz RL, Simpson RJ, Cerruti L, Curtis DJ, Patel DJ, Allis CD, Cunningham JM, Jane SM (2009) PRMT5-mediated methylation of histone H4R3 recruits DNMT3A, coupling histone and DNA methylation in gene silencing. Nat Struct Mol Biol 16:304–311

    Article  PubMed  CAS  Google Scholar 

  • Zhu B, Zheng Y, Angliker H, Schwarz S, Thiry S, Siegmann M, Jost JP (2000) 5-Methylcytosine DNA glycosylase activity is also present in the human MBD4 (G/T mismatch glycosylase) and in a related avian sequence. Nucleic Acids Res 28:4157–4165

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhu H, Geiman TM, Xi S, Jiang Q, Schmidtmann A, Chen T, Li E, Muegge K (2006) Lsh is involved in de novo methylation of DNA. EMBO J 25:335–345

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zuo X, Sheng J, Lau HT, McDonald CM, Andrade M, Cullen DE, Bell FT, Iacovino M, Kyba M, Xu G, Li X (2012) Zinc finger protein ZFP57 requires its co-factor to recruit DNA methyltransferases and maintains DNA methylation imprint in embryonic stem cells via its transcriptional repression domain. J Biol Chem 287:2107–2118

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoji Tajima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Tajima, S., Kimura, H., Suetake, I. (2016). Establishment and Maintenance of DNA Methylation. In: Hanaoka, F., Sugasawa, K. (eds) DNA Replication, Recombination, and Repair. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55873-6_20

Download citation

Publish with us

Policies and ethics