Skip to main content

Mismatch Repair

  • Chapter
  • First Online:
  • 3327 Accesses

Abstract

The concept of mismatch repair (MMR) was formulated independently in 1964 to explain the removal of brominated nucleotides from DNA as well as gene conversion during genetic recombination. In the intervening 40 years, the field has developed incrementally, punctuated by a number of transformative genetic and biochemical studies. Two core MMR genes, MutS and MutL, have been conserved throughout life on earth. Defects in human MutS homologues (MSH) and MutL homologues (MLH/PMS) cause the common cancer predisposition Lynch syndrom or hereditary nonpolyposis colorectal cancer (LS/HNPCC). Work on the mechanism of MMR has been significantly aided by completely defined biochemical systems in vitro as well as several crystal snapshots that depict critical intermediates. It has been mired by unseemly biochemical conditions and misinterpretation. The contemporary use of real-time single molecule imaging has the potential to finally and fully resolve the mechanics of MMR. This review describes genetic, biochemical, and biophysical studies that contributed to the development of models for MMR.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Acharya S, Wilson T, Gradia S, Kane MF, Guerrette S, Marsischky GT, Kolodner R, Fishel R (1996) hMSH2 forms specific mispair-binding complexes with hMSH3 and hMSH6. Proc Natl Acad Sci U S A 93(24):13629–13634

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Acharya S, Foster PL, Brooks P, Fishel R (2003) The coordinated functions of the E. coli MutS and MutL proteins in mismatch repair. Mol Cell 12(1):233–246

    Article  PubMed  CAS  Google Scholar 

  • Allen DJ, Makhov A, Grilley M, Taylor J, Thresher R, Modrich P, Griffith JD (1997) MutS mediates heteroduplex loop formation by a translocation mechanism. EMBO J 16(14):4467–4476

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Allen-Soltero S, Martinez SL, Putnam CD, Kolodner RD (2014) A Saccharomyces cerevisiae RNase H2 interaction network functions to suppress genome instability. Mol Cell Biol 34(8):1521–1534. doi:10.1128/MCB.00960-13

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Amin NS, Nguyen MN, Oh S, Kolodner RD (2001) exo1-Dependent mutator mutations: model system for studying functional interactions in mismatch repair. Mol Cell Biol 21(15):5142–5155

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Andrew SE, Reitmair AH, Fox J, Hsiao L, Francis A, McKinnon M, Mak TW, Jirik FR (1997) Base transitions dominate the mutational spectrum of a transgenic reporter gene in MSH2 deficient mice. Oncogene 15(2):123–129

    Article  PubMed  CAS  Google Scholar 

  • Antony E, Hingorani MM (2003) Mismatch recognition-coupled stabilization of Msh2-Msh6 in an ATP-bound state at the initiation of DNA repair. Biochemistry 42(25):7682–7693

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Balaban GB, Herlyn M, Clark WH Jr, Nowell PC (1986) Karyotypic evolution in human malignant melanoma. Cancer Genet Cytogenet 19:113–122

    Article  PubMed  CAS  Google Scholar 

  • Ban C, Yang W (1998) Crystal structure and ATPase activity of MutL: implications for DNA repair and mutagenesis. Cell 95(4):541–552

    Article  PubMed  CAS  Google Scholar 

  • Ban C, Junop M, Yang W (1999) Transformation of MutL by ATP binding and hydrolysis: a switch in DNA mismatch repair. Cell 97(1):85–97

    Article  PubMed  CAS  Google Scholar 

  • Berger MF, Lawrence MS, Demichelis F, Drier Y, Cibulskis K, Sivachenko AY, Sboner A, Esgueva R, Pflueger D, Sougnez C, Onofrio R, Carter SL, Park K, Habegger L, Ambrogio L, Fennell T, Parkin M, Saksena G, Voet D, Ramos AH, Pugh TJ, Wilkinson J, Fisher S, Winckler W, Mahan S, Ardlie K, Baldwin J, Simons JW, Kitabayashi N, MacDonald TY, Kantoff PW, Chin L, Gabriel SB, Gerstein MB, Golub TR, Meyerson M, Tewari A, Lander ES, Getz G, Rubin MA, Garraway LA (2011) The genomic complexity of primary human prostate cancer. Nature 470(7333):214–220

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bjornson KP, Blackwell LJ, Sage H, Baitinger C, Allen D, Modrich P (2003) Assembly and molecular activities of the MutS tetramer. J Biol Chem 278(36):34667–34673

    Article  PubMed  CAS  Google Scholar 

  • Blackwell LJ, Bjornson KP, Modrich P (1998) DNA-dependent activation of the hMutS alpha ATPase. J Biol Chem 273(48):32049–32054

    Article  PubMed  CAS  Google Scholar 

  • Bocker T, Barusevicius A, Snowden T, Rasio D, Guerrette S, Robbins D, Schmidt C, Burczak J, Croce CM, Copeland T, Kovatich AJ, Fishel R (1999) hMSH5: a human MutS homologue that forms a novel heterodimer with hMSH4 and is expressed during spermatogenesis. Cancer Res 59(4):816–822

    PubMed  CAS  Google Scholar 

  • Bowen N, Smith CE, Srivatsan A, Willcox S, Griffith JD, Kolodner RD (2013) Reconstitution of long and short patch mismatch repair reactions using Saccharomyces cerevisiae proteins. Proc Natl Acad Sci U S A 110(46):18472–18477

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bronner CE, Baker SM, Morrison PT, Warren G, Smith LG, Lescoe MK, Kane M, Earabino C, Lipford J, Lindblom A et al (1994) Mutation in the DNA mismatch repair gene homologue hMLH1 is associated with hereditary non-polyposis colon cancer. Nature 368(6468):258–261

    Article  PubMed  CAS  Google Scholar 

  • Cairns J, Overbaugh J, Miller S (1988) The origin of mutants. Nature 335(6186):142–145

    Article  PubMed  CAS  Google Scholar 

  • Calmann MA, Nowosielska A, Marinus MG (2005) The MutS C terminus is essential for mismatch repair activity in vivo. J Bacteriol 187(18):6577–6579

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Charbonneau N, Amunugama R, Schmutte C, Yoder K, Fishel R (2009) Evidence that hMLH3 functions primarily in meiosis and in hMSH2-hMSH3 mismatch repair. Cancer Biol Ther 8:1411–1420

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chen C, Merrill BJ, Lau PJ, Holm C, Kolodner RD (1999) Saccharomyces cerevisiae pol30 (proliferating cell nuclear antigen) mutations impair replication fidelity and mismatch repair. Mol Cell Biol 19(11):7801–7815

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cho WK, Jeong C, Kim D, Chang M, Song KM, Hanne J, Ban C, Fishel R, Lee JB (2012) ATP alters the diffusion mechanics of MutS on mismatched DNA. Structure 20(7):1264–1274

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Clark AJ, Adelberg EA (1962) Bacterial conjugation. Annu Rev Microbiol 16:289–319

    Article  PubMed  CAS  Google Scholar 

  • Constantin N, Dzantiev L, Kadyrov FA, Modrich P (2005) Human mismatch repair: reconstitution of a nick-directed bidirectional reaction. J Biol Chem 280(48):39752–39761

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cox EC (1976) Bacterial mutator genes and the control of spontaneous mutation. Ann Rev Genet 10:135–156

    Article  PubMed  CAS  Google Scholar 

  • Cox MM (2007) Regulation of bacterial RecA protein function. Crit Rev Biochem Mol Biol 42:41–63

    Article  PubMed  CAS  Google Scholar 

  • Cristovao M, Sisamakis E, Hingorani MM, Marx AD, Jung CP, Rothwell PJ, Seidel CA, Friedhoff P (2012) Single-molecule multiparameter fluorescence spectroscopy reveals directional MutS binding to mismatched bases in DNA. Nucleic Acids Res 40(12):5448–5464

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Curtiss R 3rd (1969) Bacterial conjugation. Annu Rev Microbiol 23:69–136

    Article  PubMed  CAS  Google Scholar 

  • Das Gupta R, Kolodner RD (2000) Novel dominant mutations in Saccharomyces cerevisiae MSH6. Nat Genet 24(1):53–56

    Article  PubMed  CAS  Google Scholar 

  • Datta A, Adjiri A, New L, Crouse GF, Jinks Robertson S (1996) Mitotic crossovers between diverged sequences are regulated by mismatch repair proteins in Saccharomyces cerevisiae. Mol Cell Biol 16(3):1085–1093

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Datta A, Hendrix M, Lipsitch M, Jinks Robertson S (1997) Dual roles for DNA sequence identity and the mismatch repair system in the regulation of mitotic crossing-over in yeast. Proc Natl Acad Sci U S A 94(18):9757–9762

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • de Vries SS, Baart EB, Dekker M, Siezen A, de Rooij DG, de Boer P, te Riele H (1999) Mouse MutS-like protein Msh5 is required for proper chromosome synapsis in male and female meiosis. Genes Dev 13(5):523–531

    Article  PubMed Central  PubMed  Google Scholar 

  • Ding L, Getz G, Wheeler DA, Mardis ER, McLellan MD, Cibulskis K, Sougnez C, Greulich H, Muzny DM, Morgan MB, Fulton L, Fulton RS, Zhang Q, Wendl MC, Lawrence MS, Larson DE, Chen K, Dooling DJ, Sabo A, Hawes AC, Shen H, Jhangiani SN, Lewis LR, Hall O, Zhu Y, Mathew T, Ren Y, Yao J, Scherer SE, Clerc K, Metcalf GA, Ng B, Milosavljevic A, Gonzalez-Garay ML, Osborne JR, Meyer R, Shi X, Tang Y, Koboldt DC, Lin L, Abbott R, Miner TL, Pohl C, Fewell G, Haipek C, Schmidt H, Dunford-Shore BH, Kraja A, Crosby SD, Sawyer CS, Vickery T, Sander S, Robinson J, Winckler W, Baldwin J, Chirieac LR, Dutt A, Fennell T, Hanna M, Johnson BE, Onofrio RC, Thomas RK, Tonon G, Weir BA, Zhao X, Ziaugra L, Zody MC, Giordano T, Orringer MB, Roth JA, Spitz MR, Wistuba II, Ozenberger B, Good PJ, Chang AC, Beer DG, Watson MA, Ladanyi M, Broderick S, Yoshizawa A, Travis WD, Pao W, Province MA, Weinstock GM, Varmus HE, Gabriel SB, Lander ES, Gibbs RA, Meyerson M, Wilson RK (2008) Somatic mutations affect key pathways in lung adenocarcinoma. Nature 455(7216):1069–1075

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Drotschmann K, Hall MC, Shcherbakova PV, Wang H, Erie DA, Brownewell FR, Kool ET, Kunkel TA (2002) DNA binding properties of the yeast Msh2-Msh6 and Mlh1-Pms1 heterodimers. Biol Chem 383(6):969–975

    Article  PubMed  CAS  Google Scholar 

  • Drummond JT, Li GM, Longley MJ, Modrich P (1995) Isolation of an hMSH2-p160 heterodimer that restores DNA mismatch repair to tumor cells [see comments]. Science 268(5219):1909–1912

    Article  PubMed  CAS  Google Scholar 

  • Dutta R, Inouye M (2000) GHKL, an emergent ATPase/kinase superfamily. Trends Biochem Sci 25(1):24–28

    Article  PubMed  CAS  Google Scholar 

  • Edelmann W, Cohen PE, Kneitz B, Winand N, Lia M, Heyer J, Kolodner R, Pollard JW, Kucherlapati R (1999) Mammalian MutS homologue 5 is required for chromosome pairing in meiosis. Nat Genet 21(1):123–127

    Article  PubMed  CAS  Google Scholar 

  • Eisen JA (1998) A phylogenomic study of the MutS family of proteins. Nucleic Acids Res 26(18):4291–4300

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Eisen JA, Kaiser D, Myers RM (1997) Gastrogenomic delights: a movable feast. Nat Med 3(10):1076–1078

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Fishel R (1998) Mismatch repair, molecular switches, and signal transduction. [Review] [56 refs]. Genes Dev 12(14):2096–2101

    Article  PubMed  CAS  Google Scholar 

  • Fishel R (1999) Signaling mismatch repair in cancer. Nat Med 5(11):1239–1241

    Article  PubMed  CAS  Google Scholar 

  • Fishel R (2001) The selection for mismatch repair defects in hereditary nonpolyposis colorectal cancer: revising the mutator hypothesis. Cancer Res 61(20):7369–7374

    PubMed  CAS  Google Scholar 

  • Fishel R, Wilson T (1997) MutS homologs in mammalian cells. [Review] [84 refs]. Curr Opin Genet Dev 7(1):105–113

    Article  PubMed  CAS  Google Scholar 

  • Fishel R, Lescoe MK, Rao MR, Copeland NG, Jenkins NA, Garber J, Kane M, Kolodner R (1993) The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell 75(5):1027–1038

    Article  PubMed  CAS  Google Scholar 

  • Fishel R, Acharya S, Berardini M, Bocker T, Charbonneau N, Cranston A, Gradia S, Guerrette S, Heinen CD, Mazurek A, Snowden T, Schmutte C, Shim KS, Tombline G, Wilson T (2000) Signaling mismatch repair: the mechanics of an adenosine-nucleotide molecular switch. Cold Spring Harb Symp Quant Biol 65:217–224

    Article  PubMed  CAS  Google Scholar 

  • Flores-Rozas H, Clark D, Kolodner RD (2000) Proliferating cell nuclear antigen and Msh2p-Msh6p interact to form an active mispair recognition complex. Nat Genet 26(3):375–378

    Article  PubMed  CAS  Google Scholar 

  • Forties RA, North JA, Javaid S, Tabbaa OP, Fishel R, Poirier MG, Bundschuh R (2011) A quantitative model of nucleosome dynamics. Nucleic Acids Res 39(19):8306–8313

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Friedberg EC, Walker GC, Siede W (1995) DNA repair and mutagenesis. American Society for Microbiology, Washington, DC

    Google Scholar 

  • Friedberg EC, Walker GC, Siede W, Wood RD, Schultz RA, Ellenberger T (2006) DNA repair and mutagenesis, 2nd edn. American Society of Microbiology, Washington, DC

    Google Scholar 

  • Genschel J, Bazemore LR, Modrich P (2002) Human exonuclease I is required for 5′ and 3′ mismatch repair. J Biol Chem 277(15):13302–13311

    Article  PubMed  CAS  Google Scholar 

  • Ghodgaonkar MM, Lazzaro F, Olivera-Pimentel M, Artola-Boran M, Cejka P, Reijns MA, Jackson AP, Plevani P, Muzi-Falconi M, Jiricny J (2013) Ribonucleotides misincorporated into DNA act as strand-discrimination signals in eukaryotic mismatch repair. Mol Cell 50(3):323–332

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Glazer PM, Sarkar SN, Chisholm GE, Summers WC (1987) DNA mismatch repair detected in human cell extracts. Mol Cell Biol 7(1):218–224

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Goellner EM, Smith CE, Campbell CS, Hombauer H, Desai A, Putnam CD, Kolodner RD (2014) PCNA and Msh2-Msh6 activate an Mlh1-Pms1 endonuclease pathway required for Exo1-independent mismatch repair. Mol Cell 55(2):291–304

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gong JG, Costanzo A, Yang HQ, Melino G, Kaelin WG Jr, Levrero M, Wang JY (1999) The tyrosine kinase c-Abl regulates p73 in apoptotic response to cisplatin-induced DNA damage [see comments]. Nature 399(6738):806–809

    Article  PubMed  CAS  Google Scholar 

  • Gorman J, Chowdhury A, Surtees JA, Shimada J, Reichman DR, Alani E, Greene EC (2007) Dynamic basis for one-dimensional DNA scanning by the mismatch repair complex Msh2-Msh6. Mol Cell 28(3):359–370

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gorman J, Plys AJ, Visnapuu ML, Alani E, Greene EC (2010) Visualizing one-dimensional diffusion of eukaryotic DNA repair factors along a chromatin lattice. Nat Struct Mol Biol 17(8):932–938

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gorman J, Wang F, Redding S, Plys AJ, Fazio T, Wind S, Alani EE, Greene EC (2012) Single-molecule imaging reveals target-search mechanisms during DNA mismatch repair. Proc Natl Acad Sci U S A 109(45):E3074–E3083

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gradia S, Acharya S, Fishel R (1997) The human mismatch recognition complex hMSH2-hMSH6 functions as a novel molecular switch. Cell 91(7):995–1005

    Article  PubMed  CAS  Google Scholar 

  • Gradia S, Subramanian D, Wilson T, Acharya S, Makhov A, Griffith J, Fishel R (1999) hMSH2-hMSH6 forms a hydrolysis-independent sliding clamp on mismatched DNA. Mol Cell 3(2):255–261

    Article  PubMed  CAS  Google Scholar 

  • Gradia S, Acharya S, Fishel R (2000) The role of mismatched nucleotides in activating the hMSH2-hMSH6 molecular switch. J Biol Chem 275:3922–3930

    Article  PubMed  CAS  Google Scholar 

  • Grilley M, Welsh KM, Su SS, Modrich P (1989) Isolation and characterization of the Escherichia coli mutL gene product. J Biol Chem 264(2):1000–1004

    PubMed  CAS  Google Scholar 

  • Groth A, Rocha W, Verreault A, Almouzni G (2007) Chromatin challenges during DNA replication and repair. Cell 128(4):721–733

    Article  PubMed  CAS  Google Scholar 

  • Guarne A, Ramon-Maiques S, Wolff EM, Ghirlando R, Hu X, Miller JH, Yang W (2004) Structure of the MutL C-terminal domain: a model of intact MutL and its roles in mismatch repair. EMBO J 23(21):4134–4145

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gueneau E, Dherin C, Legrand P, Tellier-Lebegue C, Gilquin B, Bonnesoeur P, Londino F, Quemener C, Le Du MH, Marquez JA, Moutiez M, Gondry M, Boiteux S, Charbonnier JB (2013) Structure of the MutLalpha C-terminal domain reveals how Mlh1 contributes to Pms1 endonuclease site. Nat Struct Mol Biol 20(4):461–468

    Article  PubMed  CAS  Google Scholar 

  • Guerrette S, Wilson T, Gradia S, Fishel R (1998) Interactions of human hMSH2 with hMSH3 and hMSH2 with hMSH6: examination of mutations found in hereditary nonpolyposis colorectal cancer. Mol Cell Biol 18(11):6616–6623

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Guerrette S, Acharya S, Fishel R (1999) The interaction of the human MutL homologues in hereditary nonpolyposis colon cancer. J Biol Chem 274(10):6336–6341

    Article  PubMed  CAS  Google Scholar 

  • Gupta S, Gellert M, Yang W (2012) Mechanism of mismatch recognition revealed by human MutSbeta bound to unpaired DNA loops. Nat Struct Mol Biol 19(1):72–78

    Article  CAS  Google Scholar 

  • Haber LT, Walker GC (1991) Altering the conserved nucleotide binding motif in the Salmonella typhimurium MutS mismatch repair protein affects both its ATPase and mismatch binding activities. EMBO J 10(9):2707–2715

    PubMed Central  PubMed  CAS  Google Scholar 

  • Haldane JBS (1919) The combination of linkage values, and the calculation of distances between the loci of linked factors. J Genet 8:299–309

    Article  Google Scholar 

  • Hall MC, Matson SW (1999) The Escherichia coli MutL protein physically interacts with MutH and stimulates the MutH-associated endonuclease activity. J Biol Chem 274(3):1306–1312

    Article  PubMed  CAS  Google Scholar 

  • Hall MC, Jordan JR, Matson SW (1998) Evidence for a physical interaction between the Escherichia coli methyl-directed mismatch repair proteins MutL and UvrD. EMBO J 17(5):1535–1541

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hall MC, Wang H, Erie DA, Kunkel TA (2001) High affinity cooperative DNA binding by the yeast Mlh1-Pms1 heterodimer. J Mol Biol 312:637–647

    Article  PubMed  CAS  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    Article  PubMed  CAS  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  PubMed  CAS  Google Scholar 

  • Hargreaves VV, Shell SS, Mazur DJ, Hess MT, Kolodner RD (2010) Interaction between the Msh2 and Msh6 nucleotide-binding sites in the Saccharomyces cerevisiae Msh2-Msh6 complex. J Biol Chem 285(12):9301–9310

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Harrington JM, Kolodner RD (2007) Saccharomyces cerevisiae Msh2-Msh3 acts in repair of base-base mispairs. Mol Cell Biol 27(18):6546–6554

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Harris S, Rudnicki KS, Haber JE (1993) Gene conversions and crossing over during homologous and homeologous ectopic recombination in Saccharomyces cerevisiae. Genetics 135:5–16

    PubMed Central  PubMed  CAS  Google Scholar 

  • Harris RS, Feng G, Ross KJ, Sidhu R, Thulin C, Longerich S, Szigety SK, Winkler ME, Rosenberg SM (1997) Mismatch repair protein MutL becomes limiting during stationary-phase mutation. Genes Dev 11(18):2426–2437

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Heinen CD, Cyr JL, Cook C, Punja N, Sakato M, Forties RA, Lopez JM, Hingorani MM, Fishel R (2011) Human MSH2 (hMSH2) protein controls ATP processing by hMSH2-hMSH6. J Biol Chem 286(46):40287–40295

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hess MT, Gupta RD, Kolodner RD (2002) Dominant Saccharomyces cerevisiae msh6 mutations cause increased mispair binding and decreased dissociation from mispairs by Msh2-Msh6 in the presence of ATP. J Biol Chem 277(28):25545–25553

    Article  PubMed  CAS  Google Scholar 

  • Hinz JM, Meuth M (1999) MSH3 deficiency is not sufficient for a mutator phenotype in Chinese hamster ovary cells. Carcinogenesis 20(2):215–220

    Article  PubMed  CAS  Google Scholar 

  • Holliday RA (1964) A mechanism for gene conversion in fungi. Genet Res 5:282–304

    Article  Google Scholar 

  • Hollingsworth NM, Ponte L, Halsey C (1995) MSH5, a novel MutS homolog, facilitates meiotic reciprocal recombination between homologs in Saccharomyces cerevisiae but not mismatch repair. Genes Dev 9(14):1728–1739

    Article  PubMed  CAS  Google Scholar 

  • Holmes J Jr, Clark S, Modrich P (1990) Strand-specific mismatch correction in nuclear extracts of human and Drosophila melanogaster cell lines. Proc Natl Acad Sci U S A 87(15):5837–5841

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hombauer H, Campbell CS, Smith CE, Desai A, Kolodner RD (2011) Visualization of eukaryotic DNA mismatch repair reveals distinct recognition and repair intermediates. Cell 147(5):1040–1053

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Honda M, Okuno Y, Hengel SR, Martin-Lopez JV, Cook CP, Amunugama R, Soukup RJ, Subramanyam S, Fishel R, Spies M (2014) Mismatch repair protein hMSH2-hMSH6 recognizes mismatches and forms sliding clamps within a D-loop recombination intermediate. Proc Natl Acad Sci U S A 111(3):E316–E325

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Huang ME, Rio AG, Nicolas A, Kolodner RD (2003) A genomewide screen in Saccharomyces cerevisiae for genes that suppress the accumulation of mutations. Proc Natl Acad Sci U S A 100(20):11529–11534

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Isaacs RJ, Spielmann HP (2004) A model for initial DNA lesion recognition by NER and MMR based on local conformational flexibility. DNA Repair (Amst) 3(5):455–464

    Article  CAS  Google Scholar 

  • Jackson V (1988) Deposition of newly synthesized histones: hybrid nucleosomes are not tandemly arranged on daughter DNA strands. Biochemistry 27(6):2109–2120

    Article  PubMed  CAS  Google Scholar 

  • Javaid S, Manohar M, Punja N, Mooney A, Ottesen JJ, Poirier MG, Fishel R (2009) Nucleosome remodeling by hMSH2-hMSH6. Mol Cell 36(6):1086–1094

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Jeong C, Cho WK, Song KM, Cook C, Yoon TY, Ban C, Fishel R, Lee JB (2011) MutS switches between two fundamentally distinct clamps during mismatch repair. Nat Struct Mol Biol 18(3):379–385

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Jones M, Wagner R, Radman M (1987) Repair of a mismatch is influenced by the base composition of the surrounding nucleotide sequence. Genetics 115(4):605–610

    PubMed Central  PubMed  CAS  Google Scholar 

  • Junop MS, Obmolova G, Rausch K, Hsieh P, Yang W (2001) Composite active site of an ABC ATPase: MutS uses ATP to verify mismatch recognition and authorize DNA repair. Mol Cell 7(1):1–12

    Article  PubMed  CAS  Google Scholar 

  • Kadyrov FA, Dzantiev L, Constantin N, Modrich P (2006) Endonucleolytic function of MutLalpha in human mismatch repair. Cell 126(2):297–308

    Article  PubMed  CAS  Google Scholar 

  • Kadyrov FA, Holmes SF, Arana ME, Lukianova OA, O’Donnell M, Kunkel TA, Modrich P (2007) Saccharomyces cerevisiae MutLalpha is a mismatch repair endonuclease. J Biol Chem 282(51):37181–37190

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kirkpatrick DT, Petes TD (1997) Repair of DNA loops involves DNA-mismatch and nucleotide-excision repair proteins. Nature 387(6636):929–931

    Article  PubMed  CAS  Google Scholar 

  • Kneitz B, Cohen PE, Avdievich E, Zhu L, Kane MF, Hou H Jr, Kolodner RD, Kucherlapati R, Pollard JW, Edelmann W (2000) MutS homolog 4 localization to meiotic chromosomes is required for chromosome pairing during meiosis in male and female mice. Genes Dev 14(9):1085–1097

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kolodner RD, Mendillo ML, Putnam CD (2007) Coupling distant sites in DNA during DNA mismatch repair. Proc Natl Acad Sci U S A 104(32):12953–12954

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kramer B, Kramer W, Williamson MS, Fogel S (1989a) Heteroduplex DNA correction in Saccharomyces cerevisiae is mismatch specific and requires functional PMS genes. Mol Cell Biol 9(10):4432–4440

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kramer W, Kramer B, Williamson MS, Fogel S (1989b) Cloning and nucleotide sequence of DNA mismatch repair gene PMS1 from Saccharomyces cerevisiae: homology of PMS1 to procaryotic MutL and HexB. J Bacteriol 171(10):5339–5346

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kunkel TA (2004) DNA replication fidelity. J Biol Chem 279(17):16895–16898

    Article  PubMed  CAS  Google Scholar 

  • Kunkel TA, Erie DA (2005) DNA mismatch repair. Annu Rev Biochem 74:681–710

    Article  PubMed  CAS  Google Scholar 

  • Lahue RS, Au KG, Modrich P (1989) DNA mismatch correction in a defined system. Science 245(4914):160–164

    Article  PubMed  CAS  Google Scholar 

  • Lamers MH, Perrakis A, Enzlin JH, Winterwerp HH, de Wind N, Sixma TK (2000) The crystal structure of DNA mismatch repair protein MutS binding to a G × T mismatch. [see comments]. Nature 407(6805):711–717

    Article  PubMed  CAS  Google Scholar 

  • Lamers MH, Winterwerp HH, Sixma TK (2003) The alternating ATPase domains of MutS control DNA mismatch repair. EMBO J 22(3):746–756

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Längle-Rouault F, Maenhaut-Michel G, Radman M (1986) GATC sequence and mismatch repair in Escherichia coli. EMBO J 5:2009–2013

    Google Scholar 

  • Lau PJ, Kolodner RD (2003) Transfer of the MSH2.MSH6 complex from proliferating cell nuclear antigen to mispaired bases in DNA. J Biol Chem 278(1):14–17

    Article  PubMed  CAS  Google Scholar 

  • Leach FS, Nicolaides NC, Papadopoulos N, Liu B, Jen J, Parsons R, Peltomaki P, Sistonen P, Aaltonen LA, Nystrom-Lahti M, Guan X-Y, Zhang J, Meltzer PS, Yu J-W, Kao F-T, Chen DJ, Cerosaletti KM, Fournier REK, Todd S, Lewis T, Leach RJ, Naylor SL, Weissenbach J, Mecklin J-P, Jarvinen H, Petersen GM, Hamilton SR, Green J, Jass J, Watson P, Lynch HT, Trent JM, de la Chapelle A, Kinsler KW, Vogelstein B (1993) Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer. Cell 75:1215–1225

    Article  PubMed  CAS  Google Scholar 

  • Lee JB, Cho WK, Park J, Jeon Y, Kim D, Lee SH, Fishel R (2014) Single-molecule views of MutS on mismatched DNA. DNA Repair (Amst) 20:82–93

    Article  CAS  Google Scholar 

  • Li G-M, Modrich P (1995) Restoration of mismatch repair in nuclear extracts of H6 colorectal tumor cells by a heterodimer of human MutL homologs. Proc Natl Acad Sci U S A 92:1950–1954

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Li F, Tian L, Gu L, Li GM (2009) Evidence that nucleosomes inhibit mismatch repair in eukaryotic cells. J Biol Chem 284(48):33056–33061

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Li F, Mao G, Tong D, Huang J, Gu L, Yang W, Li GM (2013) The histone mark H3K36me3 regulates human DNA mismatch repair through its interaction with MutSalpha. Cell 153(3):590–600

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lin DP, Wang Y, Scherer SJ, Clark AB, Yang K, Avdievich E, Jin B, Werling U, Parris T, Kurihara N, Umar A, Kucherlapati R, Lipkin M, Kunkel TA, Edelmann W (2004) An Msh2 point mutation uncouples DNA mismatch repair and apoptosis. Cancer Res 64(2):517–522

    Article  PubMed  CAS  Google Scholar 

  • Loeb LA (1991) Mutator phenotype may be required for multistage carcinogenesis. [Review] [63 refs]. Cancer Res 51(12):3075–3079

    PubMed  CAS  Google Scholar 

  • Loeb LA (2001) A mutator phenotype in cancer [review]. Cancer Res 61(8):3230–3239

    PubMed  CAS  Google Scholar 

  • Lopez de Saro FJ, Marinus MG, Modrich P, O’Donnell M (2006) The beta sliding clamp binds to multiple sites within MutL and MutS. J Biol Chem 281(20):14340–14349

    Article  PubMed  CAS  Google Scholar 

  • Lu AL, Clark S, Modrich P (1983) Methyl-directed repair of DNA base-pair mismatches in vitro. Proc Natl Acad Sci U S A 80(15):4639–4643

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lubelsky Y, Prinz JA, DeNapoli L, Li Y, Belsky JA, MacAlpine DM (2014) DNA replication and transcription programs respond to the same chromatin cues. Genome Res 24(7):1102–1114

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lujan SA, Williams JS, Clausen AR, Clark AB, Kunkel TA (2013) Ribonucleotides are signals for mismatch repair of leading-strand replication errors. Mol Cell 50(3):437–443

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Manohar M, Mooney AM, North JA, Nakkula RJ, Picking JW, Edon A, Fishel R, Poirier MG, Ottesen JJ (2009) Acetylation of histone H3 at the nucleosome dyad alters DNA-histone binding. J Biol Chem 284(35):23312–23321

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Marinus MG (1976) Adenine methylation of Okazaki fragments in Escherichia coli. J Bacteriol 128(3):853–854

    PubMed Central  PubMed  CAS  Google Scholar 

  • Markowitz S, Wang J, Myeroff L, Parsons R, Sun L, Lutterbaugh J, Fan RS, Zborowska E, Kinzler KW, Vogelstein B et al (1995) Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. Science 268(5215):1336–1338

    Article  PubMed  CAS  Google Scholar 

  • Marsischky GT, Kolodner RD (1999) Biochemical characterization of the interaction between the Saccharomyces cerevisiae MSH2-MSH6 complex and mispaired bases in DNA. J Biol Chem 274(38):26668–26682

    Article  PubMed  CAS  Google Scholar 

  • Marsischky GT, Filosi N, Kane MF, Kolodner R (1996) Redundancy of Saccharomyces cerevisiae MSH3 and MSH6 in MSH2-dependent mismatch repair. Genes Dev 10(4):407–420

    Article  PubMed  CAS  Google Scholar 

  • Mazur DJ, Mendillo ML, Kolodner RD (2006) Inhibition of Msh6 ATPase activity by mispaired DNA induces a Msh2(ATP)-Msh6(ATP) state capable of hydrolysis-independent movement along DNA. Mol Cell 22(1):39–49

    Article  PubMed  CAS  Google Scholar 

  • Mazurek A, Johnson CN, Germann MW, Fishel R (2009) Sequence context effect for hMSH2-hMSH6 mismatch-dependent activation. Proc Natl Acad Sci U S A 106(11):4177–4182

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mendillo ML, Mazur DJ, Kolodner RD (2005) Analysis of the interaction between the Saccharomyces cerevisiae MSH2-MSH6 and MLH1-PMS1 complexes with DNA using a reversible DNA end-blocking system. J Biol Chem 280(23):22245–22257

    Article  PubMed  CAS  Google Scholar 

  • Mendillo ML, Putnam CD, Kolodner RD (2007) Escherichia coli MutS tetramerization domain structure reveals that stable dimers but not tetramers are essential for DNA mismatch repair in vivo. J Biol Chem 282(22):16345–16354

    Article  PubMed  CAS  Google Scholar 

  • Miller JH (1998) Mutators in Escherichia coli. Mutat Res 409(3):99–106

    Article  PubMed  CAS  Google Scholar 

  • Modrich P (1989) Methyl-directed DNA mismatch correction. J Biol Chem 264(12):6597–6600

    PubMed  CAS  Google Scholar 

  • Modrich P (1997) Strand-specific mismatch repair in mammalian cells [review]. J Biol Chem 272(40):24727–24730

    Article  PubMed  CAS  Google Scholar 

  • Muller HJ (1916) The mechanism of crossing-over. Am Nat 50:193–221

    Article  Google Scholar 

  • Muster-Nassal C, Kolodner R (1986) Mismatch correction catalyzed by cell-free extracts of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 83(20):7618–7622

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Natrajan G, Lamers MH, Enzlin JH, Winterwerp HHK, Perrakis A, Sixma TK (2003) Structures of Escherichia coli DNA mismatch repair enzyme MutS in complex with different mismatches: a common recognition mode for diverse substrates. Nucleic Acids Res 31(16):4814–4821

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ni TT, Marsischky GT, Kolodner RD (1999) MSH2 and MSH6 are required for removal of adenine misincorporated opposite 8-oxo-guanine in S. cerevisiae. Mol Cell 4(3):439–444

    Article  PubMed  CAS  Google Scholar 

  • Nick McElhinny SA, Watts BE, Kumar D, Watt DL, Lundstrom EB, Burgers PM, Johansson E, Chabes A, Kunkel TA (2010) Abundant ribonucleotide incorporation into DNA by yeast replicative polymerases. Proc Natl Acad Sci U S A 107(11):4949–4954

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Nicolaides NC, Papadopoulos N, Liu B, Wei YF, Carter KC, Ruben SM, Rosen CA, Haseltine WA, Fleischmann RD, Fraser CM et al (1994) Mutations of two PMS homologues in hereditary nonpolyposis colon cancer. Nature 371(6492):75–80

    Article  PubMed  CAS  Google Scholar 

  • North JA, Javaid S, Ferdinand MB, Chatterjee N, Picking JW, Shoffner M, Nakkula RJ, Bartholomew B, Ottesen JJ, Fishel R, Poirier MG (2011) Phosphorylation of histone H3(T118) alters nucleosome dynamics and remodeling. Nucleic Acids Res 39(15):6465–6474

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • North JA, Shimko JC, Javaid S, Mooney AM, Shoffner MA, Rose SD, Bundschuh R, Fishel R, Ottesen JJ, Poirier MG (2012) Regulation of the nucleosome unwrapping rate controls DNA accessibility. Nucleic Acids Res 40(20):10215–10227

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Obmolova G, Ban C, Hsieh P, Yang W (2000) Crystal structures of mismatch repair protein MutS and its complex with a substrate DNA. Nature 407(6805):703–710

    Article  PubMed  CAS  Google Scholar 

  • Okazaki R, Okazaki T, Sakabe K, Sugimoto K, Sugino A (1968) Mechanism of DNA chain growth. I. Possible discontinuity and unusual secondary structure of newly synthesized chains. Proc Natl Acad Sci U S A 59(2):598–605

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Orans J, McSweeney EA, Iyer RR, Hast MA, Hellinga HW, Modrich P, Beese LS (2011) Structures of human exonuclease 1 DNA complexes suggest a unified mechanism for nuclease family. Cell 145(2):212–223

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Palombo F, Iaccarino I, Nakajima E, Ikejima M, Shimada T, Jiricny J (1996) hMutSbeta, a heterodimer of hMSH2 and hMSH3, binds to insertion/deletion loops in DNA. Curr Biol 6(9):1181–1184

    Article  PubMed  CAS  Google Scholar 

  • Pang Q, Prolla TA, Liskay RM (1997) Functional domains of the Saccharomyces cerevisiae Mlh1p and Pms1p DNA mismatch repair proteins and their relevance to human hereditary nonpolyposis colorectal cancer-associated mutations. Mol Cell Biol 17(8):4465–4473

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Papadopoulos N, Nicolaides NC, Wei Y-F, Ruben SM, Carter KC, Rosen CA, Haseltine WA, Fleischmann RD, Fraser CM, Adams MD, Venter JC, Hamilton SR, Petersen GM, Watson P, Lynch HT, Peltomaki P, Mecklin J-P, de la Chapelle A, Kinzler KW, Vogelstein B (1994) Mutation of a mutL homolog in hereditary colon cancer. Science 263:1625–1629

    Article  PubMed  CAS  Google Scholar 

  • Papadopoulos N, Nicolaides NC, Liu B, Parsons R, Lengauer C, Palombo F, D’Arrigo A, Markowitz S, Willson JKV, Kinzler KW, Jiricny J, Vogelstein B (1995) Mutations of GTBP in genetically unstable cells. Science 268:1915–1917

    Article  PubMed  CAS  Google Scholar 

  • Park J, Jeon Y, In D, Fishel R, Ban C, Lee JB (2010) Single-molecule analysis reveals the kinetics and physiological relevance of MutL-ssDNA binding. PLoS One 5(11), e15496

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Parker BO, Marinus MG (1992) Repair of DNA heteroduplexes containing small heterologous sequences in Escherichia coli. Proc Natl Acad Sci U S A 89(5):1730–1734

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Siu IM, Gallia GL, Olivi A, McLendon R, Rasheed BA, Keir S, Nikolskaya T, Nikolsky Y, Busam DA, Tekleab H, Diaz LA Jr, Hartigan J, Smith DR, Strausberg RL, Marie SK, Shinjo SM, Yan H, Riggins GJ, Bigner DD, Karchin R, Papadopoulos N, Parmigiani G, Vogelstein B, Velculescu VE, Kinzler KW (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321(5897):1807–1812

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Petes TD, Malone RE, Symington LS (1991) Recombination in yeast. In: Broach J, Jones E, Pringle J (eds) The molecular and cellular biology of the yeast saccharomyces, vol 1. Cold Spring Harbor Laboratory, Cold Spring Harbor, pp 407–521

    Google Scholar 

  • Pillon MC, Lorenowicz JJ, Uckelmann M, Klocko AD, Mitchell RR, Chung YS, Modrich P, Walker GC, Simmons LA, Friedhoff P, Guarne A (2010) Structure of the endonuclease domain of MutL: unlicensed to cut. Mol Cell 39(1):145–151

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Pinto AV, Mathieu A, Marsin S, Veaute X, Ielpi L, Labigne A, Radicella JP (2005) Suppression of homologous and homeologous recombination by the bacterial MutS2 protein. Mol Cell 17(1):113–120

    Article  PubMed  CAS  Google Scholar 

  • Pleasance ED, Cheetham RK, Stephens PJ, McBride DJ, Humphray SJ, Greenman CD, Varela I, Lin ML, Ordonez GR, Bignell GR, Ye K, Alipaz J, Bauer MJ, Beare D, Butler A, Carter RJ, Chen L, Cox AJ, Edkins S, Kokko-Gonzales PI, Gormley NA, Grocock RJ, Haudenschild CD, Hims MM, James T, Jia M, Kingsbury Z, Leroy C, Marshall J, Menzies A, Mudie LJ, Ning Z, Royce T, Schulz-Trieglaff OB, Spiridou A, Stebbings LA, Szajkowski L, Teague J, Williamson D, Chin L, Ross MT, Campbell PJ, Bentley DR, Futreal PA, Stratton MR (2010) A comprehensive catalogue of somatic mutations from a human cancer genome. Nature 463(7278):191–196

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Pluciennik A, Modrich P (2007) Protein roadblocks and helix discontinuities are barriers to the initiation of mismatch repair. Proc Natl Acad Sci U S A 104(31):12709–12713

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Prolla TA, Christie DM, Liskay RM (1994) Dual requirement in yeast DNA mismatch repair for MLH1 and PMS1, two homologs of the bacterial mutL gene. Mol Cell Biol 14(1):407–415

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Radman M, Wagner RE, Glickman BW, Meselson M (1980) DNA methylation, mismatch correction and genetic stability. In: Alacevic M (ed) Progress in environmental mutagenesis. Elsevier/North Holland Biomedical Press, Amsterdam, pp 121–130

    Google Scholar 

  • Rayssiguier C, Thaler DS, Radman M (1989) The barrier to recombination between Escherichia coli and Salmonella typhimurium is disrupted in mismatch-repair mutants. Nature 342(6248):396–401

    Article  PubMed  CAS  Google Scholar 

  • Reenan RA, Kolodner RD (1992a) Isolation and characterization of two Saccharomyces cerevisiae genes encoding homologs of the bacterial HexA and MutS mismatch repair proteins. Genetics 132(4):963–973

    PubMed Central  PubMed  CAS  Google Scholar 

  • Reenan RAG, Kolodner RD (1992b) Characterization of insertion mutations in the Saccharomyces cerevisiae MSH1 and MSH2 genes: evidence for separate mitochondrial and nuclear functions. Genetics 132:975–985

    PubMed Central  PubMed  CAS  Google Scholar 

  • Rewinski C, Marinus MG (1987) Mutation spectrum in Escherichia coli DNA mismatch repair deficient (mutH) strain. Nucleic Acids Res 15(20):8205–8215

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Robertson AB, Pattishall SR, Gibbons EA, Matson SW (2006) MutL-catalyzed ATP hydrolysis is required at a post-UvrD loading step in methyl-directed mismatch repair. J Biol Chem 281(29):19949–19959

    Article  PubMed  CAS  Google Scholar 

  • Roeder GS (1997) Meiotic chromosomes: it takes two to tango. Genes Dev 11(20):2600–2621

    Article  PubMed  CAS  Google Scholar 

  • Rosche WA, Foster PL (1999) The role of transient hypermutators in adaptive mutation in Escherichia coli. Proc Natl Acad Sci U S A 96(12):6862–6867

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ross-Macdonald P, Roeder GS (1994) Mutation of a meiosis-specific MutS homolog decreases crossing over but not mismatch correction. Cell 79(6):1069–1080

    Article  PubMed  CAS  Google Scholar 

  • Rossolillo P, Albertini AM (2001) Functional analysis of the Bacillus subtilis y shD gene, a mutS paralogue. Mol Gen Genet 264(6):809–818

    Article  PubMed  CAS  Google Scholar 

  • Sacho EJ, Kadyrov FA, Modrich P, Kunkel TA, Erie DA (2008) Direct visualization of asymmetric adenine nucleotide-induced conformational changes in MutLalpha. Mol Cell 29(1):112–121

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sass LE, Lanyi C, Weninger K, Erie DA (2010) Single-molecule FRET TACKLE reveals highly dynamic mismatched DNA-MutS complexes. Biochemistry 49(14):3174–3190

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Schaaper RM, Dunn RL (1987) Spectra of spontaneous mutations in Escherichia coli strains defective in mismatch correction: the nature of in vivo DNA replication errors. Proc Natl Acad Sci U S A 84(17):6220–6224

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Schaaper RM, Dunn RL (1991) Spontaneous mutation in the Escherichia coli lacI gene. Genetics 129(2):317–326

    PubMed Central  PubMed  CAS  Google Scholar 

  • Schmutte C, Marinescu RC, Sadoff MM, Guerrette S, Overhauser J, Fishel R (1998) Human exonuclease I interacts with the mismatch repair protein hMSH2. Cancer Res 58(20):4537–4542

    PubMed  CAS  Google Scholar 

  • Schmutte C, Sadoff MM, Shim KS, Acharya S, Fishel R (2001) The interaction of DNA mismatch repair proteins with human exonuclease I. J Biol Chem 276(35):33011–33018

    Article  PubMed  CAS  Google Scholar 

  • Shell SS, Putnam CD, Kolodner RD (2007) The N terminus of Saccharomyces cerevisiae Msh6 is an unstructured tether to PCNA. Mol Cell 26(4):565–578

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Shimada A, Kawasoe Y, Hata Y, Takahashi TS, Masui R, Kuramitsu S, Fukui K (2013) MutS stimulates the endonuclease activity of MutL in an ATP-hydrolysis-dependent manner. FEBS J 280(14):3467–3479

    Article  PubMed  CAS  Google Scholar 

  • Sia EA, Kokoska RJ, Dominska M, Greenwell P, Petes TD (1997) Microsatellite instability in yeast: dependence on repeat unit size and DNA mismatch repair genes. Mol Cell Biol 17(5):2851–2858

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Siegel EC, Bryson V (1967) Mutator gene of Escherichia coli B. J Bacteriol 94:38–47

    PubMed Central  PubMed  CAS  Google Scholar 

  • Sims RJ 3rd, Reinberg D (2009) Processing the H3K36me3 signature. Nat Genet 41(3):270–271

    Article  PubMed  CAS  Google Scholar 

  • Sjoblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD, Mandelker D, Leary RJ, Ptak J, Silliman N, Szabo S, Buckhaults P, Farrell C, Meeh P, Markowitz SD, Willis J, Dawson D, Willson JK, Gazdar AF, Hartigan J, Wu L, Liu C, Parmigiani G, Park BH, Bachman KE, Papadopoulos N, Vogelstein B, Kinzler KW, Velculescu VE (2006) The consensus coding sequences of human breast and colorectal cancers. Science 314(5797):268–274

    Article  PubMed  CAS  Google Scholar 

  • Smania AM, Segura I, Pezza RJ, Becerra C, Albesa I, Argarana CE (2004) Emergence of phenotypic variants upon mismatch repair disruption in Pseudomonas aeruginosa. Microbiology 150(Pt 5):1327–1338

    Article  PubMed  CAS  Google Scholar 

  • Smith CE, Mendillo ML, Bowen N, Hombauer H, Campbell CS, Desai A, Putnam CD, Kolodner RD (2013) Dominant mutations in S. cerevisiae PMS1 identify the Mlh1-Pms1 endonuclease active site and an exonuclease 1-independent mismatch repair pathway. PLoS Genet 9(10), e1003869

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Snowden T, Acharya S, Butz C, Berardini M, Fishel R (2004) hMSH4-hMSH5 recognizes Holliday Junctions and forms a meiosis-specific sliding clamp that embraces homologous chromosomes. Mol Cell 15(3):437–451

    Article  PubMed  CAS  Google Scholar 

  • Sogo JM, Stahl H, Koller T, Knippers R (1986) Structure of replicating simian virus 40 minichromosomes. The replication fork, core histone segregation and terminal structures. J Mol Biol 189(1):189–204

    Article  PubMed  CAS  Google Scholar 

  • Spampinato C, Modrich P (2000) The MutL ATPase is required for mismatch repair. J Biol Chem 275(13):9863–9869

    Article  PubMed  CAS  Google Scholar 

  • Stahl FW (1979) Genetic recombination. Freeman, San Francisco

    Google Scholar 

  • Strand M, Prolla TA, Liskay RM, Petes TD (1993) Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair. Nature 365(6443):274–276

    Article  PubMed  CAS  Google Scholar 

  • Streisinger G, Owen J (1985) Mechanisms of spontaneous and induced frameshift mutation in bacteriophage T4. Genetics 109(4):633–659

    PubMed Central  PubMed  CAS  Google Scholar 

  • Sturtevant AH (1913) The linear arrangement of six sex-linked factors in Drosophila, as shown by their mode of association. J Exp Zool 14:43–59

    Article  Google Scholar 

  • Sturtevant AH (1915) The behavior of chromosomes as studies through linkage. Z Abstam Vererbung 13:234–287

    Google Scholar 

  • Su S-S, Modrich P (1986) Escherichia coli mutS-encoded protein binds to mismatched DNA base pairs. Proc Natl Acad Sci U S A 83(14):5057–5061

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tessmer I, Yang Y, Zhai J, Du C, Hsieh P, Hingorani MM, Erie DA (2008) Mechanism of MutS searching for DNA mismatches and signaling repair. J Biol Chem 283(52):36646–36654

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tham KC, Hermans N, Winterwerp HH, Cox MM, Wyman C, Kanaar R, Lebbink JH (2013) Mismatch repair inhibits homeologous recombination via coordinated directional unwinding of trapped DNA structures. Mol Cell 51(3):326–337

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tiraby J-G, Fox MS (1973) Marker discrimination in transformation and mutation of pneumococcus. Proc Natl Acad Sci U S A 70:3541–3545

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tishkoff DX, Johnson AW, Kolodner RD (1991) Molecular and genetic analysis of the gene encoding the Saccharomyces cerevisiae strand exchange protein Sep1. Mol Cell Biol 11(5):2593–2608

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tompkins JD, Nelson JL, Hazel JC, Leugers SL, Stumpf JD, Foster PL (2003) Error-prone polymerase, DNA polymerase IV, is responsible for transient hypermutation during adaptive mutation in Escherichia coli. J Bacteriol 185(11):3469–3472

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Torkelson J, Harris RS, Lombardo MJ, Nagendran J, Thulin C, Rosenberg SM (1997) Genome-wide hypermutation in a subpopulation of stationary-phase cells underlies recombination-dependent adaptive mutation. EMBO J 16(11):3303–3311

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tran HT, Keen JD, Kricker M, Resnick MA, Gordenin DA (1997) Hypermutability of homonucleotide runs in mismatch repair and DNA polymerase proofreading yeast mutants. Mol Cell Biol 17(5):2859–2865

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Treffers HP, Spinelli V, Belser NO (1954) A factor (or mutator gene) influencing mutation rates in Escherichia coli. Proc Natl Acad Sci U S A 40:1064–1071

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Umar A, Buermeyer AB, Simon JA, Thomas DC, Clark AB, Liskay RM, Kunkel TA (1996) Requirement for PCNA in DNA mismatch repair at a step preceding DNA resynthesis. Cell 87(1):65–73

    Article  PubMed  CAS  Google Scholar 

  • Viswanathan M, Lovett ST (1998) Single-strand DNA-specific exonucleases in Escherichia coli – roles in repair and mutation avoidance. Genetics 149(1):7–16

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wagner R, Meselson M (1976) Repair tracts in mismatched DNA heteroduplexes. Proc Natl Acad Sci U S A 73:4135–4139

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Walker JE, Saraste M, Runswick MJ, Gay NJ (1982) Distantly related sequences in the alpha-and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1(8):945–951

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wang TF, Kleckner N, Hunter N (1999) Functional specificity of MutL homologs in yeast: evidence for three Mlh1-based heterocomplexes with distinct roles during meiosis in recombination and mismatch correction. Proc Natl Acad Sci U S A 96(24):13914–13919

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Warren JJ, Pohlhaus TJ, Changela A, Iyer RR, Modrich PL, Beese LS (2007) Structure of the human MutSalpha DNA lesion recognition complex. Mol Cell 26(4):579–592

    Article  PubMed  CAS  Google Scholar 

  • Wei K, Clark AB, Wong E, Kane MF, Mazur DJ, Parris T, Kolas NK, Russell R, Hou H Jr, Kneitz B, Yang G, Kunkel TA, Kolodner RD, Cohen PE, Edelmann W (2003) Inactivation of Exonuclease 1 in mice results in DNA mismatch repair defects, increased cancer susceptibility, and male and female sterility. Genes Dev 17(5):603–614

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Welsh KM, Lu AL, Clark S, Modrich P (1987) Isolation and characterization of the Escherichia coli mutH gene product. J Biol Chem 262(32):15624–15629

    PubMed  CAS  Google Scholar 

  • Widom J (1998) Structure, dynamics, and function of chromatin in vitro [review]. Ann Rev Biophys Biomol Struct 27:285–327

    Article  CAS  Google Scholar 

  • Wildenberg J, Meselson M (1975) Mismatch repair in heteroduplex DNA. Proc Natl Acad Sci U S A 72:2202–2206

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Williamson MS, Game JC, Fogel S (1985) Meiotic gene conversion mutants in Saccharomyces cerevisiae. I. Isolation and characterization of pms1-1 and pms1-2. Genetics 110(4):609–646

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wilson T, Guerrette S, Fishel R (1999) Dissociation of mismatch recognition and ATPase activity by hMSH2-hMSH3. J Biol Chem 274:21659–21664

    Article  PubMed  CAS  Google Scholar 

  • Winkler I, Marx AD, Lariviere D, Heinze RJ, Cristovao M, Reumer A, Curth U, Sixma TK, Friedhoff P (2011) Chemical trapping of the dynamic MutS-MutL complex formed in DNA mismatch repair in Escherichia coli. J Biol Chem 286(19):17326–17337

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Witkin EM (1964) Pure clones of lactose negative mutants obtained in Escherichia coli after treatment with 5-bromouracil. J Mol Biol 8:610–613

    Article  PubMed  CAS  Google Scholar 

  • Wood LD, Parsons DW, Jones S, Lin J, Sjoblom T, Leary RJ, Shen D, Boca SM, Barber T, Ptak J, Silliman N, Szabo S, Dezso Z, Ustyanksky V, Nikolskaya T, Nikolsky Y, Karchin R, Wilson PA, Kaminker JS, Zhang Z, Croshaw R, Willis J, Dawson D, Shipitsin M, Willson JK, Sukumar S, Polyak K, Park BH, Pethiyagoda CL, Pant PV, Ballinger DG, Sparks AB, Hartigan J, Smith DR, Suh E, Papadopoulos N, Buckhaults P, Markowitz SD, Parmigiani G, Kinzler KW, Velculescu VE, Vogelstein B (2007) The genomic landscapes of human breast and colorectal cancers. Science 318(5853):1108–1113

    Article  PubMed  CAS  Google Scholar 

  • Worth L Jr, Clark S, Radman M, Modrich P (1994) Mismatch repair proteins MutS and MutL inhibit RecA-catalyzed strand transfer between diverged DNAs. Proc Natl Acad Sci U S A 91(8):3238–3241

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wu TH, Marinus MG (1994) Dominant negative mutator mutations in the mutS gene of Escherichia coli. J Bacteriol 176(17):5393–5400

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wu TH, Clarke CH, Marinus MG (1990) Specificity of Escherichia coli mutD and mutL mutator strains. Gene 87(1):1–5

    Article  PubMed  CAS  Google Scholar 

  • Yang W (2006) Poor base stacking at DNA lesions may initiate recognition by many repair proteins. DNA Repair (Amst) 5(6):654–666

    Article  CAS  Google Scholar 

  • Yoshioka K, Yoshioka Y, Hsieh P (2006) ATR kinase activation mediated by MutSalpha and MutLalpha in response to cytotoxic O6-methylguanine adducts. Mol Cell 22(4):501–510

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zalevsky J, MacQueen AJ, Duffy JB, Kemphues KJ, Villeneuve AM (1999) Crossing over during Caenorhabditis elegans meiosis requires a conserved MutS-based pathway that is partially dispensable in budding yeast. Genetics 153(3):1271–1283

    PubMed Central  PubMed  CAS  Google Scholar 

  • Zhang H, Richards B, Wilson T, Lloyd M, Cranston A, Thorburn A, Fishel R, Meuth M (1999) Apoptosis induced by overexpression of hMSH2 or hMLH1. Cancer Res 59(13):3021–3027

    PubMed  CAS  Google Scholar 

  • Zhang Y, Yuan F, Presnell SR, Tian K, Gao Y, Tomkinson AE, Gu L, Li GM (2005) Reconstitution of 5′-directed human mismatch repair in a purified system. Cell 122(5):693–705

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Fishel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Fishel, R., Lee, JB. (2016). Mismatch Repair. In: Hanaoka, F., Sugasawa, K. (eds) DNA Replication, Recombination, and Repair. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55873-6_12

Download citation

Publish with us

Policies and ethics