Skip to main content

Stratum Corneum

  • Chapter
  • First Online:
Immunology of the Skin

Abstract

The stratum corneum, consisting of denucleated keratinocytes, corneocytes that are eventually shed from skin, is a highly-functional outer layer of skin tissue. The structure of the stratum corneum is well-organized, and its formation is tightly regulated to insure its ability to perform competent epidermal barrier functions. An incompetent barrier cannot prevent harmful external microbes and stress (perturbation) from affecting internal tissues, leading to deleterious effects in cutaneous and extracutaneous cells/tissues. An abnormal permeability barrier increases the ingress of allergens that trigger inflammatory responses. These inflammatory responses then affect normal keratinocyte proliferation, differentiation, and barrier formation, keeping the formation of an incompetent barrier that sustains inflammatory responses. The stratum corneum is also responsible for innate immunity and modulation of adaptive immunity responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Athenstaedt H, Claussen H, Schaper D (1982) Epidermis of human skin: pyroelectric and piezoelectric sensor layer. Science 216:1018–1020

    Article  CAS  PubMed  Google Scholar 

  2. Scott IR, Harding CR, Barrett JG (1982) Histidine-rich protein of the keratohyalin granules. Source of the free amino acids, urocanic acid and pyrrolidone carboxylic acid in the stratum corneum. Biochim Biophys Acta 719:110–117

    Article  CAS  PubMed  Google Scholar 

  3. Palmer CN, Irvine AD, Terron-Kwiatkowski A, Zhao Y, Liao H, Lee SP, Goudie DR, Sandilands A, Campbell LE, Smith FJ, O’Regan GM, Watson RM, Cecil JE, Bale SJ, Compton JG, DiGiovanna JJ, Fleckman P, Lewis-Jones S, Arseculeratne G, Sergeant A, Munro CS, El Houate B, McElreavey K, Halkjaer LB, Bisgaard H, Mukhopadhyay S, McLean WH (2006) Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat Genet 38:441–446

    Article  CAS  PubMed  Google Scholar 

  4. O’Regan GM, Kemperman PM, Sandilands A, Chen H, Campbell LE, Kroboth K, Watson R, Rowland M, Puppels GJ, McLean WH, Caspers PJ, Irvine AD (2010) Raman profiles of the stratum corneum define 3 filaggrin genotype-determined atopic dermatitis endophenotypes. J Allergy Clin Immunol 126:574–580 e571. doi:10.1016/j.jaci.2010.04.038

    Google Scholar 

  5. Haftek M, Serre G, Mils V, Thivolet J (1991) Immunocytochemical evidence for a possible role of cross-linked keratinocyte envelopes in stratum corneum cohesion. J Histochem Cytochem 39:1531–1538

    Article  CAS  PubMed  Google Scholar 

  6. Horikoshi T, Igarashi S, Uchiwa H, Brysk H, Brysk MM (1999) Role of endogenous cathepsin D-like and chymotrypsin-like proteolysis in human epidermal desquamation. Br J Dermatol 141:453–459

    Article  CAS  PubMed  Google Scholar 

  7. Brattsand M, Egelrud T (1999) Purification, molecular cloning, and expression of a human stratum corneum trypsin-like serine protease with possible function in desquamation. J Biol Chem 274:30033–30040

    Article  CAS  PubMed  Google Scholar 

  8. Backman A, Stranden P, Brattsand M, Hansson L, Egelrud T (1999) Molecular cloning and tissue expression of the murine analog to human stratum corneum chymotryptic enzyme. J Invest Dermatol 113:152–155. doi:10.1046/j.1523-1747.1999.00662.x

    Article  CAS  PubMed  Google Scholar 

  9. Ekholm IE, Brattsand M, Egelrud T (2000) Stratum corneum tryptic enzyme in normal epidermis: a missing link in the desquamation process? J Invest Dermatol 114:56–63. doi:10.1046/j.1523-1747.2000.00820.x

    Article  CAS  PubMed  Google Scholar 

  10. Meyer-Hoffert U, Wu Z, Schroder JM (2009) Identification of lympho-epithelial Kazal-type inhibitor 2 in human skin as a kallikrein-related peptidase 5-specific protease inhibitor. PLoS One 4:e4372. doi:10.1371/journal.pone.0004372

    Article  PubMed  PubMed Central  Google Scholar 

  11. Brattsand M, Stefansson K, Hubiche T, Nilsson SK, Egelrud T (2009) SPINK9: a selective, skin-specific Kazal-type serine protease inhibitor. J Invest Dermatol 129:1656–1665. doi:10.1038/jid.2008.448

    Article  CAS  PubMed  Google Scholar 

  12. Meyer-Hoffert U, Wu Z, Kantyka T, Fischer J, Latendorf T, Hansmann B, Bartels J, He Y, Glaser R, Schroder JM (2010) Isolation of SPINK6 in human skin: selective inhibitor of kallikrein-related peptidases. J Biol Chem 285:32174–32181. doi:10.1074/jbc.M109.091850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Descargues P, Deraison C, Bonnart C, Kreft M, Kishibe M, Ishida-Yamamoto A, Elias P, Barrandon Y, Zambruno G, Sonnenberg A, Hovnanian A (2005) Spink5-deficient mice mimic Netherton syndrome through degradation of desmoglein 1 by epidermal protease hyperactivity. Nat Genet 37:56–65. doi:10.1038/ng1493

    CAS  PubMed  Google Scholar 

  14. Rice RH, Green H (1977) The cornified envelope of terminally differentiated human epidermal keratinocytes consists of cross-linked protein. Cell 11:417–422

    Article  CAS  PubMed  Google Scholar 

  15. Eckert RL, Sturniolo MT, Broome AM, Ruse M, Rorke EA (2005) Transglutaminases in epidermis. Prog Exp Tumor Res 38:115–124. doi:10.1159/000084236

    Article  CAS  PubMed  Google Scholar 

  16. Itoh M, Kawamoto T, Tatsukawa H, Kojima S, Yamanishi K, Hitomi K (2011) In situ detection of active transglutaminases for keratinocyte type (TGase 1) and tissue type (TGase 2) using fluorescence-labeled highly reactive substrate peptides. J Histochem Cytochem 59:180–187. doi:10.1369/jhc.2010.957225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fukui M, Kuramoto K, Yamasaki R, Shimizu Y, Itoh M, Kawamoto T, Hitomi K (2013) Identification of a highly reactive substrate peptide for transglutaminase 6 and its use in detecting transglutaminase activity in the skin epidermis. FEBS J 280:1420–1429. doi:10.1111/febs.12133

    Article  CAS  PubMed  Google Scholar 

  18. Matsuki M, Yamashita F, Ishida-Yamamoto A, Yamada K, Kinoshita C, Fushiki S, Ueda E, Morishima Y, Tabata K, Yasuno H, Hashida M, Iizuka H, Ikawa M, Okabe M, Kondoh G, Kinoshita T, Takeda J, Yamanishi K (1998) Defective stratum corneum and early neonatal death in mice lacking the gene for transglutaminase 1 (keratinocyte transglutaminase). Proc Natl Acad Sci U S A 95:1044–1049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Koch PJ, de Viragh PA, Scharer E, Bundman D, Longley MA, Bickenbach J, Kawachi Y, Suga Y, Zhou Z, Huber M, Hohl D, Kartasova T, Jarnik M, Steven AC, Roop DR (2000) Lessons from loricrin-deficient mice: compensatory mechanisms maintaining skin barrier function in the absence of a major cornified envelope protein. J Cell Biol 151:389–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Russell LJ, DiGiovanna JJ, Rogers GR, Steinert PM, Hashem N, Compton JG, Bale SJ (1995) Mutations in the gene for transglutaminase 1 in autosomal recessive lamellar ichthyosis. Nat Genet 9:279–283. doi:10.1038/ng0395-279

    Article  CAS  PubMed  Google Scholar 

  21. Oji V, Hautier JM, Ahvazi B, Hausser I, Aufenvenne K, Walker T, Seller N, Steijlen PM, Kuster W, Hovnanian A, Hennies HC, Traupe H (2006) Bathing suit ichthyosis is caused by transglutaminase-1 deficiency: evidence for a temperature-sensitive phenotype. Hum Mol Genet 15:3083–3097. doi:10.1093/hmg/ddl249

    Article  CAS  PubMed  Google Scholar 

  22. Pigg M, Gedde-Dahl T Jr, Cox D, Hausser I, Anton-Lamprecht I, Dahl N (1998) Strong founder effect for a transglutaminase 1 gene mutation in lamellar ichthyosis and congenital ichthyosiform erythroderma from Norway. Eur J Hum Genet 6:589–596. doi:10.1038/sj.ejhg.5200224

    Article  CAS  PubMed  Google Scholar 

  23. Cassidy AJ, van Steensel MA, Steijlen PM, van Geel M, van der Velden J, Morley SM, Terrinoni A, Melino G, Candi E, McLean WH (2005) A homozygous missense mutation in TGM5 abolishes epidermal transglutaminase 5 activity and causes acral peeling skin syndrome. Am J Hum Genet 77:909–917. doi:10.1086/497707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wertz PW, Downing DT (1987) Covalently bound omega-hydroxyacylsphingosine in the stratum corneum. Biochim Biophys Acta 917:108–111

    Article  CAS  PubMed  Google Scholar 

  25. Elias PM, Schmuth M, Uchida Y, Rice RH, Behne M, Crumrine D, Feingold KR, Holleran WM, Pharm D (2002) Basis for the permeability barrier abnormality in lamellar ichthyosis. Exp Dermatol 11:248–256

    Article  PubMed  Google Scholar 

  26. Uchida Y, Holleran WM (2008) Omega-O-acylceramide, a lipid essential for mammalian survival. J Dermatol Sci 51:77–87

    Article  CAS  PubMed  Google Scholar 

  27. Nemes Z, Marekov LN, Fésüs L, Steinert PM (1999) A novel function for transglutaminase 1: attachment of long-chain omega-hydroxyceramides to involucrin by ester bond formation. Proc Natl Acad Sci U S A 96:8402–8407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Doering T, Holleran WM, Potratz A, Vielhaber G, Elias PM, Suzuki K, Sandhoff K (1999) Sphingolipid activator proteins are required for epidermal permeability barrier formation. J Biol Chem 274:11038–11045

    Article  CAS  PubMed  Google Scholar 

  29. Zheng Y, Yin H, Boeglin WE, Elias PM, Crumrine D, Beier DR, Brash AR (2011) Lipoxygenases mediate the effect of essential fatty acid in skin barrier formation: a proposed role in releasing omega-hydroxyceramide for construction of the corneocyte lipid envelope. J Biol Chem 286:24046–24056. doi:10.1074/jbc.M111.251496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yu Z, Schneider C, Boeglin WE, Brash AR (2005) Mutations associated with a congenital form of ichthyosis (NCIE) inactivate the epidermal lipoxygenases 12R-LOX and eLOX3. Biochim Biophys Acta 1686:238–247. doi:10.1016/j.bbalip.2004.10.007

    Article  CAS  PubMed  Google Scholar 

  31. Loiseau N, Obata Y, Moradian SH, Yoshino S, Aburai K, Takayama K, Sakamoto K, Holleran WM, Elias PM, Uchida Y (2013) Altered sphingoid base profiles predict compromised membrane structure and permeability in atopic dermatitis. J Dermatol Sci 72:296–303

    Article  CAS  PubMed  Google Scholar 

  32. Goto-Inoue N, Hayasaka T, Zaima N, Nakajima K, Holleran WM, Sano S, Uchida Y, Setou M (2012) Imaging mass spectrometry visualizes ceramides and the pathogenesis of dorfman-chanarin syndrome due to ceramide metabolic abnormality in the skin. PLoS One 7:e49519. doi:10.1371/journal.pone.0049519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Stewart ME, Downing DT (1999) A new 6-hydroxy-4-sphingenine-containing ceramide in human skin. J Lipid Res 40:1434–1439

    CAS  PubMed  Google Scholar 

  34. Ponec M, Weerheim A, Lankhorst P, Wertz P (2003) New acylceramide in native and reconstructed epidermis. J Invest Dermatol 120:581–588

    Article  CAS  PubMed  Google Scholar 

  35. Uchida Y, Hara M, Nishio H, Sidransky E, Inoue S, Otsuka F, Suzuki A, Elias PM, Holleran WM, Hamanaka S (2000) Epidermal sphingomyelins are precursors for selected stratum corneum ceramides. J Lipid Res 41:2071–2082

    CAS  PubMed  Google Scholar 

  36. Hamanaka S, Hara M, Nishio H, Otsuka F, Suzuki A, Uchida Y (2002) Human epidermal glucosylceramides are major precursors of stratum corneum ceramides. J Invest Dermatol 119:416–423. doi:1836 [pii] 10.1046/j.1523-1747.2002.01836.x

    Google Scholar 

  37. Grayson S, Johnson-Winegar AG, Wintroub BU, Isseroff RR, Epstein EH Jr, Elias PM (1985) Lamellar body-enriched fractions from neonatal mice: preparative techniques and partial characterization. J Investig Dermatol 85:289–294

    Article  CAS  PubMed  Google Scholar 

  38. Hamanaka S, Nakazawa S, Yamanaka M, Uchida Y, Otsuka F (2005) Glucosylceramide accumulates preferentially in lamellar bodies in differentiated keratinocytes. Br J Dermatol 152:426–434. doi:BJD6333 [pii] 10.1111/j.1365-2133.2004.06333.x

    Google Scholar 

  39. Akiyama M, Sugiyama-Nakagiri Y, Sakai K, McMillan JR, Goto M, Arita K, Tsuji-Abe Y, Tabata N, Matsuoka K, Sasaki R, Sawamura D, Shimizu H (2005) Mutations in lipid transporter ABCA12 in harlequin ichthyosis and functional recovery by corrective gene transfer. J Clin Invest 115:1777–1784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Williams ML, Elias PM (1981) Stratum corneum lipids in disorders of cornification: increased cholesterol sulfate content of stratum corneum in recessive x-linked ichthyosis. J Clin Investig 68:1404–1410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bouwstra JA, Gooris GS, Cheng K, Weerheim A, Bras W, Ponec M (1996) Phase behavior of isolated skin lipids. J Lipid Res 37:999–1011

    CAS  PubMed  Google Scholar 

  42. Nakazawa H, Ohta N, Hatta I (2012) A possible regulation mechanism of water content in human stratum corneum via intercellular lipid matrix. Chem Phys Lipids 165:238–243. doi:10.1016/j.chemphyslip.2012.01.002

    Article  CAS  PubMed  Google Scholar 

  43. Charalambopoulou GC, Steriotis TA, Mitropoulos AC, Stefanopoulos KL, Kanellopoulos NK, Ioffe A (1998) Investigation of water sorption on porcine stratum corneum by very small angle neutron scattering. J Invest Dermatol 110:988–990. doi:10.1046/j.1523-1747.1998.00215.x

    Article  CAS  PubMed  Google Scholar 

  44. Nakazawa H, Imai T, Hatta I, Sakai S, Inoue S, Kato S (2013) Low-flux electron diffraction study for the intercellular lipid organization on a human corneocyte. Biochim Biophys Acta 1828:1424–1431. doi:10.1016/j.bbamem.2013.02.001

    Article  CAS  PubMed  Google Scholar 

  45. Janssens M, van Smeden J, Gooris GS, Bras W, Portale G, Caspers PJ, Vreeken RJ, Hankemeier T, Kezic S, Wolterbeek R, Lavrijsen AP, Bouwstra JA (2012) Increase in short-chain ceramides correlates with an altered lipid organization and decreased barrier function in atopic eczema patients. J Lipid Res 53:2755–2766. doi:10.1194/jlr.P030338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ohman H, Vahlquist A (1998) The pH gradient over the stratum corneum differs in X-linked recessive and autosomal dominant ichthyosis: a clue to the molecular origin of the “acid skin mantle”? J Invest Dermatol 111:674–677. doi:10.1046/j.1523-1747.1998.00356.x

    Article  CAS  PubMed  Google Scholar 

  47. Houben E, Uchida Y, Nieuwenhuizen WF, De Paepe K, Vanhaecke T, Holleran WM, Rogiers V (2007) Kinetic characteristics of acidic and alkaline ceramidase in human epidermis. Skin Pharmacol Physiol 20:187–194

    Article  CAS  PubMed  Google Scholar 

  48. Houben E, Holleran WM, Yaginuma T, Mao C, Obeid LM, Rogiers V, Takagi Y, Elias PM, Uchida Y (2006) Differentiation-associated expression of ceramidase isoforms in cultured keratinocytes and epidermis. J Lipid Res 47:1063–1070

    Article  CAS  PubMed  Google Scholar 

  49. Lin TK, Crumrine D, Ackerman LD, Santiago JL, Roelandt T, Uchida Y, Hupe M, Fabrias G, Abad JL, Rice RH, Elias PM (2012) Cellular changes that accompany shedding of human corneocytes. J Invest Dermatol 132:2430–2439. doi:10.1038/jid.2012.173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Behne MJ, Meyer JW, Hanson KM, Barry NP, Murata S, Crumrine D, Clegg RW, Gratton E, Holleran WM, Elias PM, Mauro TM (2002) NHE1 regulates the stratum corneum permeability barrier homeostasis. Microenvironment acidification assessed with fluorescence lifetime imaging. J Biol Chem 277:47399–47406. doi:10.1074/jbc.M204759200

    Article  CAS  PubMed  Google Scholar 

  51. Hanson KM, Behne MJ, Barry NP, Mauro TM, Gratton E, Clegg RM (2002) Two-photon fluorescence lifetime imaging of the skin stratum corneum pH gradient. Biophys J 83:1682–1690. doi:10.1016/S0006-3495(02)73936-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ohman H, Vahlquist A (1994) In vivo studies concerning a pH gradient in human stratum corneum and upper epidermis. Acta Derm Venereol 74:375–379

    CAS  PubMed  Google Scholar 

  53. Man M, Lin TK, Santiago JL, Celli A, Zhong L, Huang ZM, Roelandt T, Hupe M, Sundberg JP, Silva KA, Crumrine D, Martin-Ezquerra G, Trullas C, Sun R, Wakefield JS, Wei ML, Feingold KR, Mauro TM, Elias PM (2014) Basis for enhanced barrier function of pigmented skin. J Invest Dermatol 134:2399–2407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bos JD, Meinardi MM (2000) The 500 Dalton rule for the skin penetration of chemical compounds and drugs. Exp Dermatol 9:165–169

    Article  CAS  PubMed  Google Scholar 

  55. Ushijima T, Takahashi M, Ozaki Y (1984) Acetic, propionic, and oleic acid as the possible factors influencing the predominant residence of some species of Propionibacterium and coagulase-negative Staphylococcus on normal human skin. Can J Microbiol 30:647–652

    Article  CAS  PubMed  Google Scholar 

  56. Law SL, Squier CA, Wertz PW (1995) Free sphingosines in oral epithelium. Comp Biochem Physiol B Biochem Mol Biol 110:511–513

    Article  CAS  PubMed  Google Scholar 

  57. Bibel DJ, Aly R, Shah S, Shinefield HR (1993) Sphingosines: antimicrobial barriers of the skin. Acta Derm Venereol 73:407–411

    CAS  PubMed  Google Scholar 

  58. Bibel DJ, Aly R, Shinefield HR (1992) Antimicrobial activity of sphingosines. J Invest Dermatol 98:269–273

    Article  CAS  PubMed  Google Scholar 

  59. Thiele JJ, Schroeter C, Hsieh SN, Podda M, Packer L (2001) The antioxidant network of the stratum corneum. Curr Probl Dermatol 29:26–42

    Article  CAS  PubMed  Google Scholar 

  60. Tabachnick J (1957) Urocanic acid, the major acid-soluble, ultraviolet-absorbing compound in guinea pig epidermis. Arch Biochem Biophys 70:295–298

    Article  CAS  PubMed  Google Scholar 

  61. Lai Y, Gallo RL (2009) AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends Immunol 30:131–141. doi:10.1016/j.it.2008.12.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kopfnagel V, Harder J, Werfel T (2013) Expression of antimicrobial peptides in atopic dermatitis and possible immunoregulatory functions. Curr Opin Allergy Clin Immunol 13:531–536. doi:10.1097/ACI.0b013e328364ddfd

    Article  CAS  PubMed  Google Scholar 

  63. Schroder JM (2010) The role of keratinocytes in defense against infection. Curr Opin Infect Dis 23:106–110. doi:10.1097/QCO.0b013e328335b004

    Article  PubMed  Google Scholar 

  64. Yamasaki K, Gallo RL (2008) Antimicrobial peptides in human skin disease. Eur J Dermatol 18:11–21. doi:10.1684/ejd.2008.0304

    CAS  PubMed  Google Scholar 

  65. Gombart AF, Borregaard N, Koeffler HP (2005) Human cathelicidin antimicrobial peptide (CAMP) gene is a direct target of the vitamin D receptor and is strongly up-regulated in myeloid cells by 1,25-dihydroxyvitamin D3. FASEB J 19:1067–1077. doi:10.1096/fj.04-3284com

    Article  CAS  PubMed  Google Scholar 

  66. Schauber J, Dorschner RA, Coda AB, Buchau AS, Liu PT, Kiken D, Helfrich YR, Kang S, Elalieh HZ, Steinmeyer A, Zugel U, Bikle DD, Modlin RL, Gallo RL (2007) Injury enhances TLR2 function and antimicrobial peptide expression through a vitamin D-dependent mechanism. J Clin Invest 117:803–811. doi:10.1172/JCI30142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Park K, Elias PM, Shin KO, Lee YM, Hupe M, Borkowski AW, Gallo RL, Saba J, Holleran WM, Uchida Y (2013) A novel role of a lipid species, sphingosine-1-phosphate, in epithelial innate immunity. Mol Cell Biol 33:752–762. doi:10.1128/MCB.01103-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Park K, Elias PM, Oda Y, Mackenzie D, Mauro T, Holleran WM, Uchida Y (2011) Regulation of cathelicidin antimicrobial peptide expression by an endoplasmic reticulum (ER) stress signaling, Vitamin D receptor-independent pathway. J Biol Chem 286:34121–34130. doi:M111.250431 [pii] 10.1074/jbc.M111.250431

    Google Scholar 

  69. Tokumaru S, Sayama K, Shirakata Y, Komatsuzawa H, Ouhara K, Hanakawa Y, Yahata Y, Dai X, Tohyama M, Nagai H, Yang L, Higashiyama S, Yoshimura A, Sugai M, Hashimoto K (2005) Induction of keratinocyte migration via transactivation of the epidermal growth factor receptor by the antimicrobial peptide LL-37. J Immunol 175:4662–4668

    Article  CAS  PubMed  Google Scholar 

  70. Braff MH, Hawkins MA, Di Nardo A, Lopez-Garcia B, Howell MD, Wong C, Lin K, Streib JE, Dorschner R, Leung DY, Gallo RL (2005) Structure-function relationships among human cathelicidin peptides: dissociation of antimicrobial properties from host immunostimulatory activities. J Immunol 174:4271–4278

    Article  CAS  PubMed  Google Scholar 

  71. Elssner A, Duncan M, Gavrilin M, Wewers MD (2004) A novel P2X7 receptor activator, the human cathelicidin-derived peptide LL37, induces IL-1 beta processing and release. J Immunol 172:4987–4994

    Article  CAS  PubMed  Google Scholar 

  72. Niyonsaba F, Ushio H, Nagaoka I, Okumura K, Ogawa H (2005) The human beta-defensins (-1, -2, -3, -4) and cathelicidin LL-37 induce IL-18 secretion through p38 and ERK MAPK activation in primary human keratinocytes. J Immunol 175:1776–1784

    Article  CAS  PubMed  Google Scholar 

  73. Yamasaki K, Di Nardo A, Bardan A, Murakami M, Ohtake T, Coda A, Dorschner RA, Bonnart C, Descargues P, Hovnanian A, Morhenn VB, Gallo RL (2007) Increased serine protease activity and cathelicidin promotes skin inflammation in rosacea. Nat Med 13:975–980. doi:nm1616 [pii] 10.1038/nm1616

    Google Scholar 

  74. Yamasaki K, Kanada K, Macleod DT, Borkowski AW, Morizane S, Nakatsuji T, Cogen AL, Gallo RL (2011) TLR2 expression is increased in rosacea and stimulates enhanced serine protease production by keratinocytes. J Invest Dermatol 131:688–697. doi:jid2010351 [pii] 10.1038/jid.2010.351

    Google Scholar 

  75. Harder J, Bartels J, Christophers E, Schroder JM (2001) Isolation and characterization of human beta -defensin-3, a novel human inducible peptide antibiotic. J Biol Chem 276:5707–5713. doi:10.1074/jbc.M008557200

    Article  CAS  PubMed  Google Scholar 

  76. Harder J, Bartels J, Christophers E, Schroder JM (1997) A peptide antibiotic from human skin. Nature 387:861. doi:10.1038/43088

    Article  CAS  PubMed  Google Scholar 

  77. Ali RS, Falconer A, Ikram M, Bissett CE, Cerio R, Quinn AG (2001) Expression of the peptide antibiotics human beta defensin-1 and human beta defensin-2 in normal human skin. J Invest Dermatol 117:106–111. doi:10.1046/j.0022-202x.2001.01401.x

    Article  CAS  PubMed  Google Scholar 

  78. Harder J, Meyer-Hoffert U, Wehkamp K, Schwichtenberg L, Schroder JM (2004) Differential gene induction of human beta-defensins (hBD-1, -2, -3, and -4) in keratinocytes is inhibited by retinoic acid. J Invest Dermatol 123:522–529. doi:10.1111/j.0022-202X.2004.23234.x

    Article  CAS  PubMed  Google Scholar 

  79. Seo SJ, Ahn SW, Hong CK, Ro BI (2001) Expressions of beta-defensins in human keratinocyte cell lines. J Dermatol Sci 27:183–191

    Article  CAS  PubMed  Google Scholar 

  80. Baechle D, Flad T, Cansier A, Steffen H, Schittek B, Tolson J, Herrmann T, Dihazi H, Beck A, Mueller GA, Mueller M, Stevanovic S, Garbe C, Mueller CA, Kalbacher H (2006) Cathepsin D is present in human eccrine sweat and involved in the postsecretory processing of the antimicrobial peptide DCD-1L. J Biol Chem 281:5406–5415. doi:10.1074/jbc.M504670200

    Article  CAS  PubMed  Google Scholar 

  81. Harder J, Schroder JM (2002) RNase 7, a novel innate immune defense antimicrobial protein of healthy human skin. J Biol Chem 277:46779–46784. doi:10.1074/jbc.M207587200

    Article  CAS  PubMed  Google Scholar 

  82. Madsen P, Rasmussen HH, Leffers H, Honore B, Dejgaard K, Olsen E, Kiil J, Walbum E, Andersen AH, Basse B et al (1991) Molecular cloning, occurrence, and expression of a novel partially secreted protein “psoriasin” that is highly up-regulated in psoriatic skin. J Invest Dermatol 97:701–712

    Article  CAS  PubMed  Google Scholar 

  83. De Fabo EC, Noonan FP (1983) Mechanism of immune suppression by ultraviolet irradiation in vivo. I. Evidence for the existence of a unique photoreceptor in skin and its role in photoimmunology. J Exp Med 158:84–98

    Article  PubMed  Google Scholar 

  84. Reeve VE, Greenoak GE, Canfield PJ, Boehm-Wilcox C, Gallagher CH (1989) Topical urocanic acid enhances UV-induced tumour yield and malignancy in the hairless mouse. Photochem Photobiol 49:459–464

    Article  CAS  PubMed  Google Scholar 

  85. Walterscheid JP, Nghiem DX, Kazimi N, Nutt LK, McConkey DJ, Norval M, Ullrich SE (2006) Cis-urocanic acid, a sunlight-induced immunosuppressive factor, activates immune suppression via the 5-HT2A receptor. Proc Natl Acad Sci U S A 103:17420–17425. doi:10.1073/pnas.0603119103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Albert E, Walker J, Thiesen A, Churchill T, Madsen K (2010) cis-Urocanic acid attenuates acute dextran sodium sulphate-induced intestinal inflammation. PLoS One 5:e13676. doi:10.1371/journal.pone.0013676

    Article  PubMed  PubMed Central  Google Scholar 

  87. Correale J, Farez MF (2013) Modulation of multiple sclerosis by sunlight exposure: role of cis-urocanic acid. J Neuroimmunol 261:134–140. doi:10.1016/j.jneuroim.2013.05.014

    Article  CAS  PubMed  Google Scholar 

  88. Barresi C, Stremnitzer C, Mlitz V, Kezic S, Kammeyer A, Ghannadan M, Posa-Markaryan K, Selden C, Tschachler E, Eckhart L (2011) Increased sensitivity of histidinemic mice to UVB radiation suggests a crucial role of endogenous urocanic acid in photoprotection. J Invest Dermatol 131:188–194. doi:10.1038/jid.2010.231

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author gratefully acknowledges Dr. Anna Celli, Dr. Peter M. Elias, and Dr. Theodora Mauro (Department of Dermatology, University of California, San Francisco and Department of Veterans Affairs Medical Center San Francisco, CA), Dr. Ichiro Hatta (Japan Synchrotron Radiation Research Institute/SPring-8), and Dr. Mitsuhiro Denda (Shiseido Research Center, Yokohama, Japan) for numerous critical discussions. The author acknowledges the superb editorial assistance of Ms. Joan Wakefield (Department of Veterans Affairs Medical Center San Francisco, CA). This study was supported by National Institute of Health grants AR051077 and AR062025 (the National Institute of Arthritis and Musculoskeletal and Skin Diseases) and a National Rosacea Society Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshikazu Uchida Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Uchida, Y., Park, K. (2016). Stratum Corneum. In: Kabashima, K. (eds) Immunology of the Skin. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55855-2_2

Download citation

Publish with us

Policies and ethics