Skip to main content

Heterogeneous Reactions in the Atmosphere and Uptake Coefficients

  • Chapter
  • First Online:

Part of the book series: Springer Atmospheric Sciences ((SPRINGERATMO))

Abstract

Although most of chemical processes constituting an atmospheric chemistry system consist of gas phase reactions, there are some phenomena in which multiphase processes play an important role. In the stratosphere, chemical reactions on polar stratospheric clouds (PSC) are the most prominent example, and are of essential importance in the formation of the “ozone hole”. In the troposphere, historically multiphase reactions in clouds and fog have long been investigated being related to acid rain. Surface reactions on sea salt in the marine boundary layer have been studied related to tropospheric halogen chemistry. The heterogeneous reactions of HO2 radicals and nitrogeneous compounds on aerosols have been studied related to tropospheric ozone chemistry. In such processes uptake of atmospheric molecules on the solid and liquid surface, heterogeneous reactions on the surface, bulk reactions in aqueous phase, etc. are important. In this chapter, uptake coefficients of atmospheric species on water droplet, sea salt and alkali halides, soil dust and mineral particle, and soot as important surfaces for tropospheric heterogeneous processes, and reactive uptake on PSC, liquid phase chemistry of oxides of sulfur are described.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbatt, J.P.D., Molina, M.J.: The heterogeneous reaction of HOCl + HCl → Cl2 + H2O on ice and nitric acid trihydrate: reaction probabilities and stratospheric implications. Geophys. Res. Lett. 19, 461–464 (1992a)

    Article  Google Scholar 

  • Abbatt, J.P.D., Molina, M.J.: Heterogeneous interactions of ClONO2 and HCl on nitric acid trihydrate at 202 K. J. Phys. Chem. 96, 7674–7679 (1992b)

    Article  Google Scholar 

  • Adams, J.W., Rodriguez, D., Cox, R.A.: The uptake of SO2 on Saharan dust: a flow tube study. Atmos. Chem. Phys. 5, 2679–2689 (2005)

    Article  Google Scholar 

  • Aguzzi, A., Rossi, M.J.: The kinetics of the heterogeneous reaction of BrONO2 with solid alkali halides at ambient temperature. A comparison with the interaction of ClONO2 on NaCl and KBr. Phys. Chem. Chem. Phys. 1, 4337–4346 (1999)

    Article  Google Scholar 

  • Akimoto, H., Takagi, H., Sakamaki, F.: Photoenhancement of the nitrous acid formation in the surface reaction of nitrogen dioxide and water vapor: extra radical source in smog chamber experiments. Int. J. Chem. Kinet. 19, 539–551 (1987)

    Article  Google Scholar 

  • Alebic-Juretic, A., Cvitas, T., Klasinc, L.: Ozone destruction on solid particles. Environ. Monit. Assess. 44, 241–247 (1997)

    Article  Google Scholar 

  • Al-Hosney, H.A., Grassian, V.H.: Carbonic acid: an important intermediate in the surface chemistry of calcium carbonate. J. Am. Chem. Soc. 126, 8068–8069 (2004)

    Article  Google Scholar 

  • Anastasio, C., Mozurkewich, M.: Laboratory studies of bromide oxidation in the presence of ozone: evidence for glass-surface mediated reaction. J. Atmos. Chem. 41, 135–162 (2002)

    Article  Google Scholar 

  • Anttila, T., Kiendler-Scharr, A., Tillmann, R., Mentel, T.F.: On the reactive uptake of gaseous compounds by organic-coated aqueous aerosols: theoretical analysis and application to the heterogeneous hydrolysis of N2O5. J. Phys. Chem. A 110, 10435–10443 (2006)

    Article  Google Scholar 

  • Arens, F., Gutzwiller, L., Baltensperger, U., Gäggeler, H.W., Ammann, M.: Heterogeneous reaction of NO2 on diesel soot particles. Environ. Sci. Technol. 35, 2191–2199 (2001)

    Article  Google Scholar 

  • Aubin, D.G., Abbatt, J.P.D.: Interaction of NO2 with hydrocarbon soot: focus on HONO yield, surface modification, and mechanism. J. Phys. Chem. A 111, 6263–6273 (2007)

    Article  Google Scholar 

  • Ball, S.M., Fried, A., Henry, B.E., Mozurkewich, M.: The hydrolysis of ClONO2 on sub‐micron liquid sulfuric acid aerosol. Geophys. Res. Lett. 25, 3339–3342 (1998)

    Article  Google Scholar 

  • Barone, S.B., Zondlo, M.A., Tolber, M.A.: A Kinetic and product study of the hydrolysis of ClONO2 on type Ia polar stratospheric cloud materials at 185 K. J. Phys. Chem. A 101, 8643–8652 (1997)

    Article  Google Scholar 

  • Bauer, S.E., Balkanski, Y., Schulz, M., Hauglustaine, D.A., Dentener, F.: Global modeling of heterogeneous chemistry on mineral aerosol surfaces: influence on tropospheric ozone chemistry and comparison to observations. J. Geophys. Res. 109(D02304), 17 (2004). doi:10.1029/2003JD003868

  • Bedjanian, Y., Romanias, M.N., El Zein, A.: Uptake of HO2 radicals on Arizona test dust surface. Atmos. Chem. Phys. Discuss. 13, 8873–8900 (2013)

    Article  Google Scholar 

  • Behnke, W., Zetzsch, C.: Production of a photolytic precursor of atomic Cl from aerosols and Cl in the presence of O3. In: Grimvall, A., de Leer, E.W.B. (eds.) Naturally-Produced Organohalogens, pp. 375–384. Kluwer Acad, Norwell (1995)

    Chapter  Google Scholar 

  • Behnke, W., George, C., Scheer, V., Zetzsch, C.: Production and decay of CINO2 from the reaction of gaseous N2O5 with NaCl solution: Bulk and aerosol experiments, J. Geophys. Res. 102, 3785-3804 (1997)

    Google Scholar 

  • Beichert, P., Finlayson-Pitts, B.J.: Knudsen cell studies of the uptake of gaseous HNO3 and other oxides of nitrogen on solid NaCl: the role of surface-adsorbed water. J. Phys. Chem. 100, 15218 (1996)

    Article  Google Scholar 

  • Berkowitz, C.M., Chapman, E.G., Zaveri, R.A., Laulainen, N.S., Disselkamp, R.S., Bian, X.: Evidence of nighttime ozone depletion through heterogeneous chemistry. Atmos. Environ. 35, 2395–2404 (2001)

    Article  Google Scholar 

  • Bertram, T.H., Thornton, J.A.: Toward a general parameterization of N2O5 reactivity on aqueous particles: the competing effects of particle liquid water, nitrate and chloride. Atmos. Chem. Phys. 9, 8351–8363 (2009)

    Article  Google Scholar 

  • Bian, H., Zender, C.S.: Mineral dust and global tropospheric chemistry: relative roles of photolysis and heterogeneous uptake. J. Geophys. Res. 108(4672), 10 (2003). doi:10.1029/2002JD003143

  • Boniface, J., Shi, Q., Li, Y.Q., Chueng, J.L., Rattigan, O.V., Davidovits, P., Worsnop, D.R., Jayne, J.T., Kolb, C.E.: Uptake of gas-phase SO2, H2S, and CO2 by aqueous solutions. J. Phys. Chem. A 104, 7502–7510 (2000)

    Article  Google Scholar 

  • Brasseur, G.P., Solomon, S.: Aeronomy of the Middle Atmosphere: Chemistry and Physics of the Stratosphere and Mesosphere, 3rd edn. Springer, Dordrecht (2005)

    Google Scholar 

  • Brigante, M., Cazoir, D., D’Anna, B., George, C., Donaldson, D.J.: Photoenhanced uptake of NO2 by pyrene solid films. J. Phys. Chem. A 112, 9503–9508 (2008)

    Article  Google Scholar 

  • Caloz, F., Fentner, F.F., Rossi, M.J.: Heterogeneous kinetics of the uptake of ClONO2 on NaCl and KBr. J. Phys. Chem. 100, 7494–7501 (1996)

    Article  Google Scholar 

  • Carmichael, G.R., Zhang, Y., Chen, L.L., Hong, M.S., Ueda, H.: Seasonal variation of aerosol composition at Cheju Island, Korea. Atmos. Environ. 30, 2407–2416 (1996)

    Article  Google Scholar 

  • Carslaw, K.S., Peter, T.: Uncertainties in reactive uptake coefficients for solid stratospheric particles‐1. Surface chemistry. Geophys. Res. Lett. 24, 1743–1746 (1997)

    Article  Google Scholar 

  • Chakraborty, P., Zachariah, M.: On the structure of organic-coated water droplets: from “net water attractors” to “oily” drops. J. Geophys. Res. 116(D21205), 8 (2011). doi:10.1029/2011JD015961

  • Chang, W.L., Bhave, P.V., Brown, S.S., Riemer, N., Stutz, J., Dabdub, D.: Heterogeneous atmospheric chemistry, ambient measurements, and model calculations of N2O5: a review. Aerosol Sci. Technol. 45, 665–695 (2011)

    Article  Google Scholar 

  • Chu, L.T., Leu, M.-T., Keyser, L.F.: Heterogeneous reactions of hypochlorous acid + hydrogen chloride → Cl2 + H2O and chlorosyl nitrite + HCl → Cl2 + HNO3 on ice surfaces at polar stratospheric conditions. J. Phys. Chem. 97, 12798–12804 (1993)

    Article  Google Scholar 

  • Chughtai, A.R., Brooks, M.E., Smith, D.M.: Effect of metal oxides and black carbon (soot) on SO2/O2/H2O reaction systems. Aerosol Sci. Technol. 19, 121–132 (1993)

    Article  Google Scholar 

  • Chughtai, A.R., Atteya, M.M.O., Kim, J., Konowalchuck, B.K., Smith, D.M.: Adsorption and adsorbate interaction at soot particle surfaces. Carbon 36, 1573–1589 (1998)

    Article  Google Scholar 

  • Crowley, J.N., Ammann, M., Cox, R.A., Hynes, R.G., Jenkin, M.E., Mellouki, A., Rossi, M.J., Troe, J., Wallington, T.J.: Evaluated kinetic and photochemical data for atmospheric chemistry: volume V – heterogeneous reactions on solid substrates. Atmos. Chem. Phys. 10, 9059–9223 (2010)

    Article  Google Scholar 

  • Davidovits, P., Worsnop, D.R., Jayne, J.T., Kolb, C.E., Winkler, P., Vrtala, A., Wagner, P.E., Kulmula, M., Lehtinen, K.E.J., Vessala, T., Mozurkewich, M.: Mass accommodation coefficient of water vapor on liquid water. Geophys. Res. Lett. 31, L22111 (2004)

    Article  Google Scholar 

  • Davies, J.A., Cox, R.A.: Kinetics of the heterogeneous reaction of HNO3 with NaCl: effect of water vapor. J. Phys. Chem. A 102, 7631–7642 (1998)

    Article  Google Scholar 

  • DeHaan, D.O., Finlayson-Pitts, B.J.: Knudsen cell studies of the reaction of gaseous nitric acid with synthetic sea salt at 298 K. J. Phys. Chem. A 101, 9993–9999 (1997)

    Article  Google Scholar 

  • Deiber, G., George, C., Le Calve, S., Schweitzer, F., Mirabel, P.: Uptake study of ClONO2 and BrONO2 by Halide containing droplets. Atmos. Chem. Phys. 4, 1291–1299 (2004)

    Article  Google Scholar 

  • Disselkamp, R.S., Carpenter, M.A., Cowin, J.P.: A chamber investigation of nitric acid-Soot aerosol chemistry at 298 K. J. Atmos. Chem. 37, 113–123 (2000)

    Article  Google Scholar 

  • Donaldson, D.J., Guest, J.A., Goh, M.C.: Evidence for adsorbed SO2 at the aqueous-air interface. J. Phys. Chem. 99, 9313–9315 (1995)

    Article  Google Scholar 

  • Donaldson, D.J., Ravishankara, A.R., Hanson, D.R.: Detailed study of HOCl + HCl → Cl2 + H2O in sulfuric acid. J. Phys. Chem. A 101, 4717–4725 (1997)

    Article  Google Scholar 

  • Elrod, M.J., Koch, R.E., Kim, J.E., Molina, M.S.: HCl vapour pressures and reaction probabilities for ClONO2+ HCl on liquid H2SO4–HNO3–HCl–H2O solutions. Faraday Discuss. 100, 269–278 (1995)

    Article  Google Scholar 

  • Elshorbany, Y.F., Steil, B., Bruhl, C., Lelieveld, J.: Impact of HONO on global atmospheric chemistry calculated with an empirical parameterization in the EMAC model. Atmos. Chem. Phys. 12, 9977–10000 (2012)

    Article  Google Scholar 

  • Evans, M.J., Jacob, D.J.: Impact of new laboratory studies of N2O5 hydrolysis on global model budgets of tropospheric nitrogen oxides, ozone, and OH. Geophys. Res. Lett. 32, L09813 (2005). doi:10.1029/2005GL022469

    Article  Google Scholar 

  • Fendel, W., Matter, D., Burtscher, H., Schimdt-Ott, A.: Interaction between carbon or iron aerosol particles and ozone. Atmos. Environ. 29, 967–973 (1995)

    Article  Google Scholar 

  • Fernandez, M.A., Hynes, R.G., Cox, R.A.: Kinetics of ClONO2 reactive uptake on ice surfaces at temperatures of the upper troposphere. J. Phys. Chem. A 109, 9986–9996 (2005)

    Article  Google Scholar 

  • Finlayson-Pitts, B.J., Ezell, M.J., Pitts Jr., J.N.: Formation of chemically active chlorine compounds by reactions of atmospheric NaCl particles with gaseous N2O5 and ClONO2. Nature 337, 241–244 (1989)

    Article  Google Scholar 

  • Finlayson-Pitts, B.J., Pitts Jr., J.N.: Chemistry of the Upper and Lower Atmosphere. Academic Press, San Diego (2000)

    Google Scholar 

  • Finlayson-Pitts, B.J.: The tropospheric chemistry of sea salt: a molecular-level view of the chemistry of NaCl and NaBr. Chem. Rev. 103, 4801–4822 (2003)

    Article  Google Scholar 

  • Folkers, M., Mentel, T.F., Wahner, A.: Influence of an organic coating on the reactivity of aqueous aerosols probed by the heterogeneous hydrolysis of N2O5. Geophys. Res. Lett. 30(12), 1644 (2003). doi:10.1029/2003GL017168

    Article  Google Scholar 

  • Fried, A., Henry, B.E., Calvert, J.G., Mozukewich, M.: The reaction probability of N2O5 with sulfuric acid aerosols at stratospheric temperatures and compositions. J. Geophys. Res. 99, 3517–3532 (1994)

    Article  Google Scholar 

  • Garrett, B.C., Schenter, G.K., Morita, A.: Molecular simulations of the transport of molecules across the liquid/vapor interface of water. Chem. Rev. 106, 1355–1374 (2006)

    Article  Google Scholar 

  • Gebel, M.E., Finlayson-Pitts, B.J.: Uptake and reaction of ClONO2 on NaCl and synthetic sea salt. J. Phys. Chem. A 105, 5178–5187 (2001)

    Article  Google Scholar 

  • George, C., Ponche, J.L., Mirabel, P., Behnke, W., Sheer, V., Zetzsch, C.: Study of the uptake of N2O5 by water and NaCl solutions. J. Phys. Chem. 98, 8780–8784 (1994)

    Article  Google Scholar 

  • Ghosal, S., Shbeeb, A., Hemminger, J.C.: Surface segregation of bromine in bromide doped NaCl: implications for the seasonal variations in Arctic ozone. Geophys. Res. Lett. 27, 1879–1882 (2000)

    Article  Google Scholar 

  • Ghosal, S., Hemminger, J.C.: Surface adsorbed water on NaCl and its effect on nitric acid reactivity with NaCl powders. J. Phys. Chem. B 108, 14102–14108 (2004)

    Article  Google Scholar 

  • Gonçalves, M., Dabdub, D., Chang, W.L., Jorba, O., Baldasano, J.M.: Impact of HONO sources on the performance of mesoscale air quality models. Atmos. Environ. 54, 168–176 (2012)

    Article  Google Scholar 

  • Goodman, A.L., Underwood, G.M., Grassian, V.H.: A laboratory study of the heterogeneous reaction of nitric acid on calcium carbonate particles. J. Geophys. Res. 105, 29053–29064 (2000)

    Article  Google Scholar 

  • Goodman, A.L., Li, P., Usher, C.R., Grassian, V.H.: Heterogeneous uptake of sulfur dioxide on aluminum and magnesium oxide particles. J. Phys. Chem. A 105, 6109–6120 (2001)

    Article  Google Scholar 

  • Griffiths, P.T., Badger, C.L., Cox, R.A., Folkers, M., Henk, H.H., Mentel, T.F.: Reactive uptake of N2O5 by aerosols containing dicarboxylic acids. Effect of particle phase, composition, and nitrate content. J. Phys. Chem. A 113, 5082–5090 (2009)

    Article  Google Scholar 

  • Guimbaud, C., Arens, F., Gutzwiller, L., Gäggeler, H.W., Ammann, M.: Uptake of HNO3 to deliquescent sea-salt particles: a study using the short-lived radioactive isotope tracer 13N. Atmos. Chem. Phys. 2, 249–257 (2002)

    Article  Google Scholar 

  • Hallquist, M., Stewart, D.J., Stephenson, S.K., Cox, R.A.: Hydrolysis of N2O5 on sub-micron sulfate aerosols. Phys. Chem. Chem. Phys. 5, 3453–3463 (2003)

    Article  Google Scholar 

  • Hanisch, F., Crowley, J.N.: Heterogeneous reactivity of gaseous nitric acid on Al2O3, CaCO3, and atmospheric dust samples: a Knudsen cell study. J. Phys. Chem. A 105, 3096–3106 (2001a)

    Article  Google Scholar 

  • Hanisch, F., Crowley, J.N.: The heterogeneous reactivity of gaseous nitric acid on authentic mineral dust samples, and on individual mineral and clay mineral components. Phys. Chem. Chem. Phys. 3, 2474–2482 (2001b)

    Article  Google Scholar 

  • Hanisch, F., Crowley, J.N.: Ozone decomposition on Saharan dust: an experimental investigation. Atmos. Chem. Phys. 3, 119–130 (2003)

    Article  Google Scholar 

  • Hanke, M., Umann, B., Uecker, J., Arnold, F., Bunz, H.: Atmospheric measurements of gas-phase HNO3 and SO2 using chemical ionization mass spectrometry during the MINATROC field campaign 2000 on Monte Cimone. Atmos. Chem. Phys. 3, 417–436 (2003)

    Article  Google Scholar 

  • Hanson, D.R.: Reaction of N2O5 with H2O on bulk liquids and on particles and the effect of dissolved HNO3. Geophys. Res. Lett. 24, 1087–1090 (1997)

    Article  Google Scholar 

  • Hanson, D.R.: Reaction of ClONO2 with H2O and HCl in sulfuric acid and HNO3/H2SO4/H2O mixtures. J. Phys. Chem. A 102, 4794–4807 (1998)

    Article  Google Scholar 

  • Hanson, D.R., Burkholder, J.B., Howard, C.J., Ravishankara, A.R.: Measurement of OH and HO2 radical uptake coefficients on water and sulfuric acid surfaces. J. Phys. Chem. 96, 4979–4985 (1992)

    Article  Google Scholar 

  • Hanson, D.R., Lovejoy, E.R.: The uptake of N2O5 onto small sulfuric acid particle. Geophys. Res. Lett. 21, 2401–2404 (1994)

    Article  Google Scholar 

  • Hanson, D.R., Lovejoy, E.R.: Heterogeneous reactions in liquid sulfuric acid: HOCl + HCl as a model system. J. Phys. Chem. 100, 6397–6405 (1996)

    Article  Google Scholar 

  • Hanson, D.R., Ravishankara, A.R.: The reaction probabilities of ClONO2 and N2O5 on polar stratospheric cloud materials. J. Geophys. Res. 96, 5081–5090 (1991a)

    Article  Google Scholar 

  • Hanson, D.R., Ravishankara, A.R.: The reaction probabilities of ClONO2 and N2O5 on 40 to 75 % sulfuric acid solutions. J. Geophys. Res. 96, 17307–17314 (1991b)

    Article  Google Scholar 

  • Hanson, D.R., Ravishankara, A.R.: Investigation of the reactive and nonreactive processes involving ClONO2 and HCl on water and nitric acid doped ice. J. Phys. Chem. 96, 2682–2691 (1992)

    Article  Google Scholar 

  • Hanson, D.R., Ravishankara, A.R.: Response to “Comment on porosities of ice films used to simulate stratospheric cloud surfaces”. J. Phys. Chem. 97, 2802–2803 (1993a)

    Article  Google Scholar 

  • Hanson, D.R., Ravishankara, A.R.: Reaction of ClONO2with HCl on NAT, NAD, and frozen sulfuric acid and hydrolysis of N2O5 and ClONO2 on frozen sulfuric acid. J. Geophys. Res. 98, 22931–22936 (1993b)

    Article  Google Scholar 

  • Hanson, D.R., Ravishankara, A.R.: Reactive uptake of ClONO2 onto sulfuric acid due to reaction with HCl and H2O. J. Phys. Chem. 98, 5728–5735 (1994)

    Article  Google Scholar 

  • Hess, M., Krieger, U.K., Marcolli, C., Huthwelker, T., Ammann, M., Lanford, W.A., Peter, T.: Bromine enrichment in the near-surface region of Br-doped NaCl single crystals diagnosed by Rutherford backscattering spectrometry. J. Phys. Chem. A 111, 4312–4321 (2007)

    Article  Google Scholar 

  • Hirokawa, J., Onaka, K., Kajii, Y., Akimoto, H.: Heterogeneous processes involving sodium halide particles and ozone: molecular bromine release in the marine boundary layer in the absence of nitrogen oxides. Geophys. Res. Lett. 25, 2449–2452 (1998)

    Article  Google Scholar 

  • Hoffman, R.C., Gebel, M.E., Fox, B.S., Finlayson-Pitts, B.J.: Knudsen cell studies of the reactions of N2O5 and ClONO2 with NaCl: development and application of a model for estimating available surface areas and corrected uptake coefficients. Phys. Chem. Chem. Phys. 5, 1780–1789 (2003)

    Article  Google Scholar 

  • Hunt, S.W., Roesolová, M., Wang, W., Wingen, L.M., Knipping, E.M., Tobias, D.J., Dabdub, D., Finlayson-Pitts, B.J.: Formation of molecular bromine from the reaction of ozone with deliquesced NaBr aerosol: evidence for interface chemistry. J. Phys. Chem. A 108, 11559–11572 (2004)

    Article  Google Scholar 

  • Jayne, J.T., Davidovits, P., Worsnop, D.R., Zahniser, M.S., Kolb, C.E.: Uptake of sulfur dioxide (g) by aqueous surfaces as a function of pH: the effect of chemical reaction at the interface. J. Phys. Chem. 94, 6041–6048 (1990)

    Article  Google Scholar 

  • Johnson, E.R., Sciegienka, J., Carlos-Cuellar, S., Grassian, V.H.: Heterogeneous uptake of gaseous nitric acid on Dolomite (CaMg(CO3)2) and Calcite (Ca CO3) particles: a Knudsen cell study using multiple, single, and fractional particle layers. J. Phys. Chem. A 109, 6901–6911 (2005)

    Article  Google Scholar 

  • Jungwirth, P., Tobias, D.J.: Ions at the air/water interface. J. Phys. Chem. B 106, 6361–6373 (2002)

    Article  Google Scholar 

  • Kamm, S., Mohler, O., Naumann, K.-H., Saathoff, H., Schurath, U.: The heterogeneous reaction of ozone with soot aerosol. Atmos. Environ. 33, 4651–4661 (1999)

    Article  Google Scholar 

  • Karagulian, F., Santschi, C., Rossi, M.J.: The heterogeneous chemical kinetics of N2O5 on CaCO3 and other atmospheric mineral dust surrogates. Atmos. Chem. Phys. 6, 1373–1388 (2006)

    Article  Google Scholar 

  • Karagulian, F., Rossi, M.J.: Heterogeneous chemistry of the NO3 free radical and N2O5 on decane flame soot at ambient temperature: reaction products and kinetics. J. Phys. Chem. A 111, 1914–1926 (2007)

    Article  Google Scholar 

  • Kasibhatla, P., Chameides, W.L., John, J.S.: A three-dimensional global model investigation of seasonal variations in the atmospheric burden of anthropogenic sulfate aerosols. J. Geophys. Res. 102, 3737–3759 (1997)

    Article  Google Scholar 

  • Khalizov, A.F., Cruz-Quinones, M., Zhang, R.: Heterogeneous reaction of NO2 on fresh and coated soot surfaces. J. Phys. Chem. A 114, 7516–7524 (2010)

    Article  Google Scholar 

  • Kirchner, U., Scheer, V., Vogt, R.: FTIR Spectroscopic investigation of the mechanism and kinetics of the heterogeneous reactions of NO2 and HNO3 with soot. J. Phys. Chem. A 104, 8908–8915 (2000)

    Article  Google Scholar 

  • Knipping, E.M., Lakin, M.J., Foster, K.L., Jungwirth, P., Tobias, D.J., Gerber, R.B., Dabdub, D., Finlayson-Pitts, B.J.: Experiments and simulations of ion-enhanced interfacial chemistry on aqueous NaCl aerosols. Science 288, 301–306 (2000)

    Article  Google Scholar 

  • Koehler, B.G., Nicholson, V.T., Roe, H.G., Whitney, E.S.: A Fourier transform infrared study of the adsorption of SO2 on n-hexane soot from −130° to −40 °C. J. Geophys. Res. 104, 5507–5514 (1999)

    Article  Google Scholar 

  • Kojima, T., Buseck, P.R., Iwasaka, Y., Matsuki, A., Trochkine, D.: Sulfate-coated dust particles in the free troposphere over Japan. Atmos. Res. 82, 698–708 (2006)

    Article  Google Scholar 

  • Koop, K., Carslaw, K.S., Peter, T.: Thermodynamic stability and phase transitions of PSC particles. Geophys. Res. Lett. 24, 2199–2202 (1997)

    Article  Google Scholar 

  • Laaksonen, A., Vesala, T., Kulmala, M., Winkler, P.M., Wagner, P.E.: Commentary on cloud modelling and the mass accommodation coefficient of water. Atmos. Chem. Phys. 5, 461–464 (2005)

    Article  Google Scholar 

  • Lary, D.J., Lee, A.M., Toumi, R., Newchurch, M.J., Pirre, M., Renard, J.B.: Carbon aerosols and atmospheric photochemistry. J. Geophys. Res. 102, 3671–3682 (1997)

    Article  Google Scholar 

  • Lee, S.H., Leard, D.C., Zhang, R., Molina, L.T., Molina, M.J.: The HCl + ClONO2 reaction rate on various water ice surfaces. Chem. Phys. Lett. 315, 7 (1999)

    Article  Google Scholar 

  • Lelievre, S., Bedjanian, Y., Laverdet, G., Le Bras, G.: Heterogeneous reaction of NO2 with hydrocarbon flame soot. J. Phys. Chem. A 108, 10807–10817 (2004)

    Article  Google Scholar 

  • Leu, M.-T.: Laboratory studies of sticking coefficients and heterogeneous reactions important in the Antarctic stratosphere. Geophys. Res. Lett. 15, 17–20 (1988)

    Article  Google Scholar 

  • Leu, M.-T., Moore, S.B., Keyser, L.F.: Heterogeneous reactions of chlorine nitrate and hydrogen chloride on type I polar stratospheric clouds. J. Phys. Chem. 95, 7763–7771 (1991)

    Article  Google Scholar 

  • Leu, M.-T., Timonen, R.S., Keyser, L.F., Yung, Y.L.: Heterogeneous reactions of HNO3 (g) + NaCl(s) → HCl(g) + NaNO3 (s) and N2O5 (g) + NaCl(s) → ClNO2(g) + NaNO3(s). J. Phys. Chem. 99, 13203–13212 (1995)

    Article  Google Scholar 

  • Li, L., Chen, Z.M., Zhang, Y.H., Zhu, T., Li, J.L., Ding, J.: Kinetics and mechanism of heterogeneous oxidation of sulfur dioxide by ozone on surface of calcium carbonate. Atmos. Chem. Phys. 6, 2453–2464 (2006)

    Article  Google Scholar 

  • Li, Y.Q., Davidovits, P., Shi, Q., Jayne, J.T., Kolb, C.E., Worsnop, D.R.: Mass and thermal accommodation coefficients of H2O(g) on liquid water as a function of temperature. J. Phys. Chem. A 105, 10627–10634 (2001)

    Article  Google Scholar 

  • Li, W., Gibbs, G.V., Oyama, S.T.: Mechanism of ozone decomposition on a manganese oxide catalyst. 1. in situ Raman spectroscopy and ab initio molecular orbital calculations. J. Am. Chem. Soc. 120, 9041–9046 (1998)

    Article  Google Scholar 

  • Liu, Y., Liu, C., Ma, J., Ma, Q., He, H.: Structural and hygroscopic changes of soot during heterogeneous reaction with O3. Phys. Chem. Chem. Phys. 12, 10896–10903 (2010)

    Article  Google Scholar 

  • Lohmann, U., Karcher, B., Hendricks, J.: Sensitivity studies of cirrus clouds formed by heterogeneous freezing in the ECHAM GCM. J. Geophys. Res. 109, D16204 (2004). doi:10.1029/2003JD004443

    Article  Google Scholar 

  • Longfellow, C.A., Ravishankara, A.R., Hanson, D.R.: Reactive and nonreactive uptake on hydrocarbon soot: HNO3, O3, and N2O5. J. Geophys. Res. 105, 24,345–24,350 (2000)

    Article  Google Scholar 

  • Loukhovitskaya, E., Bedjanian, Y., Morozov, I., Le Bras, G.: Laboratory study of the interaction of HO2 radicals with the NaCl, NaBr, MgCl2 · 6H2O and sea salt surfaces. Phys. Chem. Chem. Phys. 11, 7896–7905 (2009)

    Article  Google Scholar 

  • Magi, L., Schweitzer, F., Pallares, C., Cherif, S., Mirabel, P., George, C.: Investigation of the uptake rate of ozone and methyl hydroperoxide by water surfaces. J. Phys. Chem. A 101, 4943–4948 (1997)

    Article  Google Scholar 

  • McNeill, V.F., Loerting, T., Geiger, F.M., Trout, B.L., Molina, M.J.: Hydrogen chloride-induced surface disordering on ice. Proc. Nat. Acad. Sci. 103, 9422–9427 (2006)

    Article  Google Scholar 

  • Michel, A.E., Usher, C.R., Grassian, V.H.: Reactive uptake of ozone on mineral oxides and mineral dusts. Atmos. Environ. 37, 3201–3211 (2003)

    Article  Google Scholar 

  • Mochida, M., Hirokawa, J., Akimoto, H.: Unexpected large uptake of O3 on sea salts and the observed Br2 formation. Geophys. Res. Lett. 27, 2629–2632 (2000)

    Article  Google Scholar 

  • Mogili, P.K., Kleiber, P.D., Young, M.A., Grassian, V.H.: Heterogeneous uptake of ozone on reactive components of mineral dust aerosol: an environmental aerosol reaction chamber study. J. Phys. Chem. A 110, 13799–13807 (2006)

    Article  Google Scholar 

  • Molina, M.J., Zhang, R., Wooldridge, P.J., McMahon, J.R., Kim, J.E., Chang, H.Y., Beyer, K.D.: Physical chemistry of the H2SO4/HNO3/H2O system: implications for polar stratospheric cloud. Science 261, 1418–1423 (1993)

    Article  Google Scholar 

  • Monge, M.E., D’Anna, B., Mazri, L., Giroir-Fendler, A., Ammann, M., Donaldson, D.J., George, C.: Light changes the atmospheric reactivity of soot. Proc. Natl. Acad. Sci. 107, 6605–6609 (2010)

    Article  Google Scholar 

  • Morita, A., Sugiyama, M., Koda, S.: Gas-phase flow and diffusion analysis of the droplet train/flow-reactor technique for the mass accommodation process. J. Phys. Chem. A 107, 1749–1759 (2003)

    Article  Google Scholar 

  • Morita, A., Kanaya, Y., Francisco, J.S.: Uptake of the HO2 radical by water: molecular dynamics calculations and their implications for atmospheric modeling. J. Geophys. Res. 109(D09201), 10 (2004a). doi:10.1029/2003JD004240

    Google Scholar 

  • Morita, A., Sugiyama, M., Kameda, H., Koda, S., Hanson, D.R.: Mass accommodation coefficient of water: molecular dynamics simulation and revised analysis of droplet train/flow experiment. J. Phys. Chem. B 108, 9111–9120 (2004b)

    Article  Google Scholar 

  • Mozurkewich, M., McMurray, P.H., Gupta, A., Calvert, J.G.: Mass accommodation coefficient for HO2 radicals on aqueous particles. J. Geophys. Res. 92, 4163–4170 (1987)

    Article  Google Scholar 

  • Mozurkewich, M., Calvert, J.: Reaction probability of N2O5 on aqueous aerosols. J. Geophys. Res. 93, 15882–15896 (1988)

    Google Scholar 

  • Müller, B., Heal, M.R.: The mass accommodation coefficient of ozone on an aqueous surface. Phys. Chem. Chem. Phys. 4, 3365–3369 (2002)

    Article  Google Scholar 

  • Oppliger, R., Allanic, A., Rossi, M.J.: Real-time kinetics of the uptake of ClONO2 on ice and in the presence of HCl in the temperature range 160 K ≤ T ≤ 200 K. J. Phys. Chem. A 101, 1903–1911 (1997)

    Article  Google Scholar 

  • Oum, K.W., Lakin, M.J., DeHaan, D.O., Brauers, T., Finlayson-Pitts, B.J.: Formation of molecular chlorine from the photolysis of ozone and aqueous sea-salt particles. Science 279, 74–76 (1998a)

    Article  Google Scholar 

  • Oum, K.W., Lakin, M.J., Finlayson-Pitts, B.J.: Bromine activation in the troposphere by the dark reaction of O3 with seawater ice. Geophys. Res. Lett. 25, 3923–3926 (1998b)

    Article  Google Scholar 

  • Park, S.-C., Burden, D.K., Nathanson, G.M.: The inhibition of N2O5 hydrolysis in sulfuric acid by 1-Butanol and 1-Hexanol surfactant coatings. J. Phys. Chem. A 111, 2921–2929 (2007)

    Article  Google Scholar 

  • Ponche, J.L., George, C., Mirabel, P.: Mass transfer at the air/water interface: mass accommodation coefficients of SO2, HNO3, NO2 and NH3. J. Atmos. Chem. 16, 1–21 (1993)

    Article  Google Scholar 

  • Pöschl, U., Letzel, T., Schauer, C., Niessner, R.: Interaction of ozone and water vapor with spark discharge soot aerosol particles coated with benzo[a]pyrene: O3 and H2O adsorption, benzo[a]pyrene degradation, and atmospheric implications. J. Phys. Chem. A 105, 4029–4041 (2001)

    Article  Google Scholar 

  • Prince, A.P., Wade, J.L., Grassian, V.H., Kleiber, K.D., Young, M.A.: Heterogeneous reactions of soot aerosols with nitrogen dioxide and nitric acid: atmospheric chamber and Knudsen cell studies. Atmos. Environ. 36, 5729–5740 (2002)

    Article  Google Scholar 

  • Quinlan, M.A., Reihs, C.M., Golden, D.M., Tolbert, M.A.: Heterogeneous reactions on model polar stratospheric cloud surfaces: reaction of dinitrogen pentoxide on ice and nitric acid trihydrate. J. Phys. Chem. 94, 3255–3260 (1990)

    Article  Google Scholar 

  • Riemer, N., Vogel, B., Anttila, T., Kiendler-Scharr, A., Mentel, T.F.: Relative importance of organic coatings for the heterogeneous hydrolysis of N2O5 during summer in Europe. J. Geophys. Res. 114(D17307), 14 (2009)

    Google Scholar 

  • Roberts, J.M., Osthoff, H.D., Brown, S.S., Ravishankara, A.R., Coffman, D., Quinn, P., Bates, T.: Laboratory studies of products of N2O5 uptake on Cl containing substrates. Geophys. Res. Lett. 36, L20808 (2009). doi:10.1029/2009GL040448

    Article  Google Scholar 

  • Robinson, G.N., Worsnop, D.R., Jayne, J.T., Kolb, C.E., Davidovits, P.: Heterogeneous uptake of ClONO2 and N2O5 by sulfuric acid solutions. J. Geophys. Res. 102, 3583–3601 (1997)

    Article  Google Scholar 

  • Roeselová, M., Jungwirth, P., Tobias, D.J., Gerber, R.B.: Impact, trapping, and accommodation of hydroxyl radical and ozone at aqueous salt Aerosol surfaces. A molecular dynamics study. J. Phys. Chem. B 107, 12690–12699 (2003)

    Article  Google Scholar 

  • Roeselová, M., Vieceli, J., Dang, L.X., Garrett, B.C., Tobias, D.J.: Hydroxyl radical at the air-water interface. J. Am. Chem. Soc. 126, 16308–16309 (2004)

    Article  Google Scholar 

  • Rogaski, C.A., Golden, D.M., Williams, L.R.: Reactive uptake and hydration experiments on amorphous carbon treated with NO2, SO2, O3, HNO3, and H2SO4. Geophys. Res. Lett. 24, 381–384 (1997)

    Article  Google Scholar 

  • Rohrer, F., Bohn, B., Brauers, T., Brüning, D., Johnen, F.-J., Wahner, A., Kleffmann, J.: Characterisation of the photolytic HONO-source in the atmosphere simulation chamber SAPHIR. Atmos. Chem. Phys. 5, 2189–2201 (2005)

    Article  Google Scholar 

  • Roscoe, J.M., Abbatt, J.P.D.: Diffuse reflectance FTIR study of the interaction of alumina surfaces with ozone and water vapor. J. Phys. Chem. A 109, 9028–9034 (2005)

    Article  Google Scholar 

  • Rossi, M.J.: Heterogeneous reactions on salts. Chem. Rev. 103, 4823–4882 (2003)

    Article  Google Scholar 

  • Saathoff, H., Naumann, K.-H., Riemer, N., Kamm, S., Möhler, O., Schurath, U., Vogel, H., Vogel, B.: The loss of NO2, HNO3, NO3/N2O5, and HO2/HOONO2 on soot aerosol: a chamber and modeling study. Geophys. Res. Lett. 28, 1957–1960 (2001)

    Article  Google Scholar 

  • Sadanaga, Y., Hirokawa, J., Akimoto, H.: Formation of molecular chlorine in dark condition: heterogeneous reaction of ozone with sea salt in the presence of ferric ion. Geophys. Res. Lett. 28, 4433–4436 (2001)

    Article  Google Scholar 

  • Sakaguchi, S., Morita, A.: Mass accommodation mechanism of water through monolayer films at water/vapor interface. J. Chem. Phys. 137(064701), 9 (2012). doi:10.1063/1.4740240

    Google Scholar 

  • Salgado-Muñoz, M.S., Rossi, M.J.: Heterogeneous reactions of HNO3 with flame soot generated under different combustion conditions. Reaction mechanism and kinetics. Phys. Chem. Chem. Phys. 4, 5110–5118 (2002)

    Article  Google Scholar 

  • Sander, S.P., Baker, R., Golden, D.M., Kurylo, M.J., Wine, P.H., Abbatt J.P.D., Burkholder, J.B., Kolb, C.E., Moortgat, G.K., Huie, R.E., Orkin, V.L.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation Number 17, JPL Publication 10-6, Pasadena, California. http://jpldataeval.jpl.nasa.gov/ (2011)

  • Santschi, C., Rossi, M.J.: Uptake of CO2, SO2, HNO3 and HCl on calcite (CaCO3) at 300 K: mechanism and the role of adsorbed water. J. Phys. Chem. A 110, 6789–6802 (2006)

    Article  Google Scholar 

  • Saul, T.D., Tolocka, M.P., Johnston, M.V.: Reactive uptake of nitric acid onto sodium chloride aerosols across a wide range of relative humidities. J. Phys. Chem. A 110, 7614–7620 (2006)

    Article  Google Scholar 

  • Schütze, M., Herrmann, H.: Determination of phase transfer parameters for the uptake of HNO3, N2O5 and O3 on single aqueous drops. Phys. Chem. Chem. Phys. 4, 60–67 (2002)

    Article  Google Scholar 

  • Seisel, S., Flückiger, B., Rossi, M.J.: The heterogeneous reaction of N2O5 with HBr on ice comparison with N2O5 + HCl. Ber. Bunsen. Phys. Chem. 102, 811–820 (1998)

    Article  Google Scholar 

  • Seisel, S., Börensen, C., Vogt, R., Zellner, R.: The heterogeneous reaction of HNO3 on mineral dust and γ-alumina surfaces: a combined Knudsen cell and DRIFTS study. Phys. Chem. Chem. Phys. 6, 5498–5508 (2004)

    Article  Google Scholar 

  • Seisel, S., Börensen, C., Vogt, R., Zellner, R.: Kinetics and mechanism of the uptake of N2O5 on mineral dust at 298 K. Atmos. Chem. Phys. 5, 3423–3432 (2005)

    Article  Google Scholar 

  • Seisel, S., Keil, T., Lian, Y., Zellner, R.: Kinetics of the uptake of SO2 on mineral oxides: Improved initial uptake coefficients at 298 K from pulsed Knudsen cell experiments. Int. J. Chem. Kinet. 38, 242–249 (2006)

    Article  Google Scholar 

  • Shi, Q., Jayne, J.T., Kolb, C.E., Worsnop, D.R.: Kinetic model for reaction of ClONO2 with H2O and HCl and HOCl with HCl in sulfuric acid solutions. J. Geophys. Res. 106, 24259–24274 (2001)

    Article  Google Scholar 

  • Shimono, A., Koda, S.: Laser-spectroscopic measurements of uptake coefficients of SO2 on aqueous surfaces. J. Phys. Chem. 100, 10,269–10,276 (1996)

    Article  Google Scholar 

  • Smith, J.D., Cappa, C.D., Drisdell, W.S., Cohen, R.C., Saykally, R.J.: Raman thermometry measurements of free evaporation from liquid water droplets. J. Am. Chem. Soc. 128, 12892–12898 (2006)

    Article  Google Scholar 

  • Stadler, D., Rossi, M.J.: The reactivity of NO2 and HONO on flame soot at ambient temperature: the influence of combustion conditions. Phys. Chem. Chem. Phys. 2, 5420–5429 (2000)

    Article  Google Scholar 

  • Stemmler, K., Vlasenko, A., Guimbaud, C., Ammann, M.: The effect of fatty acid surfactants on the uptake of nitric acid to deliquesced NaCl aerosol. Atmos. Chem. Phys. 8, 5127–5141 (2008)

    Article  Google Scholar 

  • Stewart, D.J., Griffiths, P.T., Cox, R.A.: Reactive uptake coefficients for heterogeneous reaction of N2O5 with submicron aerosols of NaCl and natural sea salt. Atmos. Chem. Phys. 4, 1381–1388 (2004)

    Article  Google Scholar 

  • Sullivan, R.C., Thornberry, T., Abbatt, J.P.D.: Ozone decomposition kinetics on alumina: effects of ozone partial pressure, relative humidity and repeated oxidation cycles. Atmos. Chem. Phys. 4, 1301–1310 (2004)

    Article  Google Scholar 

  • Takahama, S., Russell, L.M.: A molecular dynamics study of water mass accommodation on condensed phase water coated by fatty acid monolayers. J. Geophys. Res. 116(D02203), 14 (2011). doi:10.1029/2010JD014842

    Google Scholar 

  • Takami, A., Kato, S., Shimono, A., Koda, S.: Uptake coefficient of OH radical on aqueous surface. Chem. Phys. 231, 215–227 (1998)

    Article  Google Scholar 

  • Taketani, F., Kanaya, Y., Akimoto, H.: Kinetics of heterogeneous reactions of HO2 radical at ambient concentration levels with (NH4) 2SO4 and NaCl aerosol particles. J. Phys. Chem. A 112, 2370–2377 (2008)

    Article  Google Scholar 

  • Taketani, F., Kanaya, Y., Akimoto, H.: Heterogeneous loss of HO2 by KCl, synthetic sea salt, and natural seawater aerosol particles. Atmos. Environ. 43, 1660–1665 (2009)

    Article  Google Scholar 

  • Taketani, F., Kanaya, Y., Pochanart, P., Liu, Y., Li, J., Okuzawa, K., Kawamura, K., Wang, Z., Akimoto, H.: Measurement of overall uptake coefficients for HO2 radicals by aerosol particles sampled from ambient air at Mts. Tai and Mang (China). Atmos. Chem. Phys. 12, 11907–11916 (2012)

    Article  Google Scholar 

  • Thornton, J.A., Abbatt, J.P.D.: N2O5 reaction on submicron sea salt aerosol: kinetics, products, and the effect of surface active organics. J. Phys. Chem. A 109, 10004–10012 (2005)

    Article  Google Scholar 

  • Tolbert, M.A., Rossi, M.J., Golden, D.M.: Heterogeneous interactions of chlorine nitrate, hydrogen chloride, and nitric acid with sulfuric acid surfaces at stratospheric temperatures. Geophys. Res. Lett. 15, 847–850 (1988)

    Article  Google Scholar 

  • Ullerstam, M., Vogt, R., Langer, S., Ljungström, E.: The kinetics and mechanism of SO2 oxidation by O3 on mineral dust. Phys. Chem. Chem. Phys. 4, 4694–4699 (2002)

    Article  Google Scholar 

  • Ullerstam, M., Johnson, M.S., Vogt, R., Ljungström, E.: DRIFTS and Knudsen cell study of the heterogeneous reactivity of SO2 and NO2 on mineral dust. Atmos. Chem. Phys. 3, 2043–2051 (2003)

    Article  Google Scholar 

  • Usher, C.R., Al-Hosney, H., Carlos-Cuellar, S., Grassian, V.H.: A laboratory study of the heterogeneous uptake and oxidation of sulfur dioxide on mineral dust particles. J. Geophys. Res. 107, 4713 (2002)

    Google Scholar 

  • Usher, C.R., Michel, A.E., Grassian, V.H.: Reactions on mineral dust. Chem. Rev. 103, 4883–4940 (2003)

    Article  Google Scholar 

  • Van Doren, J.M., Watson, L.R., Davidovits, P., Worsnop, D.R., Zahniser, M.S., Kolb, C.E.: Temperature dependence of the uptake coefficients of nitric acid, hydrochloric acid and nitrogen oxide (N2O5) by water droplets. J. Phys. Chem. 94, 3265–3269 (1990)

    Article  Google Scholar 

  • Vieceli, J., Roeselov, M., Tobias, D.J.: Accommodation coefficients for water vapor at the air/water interface. Chem. Phys. Lett. 393, 249–255 (2004)

    Article  Google Scholar 

  • Vieceli, J., Roeselová, M., Potter, N., Dang, L.X., Garrett, B.C., Tobias, D.J.: Molecular dynamics simulations of atmospheric oxidants at the air-water interface: solvation and accommodation of OH and O3. J. Phys. Chem. B 109, 15876–15892 (2005)

    Article  Google Scholar 

  • Vlasenko, A., Sjogren, S., Weingartner, E., Stemmler, K., Gäggeler, H.W., Ammann, M.: Effect of humidity on nitric acid uptake to mineral dust aerosol particles. Atmos. Chem. Phys. 6, 2147–2160 (2006)

    Article  Google Scholar 

  • Voight, C., Schreiner, J., Kohlmann, A., Zink, P., Mauersberger, K., Larsen, N., Deshler, T., Kröger, C., Rosen, J., Adriani, A., Cairo, F., Donfrancesco, G.D., Viterbini, M., Ovarlez, J., Ovarlez, H., David, C., Dörnbrack, A.: Nitric acid trihydrate (NAT) in polar stratospheric clouds. Science 290, 1756–1758 (2000)

    Article  Google Scholar 

  • Voigtländer, J., Stratmann, F., Niedermeier, D., Wex, H., Kiselev, A.: Mass accommodation coefficient of water: a combined computational fluid dynamics and experimental data analysis. J. Geophys. Res. 112(D20208), 8 (2007). doi:10.1029/2007JD008604

    Google Scholar 

  • Wagner, R., Naumann, K.-H., Mangold, A., Möhler, O., Saathoff, H., Schurath, U.: Aerosol chamber study of optical constants and N2O5 uptake on supercooled H2SO4/H2O/HNO3 solution droplets at polar stratospheric cloud temperatures. J. Phys. Chem. A 109, 8140–8148 (2005)

    Article  Google Scholar 

  • Wagner, C., Hanisch, F., Holmes, N.S., de Coninck, H.C., Schuster, G., Crowley, J.N.: The interaction of N2O5 with mineral dust: aerosol flow tube and Knudsen reactor studies. Atmos. Chem. Phys. 8, 91–109 (2008)

    Article  Google Scholar 

  • Wagner, C., Schuster, G., Crowley, J.N.: An aerosol flow tube study of the interaction of N2O5 with calcite, Arizona dust and quartz. Atmos. Environ. 43, 5001–5008 (2009)

    Article  Google Scholar 

  • Wallington, T., Ammann, M., Atkinson, R., Cox, R.A., Crowley, J., Hynes, R., Jenkin, M.E., Mellouki, W., Rossi, M.J., Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry − Data Sheet V, VI, IUPAC Subcommittee for Gas Kinetic Data Evaluation for Atmospheric Chemistry http://www.iupac-kinetic.ch.cam.ac.uk/members.html (2012)

  • Winkler, P.M., Vrtala, A., Rudolf, R., Wagner, P.E., Riipinen, I., Vesala, T., Lehtinen, K.E.J., Viisanen, Y., Kulmala, M.: Condensation of water vapor: experimental determination of mass and thermal accommodation coefficients. J. Geophys. Res. 111(D19202), 12 (2006). doi:10.1029/2006JD007194

    Google Scholar 

  • Wu, L.Y., Tong, S.R., Wang, W.G., Ge, M.F.: Effects of temperature on the heterogeneous oxidation of sulfur dioxide by ozone on calcium carbonate. Atmos. Chem. Phys. 11, 6593–6605 (2011)

    Article  Google Scholar 

  • Zangmeister, C.D., Turner, J.A., Pemberton, J.E.: Segregation of NaBr in NaBr/NaCl crystals grown from aqueous solutions: implications for sea salt surface chemistry. Geophys. Res. Lett. 28, 995–998 (2001)

    Article  Google Scholar 

  • Zhang, R., Leu, M.-T., Keyser, L.F.: Heterogeneous reactions of ClONO2, HCl, and HOCl on liquid sulfuric acid surfaces. J. Phys. Chem. 98, 13,563–13,574 (1994a)

    Article  Google Scholar 

  • Zhang, R., Jayne, J.T., Molina, M.J.: Heterogeneous interactions of ClONO2 and HCl with sulfuric acid tetrahydrate: implications for the stratosphere. J. Phys. Chem. 98, 867–874 (1994b)

    Article  Google Scholar 

  • Zhang, R., Leu, M.-T., Keyser, L.F.: Hydrolysis of N2O5 and ClONO2 on the H2SO4/HNO3/H2O ternary solutions under stratospheric conditions. Geophys. Res. Lett. 22, 1493–1496 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Akimoto, H. (2016). Heterogeneous Reactions in the Atmosphere and Uptake Coefficients. In: Atmospheric Reaction Chemistry. Springer Atmospheric Sciences. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55870-5_6

Download citation

Publish with us

Policies and ethics