Skip to main content

Myeloid Derived Suppressor Cells

  • Chapter
  • First Online:
Immunology of the Skin
  • 2163 Accesses

Abstract

Myeloid derived suppressor cells (MDSCs) comprise a phenotypically heterogeneous population of cells, which can be found in tumor bearing mice and in patients with cancer. MDSCs play a central role in the induction of peripheral tolerance. Together with regulatory T cells (Tregs) they promote an immunosuppressive environment in tumor-bearing hosts. In addition, MDSCs convert into M2 like tumor-associated macrophages (TAMs) in the tumor to establish an immunosuppressive, tumor microenvironment. In peripheral blood organs, MDSCs contribute to systemic tolerance by producing immunomodulatory cytokines (e.g. IL-10, TGFβ). The phenotype of MDSCs differs in humans and mice, and the exact mechanisms of their suppressive function are still controversially discussed. In summary, MDSCs are a group of phenotypically heterogeneous cells of myeloid origin that have common biological activities. In this section, we discuss the definition of MDSCs, the proposed mechanisms of expansion and the recruitment and activation of MDSCs, as well as their biological activities in tumor bearing hosts to assess the potential therapeutic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9:162–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sica A, Bronte V (2007) Altered macrophage differentiation and immune dysfunction in tumor development. J Clin Invest 117:1155–1166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fujimura T, Mahnke K, Enk AH (2010) Myeloid derived suppressor cells and their role in tolerance inuction in cancer. J Dermatol Sci 59:1–6

    Article  CAS  PubMed  Google Scholar 

  4. Gabrilovich DI, Ostrand-Rosenberg S, Bronte V (2012) Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 12:253–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kodumudi KN, Woan K, Gilvary DL, Sahakian E, Wei S, Djeu JY (2010) A novel chemoimmunomodulating property of docetaxel: suppression of myeloid-derived suppressor cells in tumor bearers. Clin Cancer Res 16:4583–4894

    Article  CAS  PubMed  Google Scholar 

  6. Movahedi K, Laoui D, Gysemans C, Baeten M, Stange G, Van den Bossche J et al (2010) Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6C(high) monocytes. Cancer Res 70:5728–5739

    Article  CAS  PubMed  Google Scholar 

  7. Laoui D, Van Overmeire E, Movahedi K, Van den Bossche J, Schouppe E, Mommer C, Nikolaou A, Morias Y, De Baetselier P, Van Ginderachter JA (2011) Mononuclear phagocyte heterogeneity in cancer: different subsets and activation states reaching out at the tumor site. Immunobiology 216:1192–1202

    Article  CAS  PubMed  Google Scholar 

  8. Fujimura T, Ring S, Umansky V, Mahnke K, Enk AH (2012) Regulatory T cells (Treg) stimulate B7-H1 expression in myeloid derived suppressor cells (MDSC) in ret melanomas. J Invest Dermatol 132:1239–1246

    Article  CAS  PubMed  Google Scholar 

  9. Zea A, Rodriguez PC, Atkins MB, Hernandez C, Signoretti S, Zabaleta J et al (2005) Arginase-producing myeloid derived suppressor cells in renal cell carcinoma patients: a mechanism of tumor evasion. Cancer Res 65:3044–3048

    CAS  PubMed  Google Scholar 

  10. Kusmartsev S, Su Z, Heiser A, Dannull J, Eruslanov E, Kuebler H et al (2008) Reversal of myeloid cell-mediated immunosuppression in patients with metastatic renal cell carcinoma. Clin Cancer Res 14:8270–8278

    Article  CAS  PubMed  Google Scholar 

  11. Rodriguez PC, Ernstoff MS, Hernandez C, Atkins A, Zabaleta J, Sierra R et al (2009) Arginase 1-producing myeloid derived suppressor cells in renal cell carcinoma are a subpoplation of activated granulocytes. Cancer Res 69:1553–1560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Brandau S, Trellakis S, Bruderek K, Schmaltz D, Steller G, Elian M, Suttmann H, Schenck M, Welling J, Zabel P, Lang S (2011) Myeloid-derived suppressor cells in the peripheral blood of cancer patients contain a subset of immature neutrophils with impaired migratory properties. J Leukoc Biol 89:311–317

    Article  CAS  PubMed  Google Scholar 

  13. Feng PH, Lee KY, Chang YL, Chan YF, Kuo LW, Lin TY, Chung FT, Kuo CS, Yu CT, Lin SM, Wang CH, Chou CL, Huang CD, Kuo HP (2012) CD14(+)S100A9(+) monocytic myeloid-derived suppressor cells and their clinical relevance in non-small cell lung cancer. Am J Respir Crit Care Med 186:1025–1036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Song X, Krelin Y, Dvorkin T, Bjorkdahi O, Segal S, Dinarello CA et al (2005) CD11b+/Gr-1+ immature myeloid cells mediate suppression of T cells in mice bearing tumors of IL-1β-secreting cells. J Immunol 175:8200–8208

    Article  CAS  PubMed  Google Scholar 

  15. Bunt SK, Sinha P, Clements VK, Leips J, Ostrand-Rosenberg S (2006) Inflammation induces myeloid-derived suppressor cells that facilitate tumor progression. J Immunol 176:284–290

    Article  CAS  PubMed  Google Scholar 

  16. Bunt SK, Yang L, Sinha P, Clements VK, Leips J, Ostrand-Rosenberg S (2007) Reduced inflammation in the tumor microenvironment delays the accumulation of myeloid-derived suppressor cells and limits tumor progression. Cancer Res 67:10019–10026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shime H, Matsumoto M, Oshiumi H, Tanaka S, Nakane A, Iwakura Y, Tahara H, Inoue N, Seya T (2012) Toll-like receptor 3 signaling converts tumor-supporting myeloid cells to tumoricidal effectors. Proc Natl Acad Sci U S A 109:2066–2071. doi:10.1073/pnas.1113099109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cheng P, Corzo CA, Luetteke N, Yu B, Nagaraj S, Bui MM et al (2008) Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein. J Exp Med 205:2235–2249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ramachandran IR, Martner A, Pisklakova A, Condamine T, Chase T, Vogl T, Roth J, Gabrilovich D, Nefedova Y (2013) Myeloid-derived suppressor cells regulate growth of multiple myeloma by inhibiting T cells in bone marrow. J Immunol 190:3815–3823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sinha P, Okoro C, Foell D, Freeze HH, Ostrand-Rosenberg S, Srikrishna G (2008) Proinflammatory S100 proteins regulate the accumulation of myeloid-derived suppressor cells. J Immunol 181:4666–4675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rodriguez PC, Hernandez CP, Quiceno D, Dubinett SM, Zabaleta J, Ochoa JB et al (2005) Arginase 1 in myeloid suppressor cells is induced by COX-2 in lung carcinoma. J Exp Med 202:931–939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sinha P, Clements VK, Fulton AM, Ostrand-Rosenberg S (2007) Prostaglandin E2 promotes tumor progression by inducing myeloid derived suppressor cells. Cancer Res 67:4507–4513

    Article  CAS  PubMed  Google Scholar 

  23. Melani C, Chiodoni C, Forni G, Colombo MP (2003) Myeloid cell expansion elicited by the progression of spontaneous mammary carcinomas in c-erbB-2 transgenic BALB/c mice suppresses immune reactivity. Blood 102:2138–2145

    Article  CAS  PubMed  Google Scholar 

  24. Gabrilovich D, Ishida T, Oyama T, Ran S, Kravtsov V, Nadaf S et al (1998) Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affect the differentiation of multiple hematopoietic linages in vivo. Blood 92:4150–4166

    CAS  PubMed  Google Scholar 

  25. Yang L, DeBusk LM, Fukuda K, Fingleton B, Green-Jarvis B, Shyr Y et al (2004) Expansion of myeloid immune suppressive Gr1+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell 6:409–421

    Article  CAS  PubMed  Google Scholar 

  26. Yang L, Huang J, Ren X, Gorska AE, Chytil A, Aakre M et al (2008) Abrogation of TGFβ singaling in mammary carcinomas recruits Gr-1+CD11b+ myeloid cells that promote metastasis. Cancer Cell 13:23–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Melani C, Sangaletti S, Barazzetta FM, Werb Z, Colombo MP (2007) Amino-biphosphonate-mediated MMP-9 inhibition breaks the tumor-bone marrow axis responsible for myeloid derived suppressor cell expansion and macrophage infiltration in tumor stroma. Cancer Res 67:11438–11446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sawanobori Y, Ueha S, Kurachi M, Shimaoka T, Talmadge JE, Abe J et al (2008) Chemokine-mediated rapid turnover of myeloid-derived suppressor cells in tumor-bearing mice. Blood 111:5457–5466

    Article  CAS  PubMed  Google Scholar 

  29. Gehad AE, Lichtman MK, Schmults CD, Teague JE, Calarese AW, Jiang Y, Watanabe R, Clark RA (2012) Nitric oxide-producing myeloid-derived suppressor cells inhibit vascular E-selectin expression in human squamous cell carcinomas. J Invest Dermatol 132:2642–2651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pan PY, Wang GX, Yin B, Ozao J, Ku T, Divino CM et al (2008) Reversion of immunotolerance in advanced malignancy: modulation of myeloid-derived suppressor cell development by blockade of stem cell factor function. Blood 111:219–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Obermajer N, Muthuswamy R, Odunsi K, Edwards RP, Kalinski P (2011) PGE(2)-induced CXCL12 production and CXCR4 expression controls the accumulation of human MDSCs in ovarian cancer environment. Cancer Res 71:7463–7470

    Article  CAS  PubMed  Google Scholar 

  32. Corzo C, Cotter MJ, Cheng P, Cheng F, Kusmartsev S, Sotomayor E et al (2009) Mechanism regulating reactive oxygen species in tumor-induced myeloid derived suppressor cells. J Immunol 182:5693–5701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kusmartsev S, Gabrilovich DI (2005) STAT1 signaling regulates tuomr-associated macrophage-mediated T cell deletion. J Immunol 174:4880–4891

    Article  CAS  PubMed  Google Scholar 

  34. Rutschman R, Lang R, Hesse M, Ihle JN, Wynn TA, Murray PJ (2001) Cutting edge: Stat6-dependent substrate depletion regulate nitric oxide production. J Immunol 166:2173–2177

    Article  CAS  PubMed  Google Scholar 

  35. Terabe M, Matsui S, Park JM, Mamura M, Noben-Trauth N, Donaldson DD et al (2003) Transforming growth factor-β production and myeloid cells are an effector mechanism through which CD1d-restricted T cell block cytotoxic T lympocyte-mediated tumor immunosurveillance: abrogation prevents tumor recurrence. J Exp Med 198:1741–1752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hao NB, Lü MH, Fan YH, Cao YL, Zhang ZR, Yang SM (2012) Macrophages in tumor microenvironments and the progression of tumors. Clin Dev Immunol 2012:948098

    Article  PubMed  PubMed Central  Google Scholar 

  37. Tomioka H, Tatano Y, Maw WW, Sano C, Kanehiro Y, Shimizu T (2012) Characteristics of suppressor macrophages induced by mycobacterial and protozoal infections in relation to alternatively activated M2 macrophages. Clin Dev Immunol 2012:635451

    Article  PubMed  PubMed Central  Google Scholar 

  38. Rodriguez PC, Quiceno DG, Ochoa AC (2007) L-arginine availability reglates T-lymphocyte cell-cycle progression. Blood 109:1568–1573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mace TA, Ameen Z, Collins A, Wojcik S, Mair M, Young GS, Fuchs JR, Eubank TD, Frankel WL, Bekaii-Saab T, Bloomston M, Lesinski GB (2013) Pancreatic cancer-associated stellate cells promote differentiation of myeloid-derived suppressor cells in a STAT3-dependent manner. Cancer Res 73:3007–3018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Getts DR, Turley DM, Smith CE, Harp CT, McCarthy D, Feeney EM, Getts MT, Martin AJ, Luo X, Terry RL, King NJ, Miller SD (2011) Tolerance induced by apoptotic antigen-coupled leukocytes is induced by PD-L1+ and IL-10-producing splenic macrophages and maintained by T regulatory cells. J Immunol 187:2405–2417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Leung J, Suh WK (2013) Host B7-H4 regulates antitumor T cell responses through inhibition of myeloid-derived suppressor cells in a 4T1 tumor transplantation model. J Immunol 190:6651–6661

    Article  CAS  PubMed  Google Scholar 

  42. Nagaraj S, Gupta K, Pisarev V, Kinarsky L, Sherman S, Kang L et al (2007) Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nat Med 13:828–835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mantovani A, Biswas SK, Galdiero MR, Sica A, Locati M (2013) Macrophage plasticity and polarization in tissue repair and remodelling. J Pathol 229:176–185

    Article  CAS  PubMed  Google Scholar 

  44. Tang X, Mo C, Wang Y, Wei D, Xiao H (2013) Anti-tumour strategies aiming to target tumour-associated macrophages. Immunology 138:93–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kambayashi Y, Fujimura T, Furudate S, Hashimoto A, Haga T, Aiba S (2013) Comparison of immunosuppressive cells and cytotoxic cells in angiosarcoma: the development of a possible supportive therapy for angiosarcoma. Dermatology 227:14–20

    Google Scholar 

  46. Rogers TL, Holen I (2011) Tumour macrophages as potential targets of bisphosphonates. J Transl Med 9:177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sevko A, Michels T, Vrohlings M, Umansky L, Beckhove P, Kato M, Shurin GV, Shurin MR, Umansky V (2013) Antitumor effect of Paclitaxel is mediated by inhibition of myeloid-derived suppressor cells and chronic inflammation in the spontaneous melanoma model. J Immunol 190:2464–2471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Suzuki E, Kapoor V, Jassar AS, Kaiser LR, Albelda SM (2005) Gemcitabine selectively eliminates splenic Gr-1+/CD11b+ myeloid suppressor cells in tumor-bearing animals and enhances antitumor immune activity. Clin Cancer Res 11:6713–6721

    Article  CAS  PubMed  Google Scholar 

  49. Sevko A, Sade-Feldman M, Kanterman J, Michels T, Falk CS, Umansky L, Ramacher M, Kato M, Schadendorf D, Baniyash M, Umansky V (2013) Cyclophosphamide promotes chronic inflammation-dependent immunosuppression and prevents antitumor response in melanoma. J Invest Dermatol 133:1610–1619

    Article  CAS  PubMed  Google Scholar 

  50. Bruchard M, Mignot G, Derangère V, Chalmin F, Chevriaux A, Végran F, Boireau W, Simon B, Ryffel B, Connat JL, Kanellopoulos J, Martin F, Rébé C, Apetoh L, Ghiringhelli F (2013) Chemotherapy-triggered cathepsin B release in myeloid-derived suppressor cells activates the Nlrp3 inflammasome and promotes tumor growth. Nat Med 19:57–64

    Article  CAS  PubMed  Google Scholar 

  51. Görgün GT, Whitehill G, Anderson JL, Hideshima T, Maguire C, Laubach J, Raje N, Munshi NC, Richardson PG, Anderson KC (2013) Tumor-promoting immune-suppressive myeloid-derived suppressor cells in the multiple myeloma microenvironment in humans. Blood 121:2975–2987

    Article  PubMed  PubMed Central  Google Scholar 

  52. Schilling B, Sucker A, Griewank K, Zhao F, Weide B, Görgens A, Giebel B, Schadendorf D, Paschen A (2013) Vemurafenib reverses immunosuppression by myeloid derived suppressor cells. Int J Cancer. (in press)

    Google Scholar 

  53. Allavena P, Sica A, Solinas G, Porta C, Mantovani A (2008) The inflammatory micro-environment in tumor progression: the role of tumor-associated macrophages. Crit Rev Oncol Hematol 66:1–9

    Article  PubMed  Google Scholar 

  54. Nefedove Y, Fishman M, Sherman S, Wang X, Beg AA, Gabrilovich DI (2003) Mechanism of all-trans retinoic acid effect on tumor-associated myeloid-derived suppressor cells. Cancer Res 63:4441–4449

    Google Scholar 

  55. Almand B, Clark JI, Nikitina E, van Beynen J, English NR, Knight SC et al (2001) Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J Immunol 166:678–689

    Article  CAS  PubMed  Google Scholar 

  56. Iclozan C, Antonia S, Chiappori A, Chen DT, Gabrilovich D (2013) Therapeutic regulation of myeloid-derived suppressor cells and immune response to cancer vaccine in patients with extensive stage small cell lung cancer. Cancer Immunol Immunother 62:909–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Roca H, Varsos ZS, Sud S, Craig MJ, Ying C, Pienta KJ (2009) CCL2 and interleukin-6 promote survival of human CD11b+ peripheral blood mononuclear cells and induce M2-type macrophage polarization. J Biol Chem 284:34342–34354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhang J, Lu Y, Pienta KJ (2010) Multiple roles of chemokine (C-C motif) ligand 2 in promoting prostate cancer growth. J Natl Cancer Inst 102:522–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Germano G, Frapolli R, Simone M, Tavecchio M, Erba E, Pesce S, Pasqualini F, Grosso F, Sanfilippo R, Casali PG, Gronchi A, Virdis E, Tarantino E, Pilotti S, Greco A, Nebuloni M, Galmarini CM, Tercero JC, Mantovani A, D’Incalci M, Allavena P (2010) Antitumor and anti-inflammatory effects of trabectedin on human myxoid liposarcoma cells. Cancer Res 70:2235–2244

    Article  CAS  PubMed  Google Scholar 

  60. Allavena P, Signorelli M, Chieppa M, Erba E, Bianchi G, Marchesi F, Olimpio CO, Bonardi C, Garbi A, Lissoni A, de Braud F, Jimeno J, D’Incalci M (2005) Anti-inflammatory properties of the novel antitumor agent yondelis (trabectedin): inhibition of macrophage differentiation and cytokine production. Cancer Res 65:2964–2971

    Article  CAS  PubMed  Google Scholar 

  61. Dineen SP, Lynn KD, Holloway SE, Miller AF, Sullivan JP, Shames DS, Beck AW, Barnett CC, Fleming JB, Brekken RA (2008) Vascular endothelial growth factor receptor 2 mediates macrophage infiltration into orthotopic pancreatic tumors in mice. Cancer Res 68:4340–4346

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taku Fujimura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Fujimura, T., Enk, A.H. (2016). Myeloid Derived Suppressor Cells. In: Kabashima, K. (eds) Immunology of the Skin. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55855-2_11

Download citation

Publish with us

Policies and ethics